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Abstract

Electric vehicles are gaining more and more popularity due to low
oil dependency and low emission. Their deep penetration will signif-
icantly benefit the environment, but meanwhile will cause two crucial
consequences. First, electric vehicles introduce heavy load impact into
the power grid by shifting energy demand from gasoline to electricity.
The surging load will compromise the grid’s reliability and jeopardize
its power supply quality. Second, charging stations become indispens-
able infrastructure to support large deployment of electric vehicles. The
availability in public destinations comes with electric vehicles compet-
ing for both power supply and service points of charging stations. The
competition degrades quality of service and thus can compromise the
original intent of advocating electric vehicles.

There are many research efforts addressing either of the two conse-
quences above. Different with them, we consider both and jointly study
quality of service for electric vehicle users and reliability of the power
grid. We review recent developments on this topic in this article. In
Chapter 1, we introduce the ecosystem of electric vehicles and discuss
motivations for managing charging load. This chapter further presents
a systematic solution framework for smart electric vehicle charging. The
following chapters then study each block of the framework. Specially, in
Chapter 2, we investigate charging rate control, which handles how to
allocate power supply to electric vehicles within a charging station. In
Chapter 3, we address electric vehicle demand response, which is how
to make electric vehicles follow the power supply of charging stations
and the power grid. In Chapter 4, we study electric vehicle scheduling,
which copes with how to schedule electric vehicles to multiple charg-
ing points within a charging station. In Chapter 5, we discuss charging
demand balancing, which deals with how to balance electric vehicles
among multiple charging stations.

In these chapters, we first present deployable algorithms and mech-
anisms that are designed for each framework blocks. Then, we evalu-
ate the proposed approaches by two complementary ways. One way is
leveraging theoretical analysis to demonstrate their performance guar-
antees, while the other is using extensive simulations based on realistic
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data traces and simulation tools. We also review studies that align
with the corresponding framework blocks and consider additional di-
mensions and/or different optimization goals. Finally, in Chapter 6,
we conclude the article with summaries of main ideas discussed in the
previous chapters.
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1
Introduction and Overview

The transportation sector is by far the largest oil consumer and thus
a prime contributor to air pollution. For example, the sector accounts
for about 23% of the global GHG emissions in 2014 [1]. The growing
concerns over environmental impacts and oil scarcity have boosted the
need to electrify the transportation sector and spurred efforts to accel-
erate the adoption of electric vehicles (EVs). As shown by Fig. 1.1(a),
the yearly EV sales for U.S. have grown more than 6 times from 2011
to 2015, and as shown by Fig. 1.1(b), the worldwide yearly sales would
be over 6 million by 2020. Further, the number of EVs in the globe
would be over 35 million by 2022 [2].

The popularity of EVs will significantly benefit the environment
and alleviate energy crisis, but meanwhile will cause heavy load im-
pact to the power grid due to shifting energy demand from gasoline to
electricity. The potential impact includes compromising the grid’s reli-
ability and jeopardizing its power quality. For example, uncoordinated
EV charging can increase the peak load and energy losses and overload
distribution lines and transformers [3, 4, 5, 6]. Overloading can over-
heat the transformers, and accelerate their degradation, and eventually
cause premature failure to them. This impact would be even severer

3
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4 Introduction and Overview

(a) U.S. EV sales 2010-2015 (b) World-wide EV sales 2013-2020

Figure 1.1: Market research about EV sales.

with some eco-friendly areas such as neighbourhoods with higher pen-
etration of EVs.

Recently, various charging facilities have been deployed such as
charging points in residential areas and working places [3, 7, 8, 9,
10, 11, 12]. Among them, charging stations have become indispens-
able infrastructure to support the deep integration of electric vehicles
[10, 11, 12, 13, 14]. Meanwhile, one crucial consequence following their
public availability is that EVs will compete for charging resources such
as power supply and service points of these charging stations. This
competition can much degrade the quality of service if there is no coor-
dination performed among EV users when making decisions on choosing
charging stations. For example, some charging stations may be over-
loaded with long waiting queues of charging demand (and thus long
waiting time for EVs) while others barely have EVs to serve. Some EVs
that have a tight schedule may be allocated with lower power supply
than EVs with adequate spare time for charging.

