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ABSTRACT

In the era of dynamic smart grid with fluctuating demands
and uncertain renewable energy supplies, it is crucial to
continuously optimize the operational cost and performance
of electric power grid, while maintaining its state within the
stable operating limits. Nonetheless, a major part of electric
power grid consists of alternating current (AC) electric
power systems, which exhibit complex behavior with non-
linear operating constraints. The optimization of AC electric
power systems with dynamic demands and supplies is a very
challenging problem for electrical power engineers.

The hardness of optimization problems of AC electric power
systems stems from two issues: (1) non-convexity involv-
ing complex-valued entities of electric power systems, and
(2) combinatorial constraints involving discrete control vari-
ables. Without proper theoretical tools, heuristic methods
or general numerical solvers had been utilized traditionally
to tackle these problems, which do not provide theoretical
guarantees of the achieved solutions with respect to the
true optimal solutions. There have been recent advances in

Sid Chi-Kin Chau, Khaled Elbassioni and Majid Khonji (2018), “Combinatorial Opti-
mization of Alternating Current Electric Power Systems”, Foundations and TrendsR©
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applying convex relaxations to tackle non-convex problems
of AC electric power systems. On the other hand, discrete
combinatorial optimization is rooted in theoretical computer
science, which typically considers linear constraints, instead
of those non-linear constraints in AC electric power systems.

To bridge power systems engineering and theoretical com-
puter science, this monograph presents a comprehensive
study of combinatorial optimization of AC electric power
systems with (inelastic) discrete demands. The main idea
of this monograph is to draw on new extensions of dis-
crete combinatorial optimization with linear constraints,
like knapsack and unsplittable flow problems. We present
approximation algorithms and inapproximability results for
various settings from (1) basic single-capacitated AC elec-
tric power systems, to (2) constant-sized AC electric grid
networks with power flows, and (3) scheduling of AC electric
power. This monograph aims to establish a foundation for
the inter-disciplinary problems of power systems engineering
and theoretical computer science.
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1
Introduction

1.1 Need for Optimization in Smart Power Grid

The electric power grid has been an indispensable part of our society,
empowering the economic and social activities in every aspect of our
daily lives. Our society is consuming a tremendous amount of energy at
an increasing rate. There has been a drastic surge in global energy con-
sumption. As a result, the power grid needs to undergo transformations
to meet the new challenges for a more sustainable society:

• Deregulation of Power Industry: Replacing the monopolized in-
dustry of power grid in generation, transmission and distribution
by decentralized operators with heterogeneous requirements.

• Decarbonization and Incorporation of Renewable Energy: Transi-
tioning from fossil fuel energy to environment-friendly but uncer-
tain renewable energy supplies.

• Demand Responsiveness: Shifting the traditional power grid that
is engineered for peak demands to be more demand responsive,
such that grid operators and end users can react to variable grid
resources by dynamic pricing and electricity markets.

3
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4 Introduction

• Inefficiency Elimination: Reducing the energy loss in power gen-
eration and transmission by employing technologies, such as Com-
bined Heat-and-Power (CHP) generation and Flexible AC Trans-
mission Systems (FACTS).

• Disruption Protection: Enabling more robust control against out-
age and power failures by incorporating autonomous microgrids
and emergence demand response management.

These transformations will create a smarter power grid with improved
energy-efficiency, responsiveness and stability. In particular, there is a
need for continuous optimization in smart grid that can react rapidly
to dynamic situations in presence of fluctuating demands and uncer-
tain renewable energy. In the past, the operations of power grid re-
lied on careful a-priori planning, under the assumptions of static de-
mands and predictable circumstances. In the era of dynamic smart
grid, self-optimization with adaptive control is more crucial to its op-
erations.

There are several factors for consideration in the optimization of
power grid operations:

• Scale: Power grid is connected to an increasing number of users
and loads, with growing presence of electric vehicles and smart
appliances. These demands have to be optimally coordinated and
regulated in a large-scale manner.

• Time: The fluctuations of renewable energy supplies and de-
mands under dynamic pricing occur more significantly in a shorter
timescale. Power grid needs to adapt to intermittency rapidly.

• Performance: A variety of performance objectives ought to be con-
sidered by different parties among energy suppliers, transmitters,
distributors, regulators and residential/commercial end users.

• Stability: The stability operating constraints of the power grid
need be adhered and validated from time to time to ensure reliable
operations.

Full text available at: http://dx.doi.org/10.1561/3100000017



1.1. Need for Optimization in Smart Power Grid 5

Therefore, it is critical to continuously optimize the power grid under
various performance objectives in a scalable and responsive manner,
while maintaining its state within the stable operating limits.

However, a power grid is a large complex system. In particular, a
major part of the power grid is composed of alternating current (AC)
electric power systems, which exhibit complex behavior with non-linear
operating constraints. The effective management and control operations
of AC electric power systems involve very challenging problems that
baffle electrical power engineers. The hardness of optimization problems
in AC electric power systems stems mainly from two issues:

1. Non-Convex Constraints involving complex-valued variables and
parameters of AC electric power systems.

2. Combinatorial Constraints involving discrete control variables for
the operation of power systems.

Traditionally, heuristic methods or general numerical solvers had
been utilized for the combinatorial optimization problems of AC electric
power systems, without proper theoretical analyses on the performance,
efficiency and optimality of the results. Some of these methods return
inefficient algorithms that are not scalable in larger systems, or fail to
provide guarantees on the deviation of output solutions from the true
optimal solutions.

Combinatorial optimization has been extensively studied in theoret-
ical computer science, with diverse applications in operations research
and engineering science beyond computing systems. Hence, it is imper-
ative to draw on the related tools from theoretical computer science to
study the problems arising from smart grid. In particular, there are re-
cent advances in approximation algorithms with provable approximation
ratios that can be applied in combinatorial power systems problems.

This monograph aims to establish an interdisciplinary bridge be-
tween power systems engineering and theoretical computer science by
relating the practical and challenging problems in electric power systems
with the modern theoretical tools from computer science. The proper
understanding of these hard problems in electric power systems can

Full text available at: http://dx.doi.org/10.1561/3100000017



6 Introduction

advance the frontiers of both communities. Particularly, this monograph
is tailored for these two groups of audience:

• For Power System Engineers, it introduces the concepts and results
of approximation algorithms, and applies them to solve electric
power systems problems.

• For Computer Scientists, it provides an exposition of a class of
challenging combinatorial problems in electric power systems.

Before presenting the approximation algorithms for AC power sys-
tems in the subsequent chapters, this section first explains the basics
of AC electric power systems, and then some standard terminology of
approximation algorithms in the literature.

1.2 Basics of AC Electric Power Systems

This section presents the basics of electric power systems. More details
of electric power systems can be found in a standard power systems
textbook (e.g., Grainger and Stevenson, 1994). For example, we consider
scenario in Figure 1.1.

First, we give an example scenario of power consumption scheduling
problem as illustrated in Figure 1.1. There are multiple households and
electric vehicles connecting to the power grid with dynamic renewable
energy supplies. In each household, there are electric appliances that can
only be controlled by switching on or off. For charging electric vehicles,
there are currently three main categories of charging infrastructure
standards: Level 1 charging with cord-set singe-phase connections to a
regular household outlet, Level 2 wall-mount three-phase connections,
and Level 3 DC fast charging. It is worth noting that none of these
current popular charging standards allows continuously controllable
charging power at an arbitrary rate. To ensure reliable charging, there
requires a delicate control system for the supplied charging power. Hence,
the charging power normally varies within a limited discrete set of nearly
constant values (Gan et al., 2012). The scheduling of power consumption
with discrete controls is a natural combinatorial optimization.

Full text available at: http://dx.doi.org/10.1561/3100000017



1.2. Basics of AC Electric Power Systems 7

Variable Supply

 

Background demand

Figure 1.1: An illustration of power consumption scheduling problem.

1.2.1 Notations

An electric power system is characterized by an electric network with
nodes (also called buses) and edges (also called lines). A power flow in
an electric network is described by physical quantities such as current,
voltage and power. We represent an electric network by a connected
graph G = (V, E), where V denotes a set of nodes and E denotes a set
of edges. We index the nodes in V by {0, 1...,m}, where m , |V|. Node
0 usually carries a special meaning (called slack bus). If G represents an
electric distribution network, then node 0 usually denotes the generation
source or the feeder to the main grid. Let V+ , V\{0}. We fix an
arbitrary orientation on the edges, and think of G as a directed graph.
For convenience, we choose an orientation such that G forms a directed
acyclic graph where the “power flow” from node 0 to the rest of nodes
in V+1. Thus, in the rest of monograph, we assume that the orientation
of a directed edge (i, j) designates that the current or power flows from
i to j.