There are two different methods to accommodate the large-scale
EV charging load. The first method is to make the required invest-
ment to upgrade the power grid and build more charging facilities. The
second method is to exploit the elasticity of charging load and exist-
ing communication networks to coordinate and control EV charging,
i.e., to enable smart EV charging. This method postpones upgrading or
building new charging infrastructure and thus substantially reduces the
required reinforcement investment [15, 16]. This article focuses on the

Full text available at: http://dx.doi.org/10.1561/3100000016



1.1. Electric Vehicle Overview 5

latter method and studies smart EV charging. In the following, we first
present an overview for electric vehicles and charging infrastructure,
and then reveal emerging challenges and propose a systematic solution
framework for smart EV charging.

1.1 Electric Vehicle Overview

Although EVs were first introduced many decades ago, their resurgence
and actual popularity start recently due to technological developments
and the environmental impact of petroleum-based transportation [17].
Electric vehicles use electric motors for propulsion and can be powered
by electricity from on-board batteries. In contrast, conventional vehicles
use internal combustion engines for propulsion and usually depend on
non-renewable fossil fuels. These two kinds of vehicles are different in
that the electricity EVs consume can be generated from a wide range
of energy sources, including fossil fuels and renewable sources such as
solar power and wind power or the combinations of those sources. EVs,
if sourcing from renewable, thus come with lower carbon footprint and
other emissions than conventional vehicles.

This article confines to studying plug-in electric vehicles, which can
be recharged from any external source of electricity, such as the power
grid and local renewable generation. Plug-in EVs can be further clas-
sified into two different types: all-electric or battery electric vehicles
(BEVs) and plug-in hybrid electric vehicles (PHEVs). BEVs only use
electric motors for propulsion instead of internal combustion engines.
They have no fuel tank and derive all power from rechargeable batteries
on-board. Examples of BEVs include Nissan Leaf, Ford Focus Electric,
Tesla Model S, BMW i3, and BYD Qin EV300. Fig. 1.2(a) shows Nis-
san Leaf 2017. PHEVs share the characteristics of both conventional
vehicles and BEVs, and thus have both electric motors and internal
combustion engines. They can derive power both from on-board batter-
ies that can be recharged by plugging into external sources, and from
combusting fossil fuel from fuel tanks. Examples of PHEVs include
Chevrolet Volt, BYD F3DM, BMW i8, and Toyota Prius. Fig. 1.2(b)
shows Chevrolet Volt 2017.

Full text available at: http://dx.doi.org/10.1561/3100000016



6 Introduction and Overview

(a) Nissan Leaf 2017 (b) Chevrolet Volt 2017

Figure 1.2: Examples of BEV and PHEV.

Most plug-in EVs of this generation use lithium-ion (li-ion) bat-
teries. Compared to most other rechargeable batteries, li-ion batteries
have advantages such as higher energy density, higher power density,
and long life span. For example, Nissan Leaf has 30 kWh battery pack
with 172 km on a full battery charge, while the latest Tesla Model S is
equipped with 100 kWh battery pack, which can allow a driving range
as long as 539 km. Battery life span is defined as the number of full
charge-discharge cycles before significant capacity loss. Li-ion batteries
degrade, in terms of capacity, energy efficiency, as the number of cy-
cles increases. To maintain a long life span, li-ion batteries should not
operate with frequent mode switching, i.e., switching between charg-
ing and discharging. One disadvantage is that li-ion batteries can pose
safety issues since they contain flammable electrolytes. For example, it
would be very risky to charge EV batteries with a power supply larger
than the allowed maximum charging rate. In order to operate safely
and efficiently, li-ion batteries should be used within safe temperature
and certain power ranges.