1Such orientation can always be obtained by first finding a spanning tree T on V
and rooting it at node 0, then orienting all edges of T away from 0, with end points
on directed paths in T , and then orienting all other edges arbitrarily.

Full text available at: http://dx.doi.org/10.1561/3100000017



8 Introduction

For node i ∈ V, we denote its voltage by Vi. For each edge e =
(i, j) ∈ E , we denote its current from i to j by Ii,j , its transmitted
power by Si,j , and its impedance by zi,j . In direct current (DC) electric
systems, all quantities belong to the set of real numbers (denoted by R);
whereas in alternating current (AC) electric systems, these quantities
belong to the set of complex numbers (denoted by C). Usually, the
voltage V0 at node 0 is normalized as V0 = 1.

For a complex number ν ∈ C, we denote the magnitude of ν by
|ν|, the phase angle (or argument) that ν makes with the real axis
by ∠ν, and the complex conjugate of ν by ν∗. We sometimes write
νR , Re(ν) for the real part and νI , Im(ν) for the imaginary part of
ν. For ν, ν ′ ∈ C, we write ν ≤ ν ′ to mean νR ≤ ν ′R and νI ≤ ν ′I.

There are several basic laws governing the relationships of the
quantities Vi, Ii,j , zi,j , Si,j in an electric network:

• Ohm’s Law: For each (i, j) ∈ E ,

Vi − Vj = zi,jIi,j . (1.1)

• Kirchhoff’s Current Law: For node i ∈ V,∑
(i,j)∈E

Ii,j = 0. (1.2)

• Electric Power Formula: For each (i, j) ∈ E ,

Si,j = ViI
∗
i,j . (1.3)

Additionally, by convention, the following skew symmetry relation holds:

Ii,j = −Ij,i. (1.4)

Each node i ∈ V is associated with a power injection/extraction
si, which represents the net power injecting to or extracting from
the electric network at node i. The real part Re(si) represents the
so-called active power, while the imaginary part Im(si) represents
the reactive power. The apparent power is defined as the magnitude
|si| =

√
(Re(si))2 + (Im(si))2 of si. For power injection (i.e., power gen-

eration), Re(si) ≤ 0; whereas for power extraction (i.e., power demands

Full text available at: http://dx.doi.org/10.1561/3100000017



1.2. Basics of AC Electric Power Systems 9

or loads), Re(si) ≥ 0. We note the sign of power injection/extraction is
sometimes reversed in the power systems literature. For an inductor,
Im(si) ≥ 0; whereas for a capacitor, Im(si) ≤ 0. Note that transmis-
sion lines are usually resistive or inductive, namely, Re(zi,j) ≥ 0 and
Im(zi,j) ≥ 0. The power factor of a power demand si is defined as
PF(si) , Re(si)

|si| . As required by common power electronic standards
(e.g., National Electrical Code, 2005), most appliances and equipment
have a bounded power factor PF(si) ≥ 0.8, (roughly, ∠si ≤ π

4 ).

1.2.2 Power Flow Model

A power flow model summarizes the state of power flows, considering
Kirchhoff’s current law with respect to the power injection/extraction.
There are several ways of describing a power flow model.

Bus Injection Model

The Bus Injection Model (BIM) considers the power injection (or ex-
traction), sj , at each node (i.e., bus) j ∈ V+:

sj =
∑

(i,j)∈E
VjI
∗
i,j −

∑
(j,l)∈E

VjI
∗
j,l, ∀j ∈ V, (1.5)

Vi − Vj = zi,jIi,j , ∀(i, j) ∈ E . (1.6)

Branch Flow Model

Alternatively, the Branch Flow Model (BFM) (Baran and Wu, 1989a;
Baran and Wu, 1989b) considers the transmitted power (Si,j) through
each edge (i, j) ∈ E :

sj =
∑

(i,j)∈E

(
Si,j − zi,j |Ii,j |2

)
−

∑
(j,l)∈E

Sj,l, ∀j ∈ V, (1.7)

Vi − Vj = zi,jIi,j , ∀(i, j) ∈ E , (1.8)
Si,j = ViI

∗
i,j , ∀(i, j) ∈ E . (1.9)

Full text available at: http://dx.doi.org/10.1561/3100000017



10 Introduction

For completeness, set s0 = −
∑

(0,i)∈E S0,i. Note that the power flows
are interpreted as from node 0 toward the rest of nodes2 in V+.

The Branch Flow Model provides a convenient way to simplify the
notations. One can drop the phase angles, and replace Vi = |Vi|e∠Vi and
Ii,j = |Ii,j |e∠Ii,j by simply |Vi| and |Ii,j |, respectively. This gives us a
relaxed model as follows.

Branch Flow Model with Angle Relaxation

Let vi = |Vi|2 and `i,j = |Ii,j |2. The Branch Flow Model with angle
relaxation omits the phase angles:

sj =
∑

(i,j)∈E

(
Si,j − zi,j`i,j

)
−

∑
(j,l)∈E

Sj,l, ∀j ∈ V, (1.10)

vi − vj = 2Re(z∗i,jSi,j)− |zi,j |2`i,j , ∀(i, j) ∈ E , (1.11)
|Si,j |2 = vi`i,j , ∀(i, j) ∈ E . (1.12)

BFM with angle relaxation can be derived from BIM as follows. We
rewrite (1.3) by taking the complex conjugate of both sides:

Ii,j =
S∗i,j
V ∗i
⇒ `i,j = |Ii,j |2 = |Si,j |

2

|Vi|2
= |Si,j |

2

vi
, (1.13)

which is equivalent to (1.12). Substituting (1.9) in (1.8), we obtain

Vj = Vi − Ii,jzi,j = Vi −
S∗i,j
V ∗i

zi,j . (1.14)

Taking the magnitude square of both sides in (1.14), and using (1.13)3:

vj = |Vj |2 = |Vi|2 + |S
∗
i,j

V ∗i
zi,j |2 − 2Re(V ∗i

S∗i,j
V ∗i
zi,j)

= v2
i + `i,j |zi,j |2 − 2Re(z∗i,jSi,j), (1.15)

which is equivalent to (1.12).
2BFM can be also expressed using the opposite orientation toward node 0:

sj =
∑

(l,j)∈E

(
Sl,j − zl,j |Il,j |2

)
−
∑

(j,i)∈E Sj,i. As shown in Low (2014a), there is a
bijection between the models of the two orientations, since Sj,i = −Si,j + zi,j |Ii,j |2
and Ii,j = −Ij,i.

3Using the relation |a + b|2 = (a + b)∗(a + b) = |a|2 + |b|2 + a∗b + b∗a =
|a|2 + |b|2 + 2Re(a∗b) = |a|2 + |b|2 + 2Re(b∗a), for complex numbers a, b ∈ C.
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1.2. Basics of AC Electric Power Systems 11

As shown in Farivar and Low (2013a) and Farivar and Low (2013b),
it is always possible to recover (Vi, Ii,j)(i,j)∈E from (vi, `i,j)(i,j)∈E , when
G is a tree network.

In the rest of monograph, unless otherwise stated, we assume that
G is a tree network, and hence, we will use BFM with angle relaxation
(or simply called Branch Flow Model) for brevity.

Simplified DistFlow Model

In BFM with angle relaxation, if we assume zi,j`i,j → 0, for example,
because of negligible zi,j at each edge, then we obtain a simplified model
called DistFlow model:

sj =
∑

(i,j)∈E
Si,j −

∑
(j,l)∈E

Sj,l, ∀j ∈ V, (1.16)

vi − vj = 2Re(z∗i,jSi,j), ∀(i, j) ∈ E , (1.17)
|Si,j |2 = vi`i,j , ∀(i, j) ∈ E . (1.18)

The DistFlow model provides an “upper bound” for the power flow in
BFM, because it ignores the power consumed on transmission lines.

1.2.3 Optimal Power Flow Problem

The optimal power flow (OPF) problem is a fundamental problem in
power systems engineering, which was introduced in 1962 (Carpen-
tier, 1962; Carpentier, 1979), and since then has received considerable
attention (see Frank et al. (2012a) and Frank et al. (2012b) for a survey).