1.2 Charging Infrastructure Overview

Charging stations or charging points are a fundamental element in
charging infrastructure that supplies electricity for the recharging of
EVs. The charging infrastructure usually exists in three different con-
texts. The first is residential charging stations, where an EV owner
plugs in when he or she at home, and the EV usually charges overnight

Full text available at: http://dx.doi.org/10.1561/3100000016



1.2. Charging Infrastructure Overview 7

Table 1.1: Charging Standard Specification [23].

Charging Level Voltage [V] Max. Current [A] Max. Power [kW]
AC Level 1 120 12 1.44
AC Level 2 208-240 48 11.5
AC Level 3 208-240 400 96
DC Charging 208-600 400 240

[3, 18]. The second context is park-and-charge, i.e., charging while
parked, where a parking lot is equipped with charging function and
EVs can receive recharging while parked [19, 20]. This scenario encour-
ages EV users to take advantage of nearby facilities, such as parking
stations including parking at malls, working places and airports. The
third is publicly available fast charging stations, which usually can pro-
vide an individual charging rate larger than 40 kw and takes dozens of
minutes to deliver tens of miles [5]. This article mainly studies charg-
ing stations falling into the latter two contexts, i.e., publicly available
charging stations.

As EV ownership is expanding, there is a growing need for charg-
ing stations available in public destinations. As of the end of 2015, the
number of public charging points deployed in the globe reached around
190k, up from 110k in 2014 and about 50k in 2013 [21]. As of May 2017,
around 16k electric stations and about 43k charging points are available
to the public in North America [22]. These charging stations leverage
multiple sensors such as current sensors to provide better safety and
reliability than residential charging points. These sensors can moni-
tor the power consumed and EVs can be automatically connected or
disconnected according to the power demand status. With this capabil-
ity, public stations can protect the charger and EVs from overheating
and thus potential damages. Further, public charging stations are usu-
ally capable of charging EVs with higher charging rate than residential
charging points, because different charging standards and techniques
are applied to the two different contexts.

Charging standards used in North American mainly follow the SAE
International standard SAE J1772, where four standards are devel-
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8 Introduction and Overview

oped [23]. Table 1.1 shows the specification for the four charging stan-
dards. AC level 1 has the lowest power capacity and is mainly used
in residential charging points, or other application scenarios that EV
users have plenty of time for recharging their vehicles. By contrast,
the other three standards have much higher power capacity and are
used by most public charging stations, or other application scenarios
that there are high expectations on charging rate and charging time.
The fast charging capability of AC level 3 and DC charging can signif-
icantly shorten the charging time of EVs. For example, charging time
for 100 km is about 20 − 30 minutes with AC level 3 and it is about
10 minutes with DC charging.

Fast charging stations, especially those enabled with AC level 3 and
DC charging, introduce high power load on the power grid. There are
two ways that can mitigate this load impact. One way is to schedule and
coordinate EV charging according to the load status of the power grid,
e.g., charging EVs when the power grid has reduced load or reduced
electricity cost. One enabler to coordinating EV charging is that EVs,
charging stations and the power grid can communicate with each other.
The other way is to locally install power generation such as solar power
to loose the need for the power grid, which thus alleviates the load
impact caused by EV charging. Another advantage here is that EVs can
source from the power grid at opportune time to reduce their charging
cost, such as at off-peak time or when the electricity price is high. In
this article, we study both methods as well as the combination of these
two methods.

1.3 Electric Vehicle Charging Overview

The increasing integration of electric vehicles has motivated many re-
search efforts from both industry and academia. These efforts can be
partitioned into two important groups, which respectively address the
two crucial consequences mentioned above. The first group centers
around the power grid oriented consequence, which is the associated
heavy load impact that can compromise the stability and reliability of
the power grid. The second group focuses on the EV user oriented con-
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1.3. Electric Vehicle Charging Overview 9

sequence, which is the quality of service degradation caused by EVs’
competition on charging resources including charging points and the
power supply.