Let G = (V, E) be a radial (tree) electric distribution network. Node
0 is called the root. Since G is a tree, |V+| = |E| = m. We consider a
particular tree topology in which a single feeder is attached to the root
0, via a single edge (0, 1). See an illustration in Figure 1.2. Hence (1.10)
in BFM (with angle relaxation) becomes

Si,j = sj + zi,j`i,j +
∑

(j,l)∈E
Sj,l, ∀(i, j) ∈ E , (1.19)

S0,1 = −s0. (1.20)
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12 Introduction

1

2 3 4

Figure 1.2: An illustration of the considered tree topology.

Control Variables

Instead of assigning a single power injection/extraction to each node,
we consider a general setting where a set of users are attached to each
node. We assume that the power demand of each user can be controlled
individually. Let N = [n] , {1, . . . , n} be the set of all users, where
|N | = n. Denote the set of users attached node j by Uj ⊆ N . Let
Gi = (Vi, Ei) be the subtree rooted at node i. Let the set of users within
subtree Gj be Nj , ∪j∈VjUj .

By a slight abuse of notation, the demand for user k is represented
by sk ∈ C. In this monograph, we consider only consumer users, such
that Re(sk) ≥ 0 (but Im(sk) may be negative) ∀k ∈ N . Hence, it follows
that the total power injection Re(s0) ≤ 0.

Among the users, some have discrete power demands, denoted by
I ⊆ N . A discrete demand sk, for k ∈ I, takes values from a discrete
set Sk ⊆ C. We assume that 0 ∈ Sk, for all k ∈ I, so that a discrete
demand can be completely shut off. A special case is the binary case
Sk , {0, sk}, where a demand sk can be either completely satisfied
at level sk ∈ C or dropped, e.g., a piece of equipment that is either
switched on with a fixed power consumption rate or completely off.

The rest of the users, denoted by F , N\I, have continuous
demands, defined by convex sets Sk, for k ∈ F ; a typical example
is a set defined by box constraints: Sk , {sk ∈ C : sk ≤ sk ≤ sk}, for
given lower and upper bounds sk and sk.
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Operating Constraints of Power Systems

Recall that Si,j is the power flowing from node i toward j. Note that
Si,j is not symmetric, namely, |Si,j | is not equivalent to |Sj,i|, the power
flowing in the opposite direction. There are the following common
operating constraints of power systems:

• Power Generation Constraint: |s0| ≤ s0.

• Power Capacity Constraints: |Si,j | ≤ Si,j , |Sj,i| ≤ Si,j , ∀(i, j) ∈ E .

• Current Thermal Constraints: `i,j ≤ `i,j , ∀(i, j) ∈ E .

• Voltage Constraints: vj ≤ vj ≤ vj , ∀j ∈ V+.

In the above constraints, vj , vj ∈ R+ are the minimum and maximum
allowable voltage magnitude squares at node j, and Si,j , `i,j ∈ R+ are
the maximum allowable apparent power and current on edge (i, j),
respectively. By (1.20), the power generation constraint is implicitly
captured by power capacity constraints as |s0| = |S0,1| ≤ S0,1.

Note that reverse power constraint |Sj,i| ≤ Si,j can be reformulated
as |Si,j − zi,j`i,j | ≤ Si,j .

Objective Functions

In the following, a subscript is omitted from a variable to denote
its vector form, for example, S , (Si,j)(i,j)∈E , ` , (`i,j)(i,j)∈E , s ,
(sk)k∈N , v , (vj)j∈V+ .

The goal of OPF is to find an assignment for the demand vector s
that optimizes a certain non-negative objective function. We consider two
versions of objective functions: (1) a concave objective that represents
the benefit (or utility) of power flow, and (2) a convex objective that
represents the cost (or disutility) of power flow.

For utility based objective, we denote the objective function by:

f(s0, s) = f0
(
− Re(s0)

)
+
∑
k∈N

fk
(
Re(sk)

)
, (1.21)

where f0 : R+ → R+ is non-negative and non-increasing (note that
Re(s0) ≤ 0), and fk is non-negative and non-decreasing (a user’s utility
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increases as more power is allocated to the user, while the generator’s
utility decreases as more power is generated).