Power Grid Oriented EV Charging. Studies falling into this
group address how to mitigate the potential grid impact associated
with large-scale EV charging. Unbalance between charging demand
and power supply will occur if the interaction between EVs and the
power grid is uncontrolled or uncoordinated. This fact is revealed in
[24], which shows that there is a positive dependence between charging
load impact and the penetration levels of EVs. Uncoordinated loads can
cause a series of issues such as power loss, low energy efficiency, fre-
quency deviation, and voltage deviation, which in turn jeopardize the
stability and reliability of the power grid. These issues are investigated
by two major research threads.

The first thread is load flattening and example works include
[4, 25, 26, 27, 28, 29, 30]. In general, these works alleviate the unbalance
between charging demand and power supply through shifting charging
demand to the power valley of the power grid, i.e., valley filling. Flat-
tening power load is further demonstrated to be effective to improve
energy efficiency and power loss of the power grid [6]. The second thread
is frequency regulation and example studies include [31, 32, 33, 34, 35].
A gap between power supply and demand on the power grid causes
the grid frequency to deviate from its nominal value, and the goal of
frequency regulation is to reduce this gap. EVs are capable of mak-
ing rapid response to frequency changes, and thus they are regarded
as suitable for providing frequency regulation service. However, con-
ventionally, power generators that are capable of providing MW-scale
power are utilized for frequency regulation. To meet this power capac-
ity threshold, these existing works investigate the aggregated power by
a large number of vehicles and regard these EVs as a whole to provide
frequency regulation.

The above works focus on addressing the power grid impact. This
confined focus can cause degradation to quality of service to EV users,
i.e., blindly following requirements from the power grid may not result
in beneficial results for EV users. For example, a number of EVs may
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10 Introduction and Overview

have to charge at rather low rates to reduce power load on the grid,
which will compromise user satisfaction. Different with these existing
works, this article considers both the power grid and EV users and
jointly studies the stability and reliability of the former and quality of
service for the latter.

EV User Oriented EV Charging.Works belonging to this group
study how to well handle the competition on charging resources in
order to improve EV user satisfaction or quality of service. EV user
satisfaction depends on key aspects such as charging cost, charging
time, charging rate, and travel distance/time to charging points. There
are two major research threads that present charging schemes to benefit
EV users in terms of the above aspects.

The first thread is opportune charging and/or discharging and ex-
ample works include [36, 37, 38, 39, 40, 41]. In general, these works
charge and/or discharge vehicles at some opportune time. For exam-
ple, charging EVs when the electricity price is low results in reduced
charging cost, and charging EVs when the charging rate is high will
reduce charging time. The second thread is EV routing and examples
studies include [42, 43, 44]. As to the routing problem for fuel-based
vehicles, it usually needs to consider only two factors: fuel price and
travel distance/time to gas stations. As to EV routing, besides charging
price and travel distance/time to charging stations, it needs to consider
another key factor, which is queueing time. The existence of queueing
for EV charging is mainly because of two reasons: EV charging takes
much longer time compared to gas fueling and there is a limited number
of charging points. Thus, there is a much higher opportunity for EVs to
queue and wait for the availability of charging points, and further their
waiting time is usually much longer. To reduce the queueing time and
improve quality of service, it should distribute EVs to charging stations
as evenly as possible. However, to follow routes with reduced queueing
time may conflict with the other goals such as reducing charging cost
and travel distance/time to stations.

These existing works only discuss one or two of the mentioned as-
pects related to user satisfaction. By contrast, we present a holistic
framework that studies multiple aspects including not only all the men-
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1.4. A Systematic Solution Framework 11

Figure 1.3: A figure illustrating the application scenario and a block diagram
showing the proposed systematic solution framework.

tioned aspects but also new aspects such as the level of users’ urgency
and user behavior’s uncertainty. Further, many works of the first thread
consider a direct interaction between the power grid and charging sta-
tions, and all works of the second thread only consider the interaction
between charging stations and EV users. By contrast, this article dis-
cusses a hierarchical interaction among the power grid, charging sta-
tions, and EV users.

1.4 A Systematic Solution Framework

This article considers an application scenario, as illustrated in Fig. 1.3,
where multiple charging stations are publicly available in an urban area
and many electric vehicles demands charging service from these charg-
ing stations. For this application scenario, we propose a systematic
solution framework that employs a hierarchical operational structure.
There are two levels in the framework.

The lower level determines how to allocate power supply to vehicles
plugged in within a charging station. For this level, we discuss three dif-
ferent cases according to the operation mode of the power grid and the
configuration of charging facilities. The first two cases both investigate
charging facilities that are able to change power rates continuously.
The difference between them is that one case, called charging rate con-
trol, focuses on the normal operation of the power grid, while the other
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12 Introduction and Overview

case, called charging demand response, confines to the demand response
period of the power grid. The two cases leverage time-driven methods
due to the continuity of charging rate regulation. By contrast, the third
case, called charging load scheduling, handles charging facilities with
fixed charging rates. This case adopts event-driven methods to schedule
vehicles to multiple charging points within a charging station.

The upper level decides how to balance vehicles that are demand-
ing charging service among multiple charging stations, which is called
charging demand balancing. The decision is made according to sev-
eral key factors including charging demand of each individual vehicle,
travel distances to charging stations, and detour distances to destina-
tions, charging prices of charging stations, and uncertainty of EV user
behavior. We propose several efficient and effective decision-making al-
gorithms for this level.

1.5 Road Map

Fig. 1.3 depicts the road map of this article. Chapter 2 to Chapter 4
focus on the lower level and study charging rate control, charging de-
mand response, and charging load scheduling respectively. Chapter 5
confines to the upper level and discusses charging demand balancing. In
these chapters, we first design deployable algorithms and mechanisms
and then evaluate the proposed approaches through two complemen-
tary methods. One method is to use theoretical analysis to demonstrate
their performance guarantees, while the other method is to leverage ex-
tensive simulations based on realistic data traces and simulation tools.
We also review existing studies that align with the problems studied in
each chapter and further consider additional dimensions and/or differ-
ent optimization goals. Finally, in Chapter 6, we conclude the article
with summaries of main ideas discussed in the previous chapters.
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Tomáš Tichỳ, and Nodari Vakhania. Preemptive scheduling in over-
loaded systems. In International Colloquium on Automata, Languages,
and Programming. Springer, 2002.

[113] Francis YL Chin and Stanley PY Fung. Online scheduling with partial
job values: Does timesharing or randomization help? Algorithmica, 2003.

[114] Mohammad Charkhgard and Mohammad Farrokhi. State-of-charge es-
timation for lithium-ion batteries using neural networks and ekf. IEEE
Transactions on Industrial Electronics, 2010.

[115] Yinjiao Xing, Wei He, Michael Pecht, and Kwok Leung Tsui. State of
charge estimation of lithium-ion batteries using the open-circuit voltage
at various ambient temperatures. Applied Energy, 2014.

[116] Enrico H Gerding, Valentin Robu, Sebastian Stein, David C Parkes,
Alex Rogers, and Nicholas R Jennings. Online mechanism design for
electric vehicle charging. In AAMAS. IFAAMAS, 2011.

[117] Anna Nagurney. Network economics: A variational inequality approach.
Springer Science & Business Media, 2013.

[118] Kwon Oh-Heum and Chwa Kyung-Yong. Scheduling parallel tasks with
individual deadlines. Theoretical Computer Science, 1999.

[119] Martin Stigge and Wang Yi. Graph-based models for real-time work-
load: A survey. Real-Time Systems Journal, 2015.

[120] Jane WS Liu, Wei-Kuan Shih, Kwei-Jay Lin, Riccardo Bettati, and J-Y
Chung. Imprecise computations. Proceedings of the IEEE, 1994.

[121] Bu-808: How to prolong lithium-based batteries. http://
batteryuniversity.com/. [Online accessed Apr., 2016].

[122] Elisabeth Günther, Olaf Maurer, Nicole Megow, and Andreas Wiese. A
new approach to online scheduling: Approximating the optimal compet-
itive ratio. In SODA. SIAM, 2013.

[123] Marek Chrobak, Leah Epstein, John Noga, JiřıÌĄ Sgall, Rob van Stee,
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