For cost based objective, we denote the objective function by:

h(s0, s) = h0
(
− Re(s0)

)
+
∑
k∈N

hk
(
Re(sk)

)
, (1.22)

where h0 : R+ → R+ is non-negative and non-decreasing, and fk is
non-negative and non-increasing (thus modeling the fact that each user
prefers maximum demand).

Note that for finding an optimal solution, both versions are equiva-
lent, as one can set f0(−Re(s0)) = C − h0(−Re(s0)) and fk(Re(sk)) =
C − hk(Re(sk)), for k ≥ 1, where C is a sufficiently large constant.
Nonetheless, there is a significant difference in terms of finding an
approximation solution. See Section 1.3.1 for details.

Problem Formulation

We formulate OPF using BFM (with angle relaxation). The goal of
OPF is to maximize the utility objective function f(s0, s) (or minimize
the cost objective function h(s0, s)) subject to the operating constraints
of power systems.

The inputs are the voltage, current and transmitted power limits
[v0, (vj , vj)j∈V+ , (Si,j , `i,j , zi,j)(i,j)∈E , (Sk)k∈N ], whereas the outputs are
the control decision variables and power flow states, (s0, s, S, v).

The maximization version of OPF is defined by the mixed inte-
ger programming problem (OPF) with Cons. (1.23)–(1.31). To define
the minimization version of OPF (denoted by OPFmin), one replaces
maxs0,s,S,v,` f(s0, s) by mins0,s,S,v,` h(s0, s).

Note that there are two sources of non-convexity in this formulation:
the quadratic equality constraints (1.23) and the discrete constraints
for k ∈ I in (1.30).

1.3 Basics of Combinatorial Optimization

This monograph employs combinatorial optimization techniques to
provide efficient approximation algorithms for AC electric power systems
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(OPF) max
s0,s,S,v,`

f(s0, s)

subject to `i,j = |Si,j |
2

vi
, ∀(i, j) ∈ E , (1.23)

Si,j =
∑
k∈Uj

sk +
∑

l:(j,l)∈E
Sj,l + zi,j`i,j , ∀(i, j) ∈ E , (1.24)

S0,1 = −s0, (1.25)
vj = vi + |zi,j |2`i,j − 2Re(z∗i,jSi,j), ∀(i, j) ∈ E , (1.26)
vj ≤ vj ≤ vj , ∀j ∈ V+, (1.27)
|Si,j | ≤ Si,j , |Sj,i| ≤ Si,j , ∀(i, j) ∈ E , (1.28)
`i,j ≤ `i,j , ∀(i, j) ∈ E , (1.29)
sk ∈ Sk, ∀k ∈ N , (1.30)
vj ∈ R+, ∀j ∈ V+, `i,j ∈ R+, Si,j ∈ C, ∀(i, j) ∈ E . (1.31)

with discrete demands. The area of approximation algorithms is well-
studied in theoretical computer science (see, e.g., Vazirani, 2010). In
the following, we recall some standard terminology from this area.

1.3.1 Approximation Solutions

Consider a maximization problem A with non-negative objective func-
tion f(·), let F be a feasible solution to A and F ? be an optimal solution
to A. f(F ) refers to the objective value of F . Let Opt(A) = f(F ?) be
the objective value of F ?. It is common to measure the quality of a
proposed feasible solution F by the approximation ratio α between the
objective of this solution and that of an optimal solution F ?.

Definition 1.1. For α ∈ (0, 1), an α-approximation to maximization
problem A is a feasible solution F such that

f(F ) ≥ α ·Opt(A).

A (polynomial-time) algorithm that, for any given instance of the
problem, produces a feasible solution achieving this ratio is called an
α-approximation algorithm.
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Similarly, for a minimization problem B with non-negative cost
function h(·), let H be a feasible solution to and H? be an optimal
solution to B. h(H) refers to the cost of H. Let Opt(B) = h(H?) be
the cost of H?.

Definition 1.2. For α′ > 1, an α′-approximation to minimization prob-
lem B is a feasible solution H such that

c(H) ≤ α′ ·Opt(B).

A (polynomial-time) algorithm that, for any given instance of the
problem, produces a feasible solution achieving this ratio is called an
α′-approximation algorithm.

Note that given a minimization problem B, one can define a max-
imization problem A, by setting f(·) = C − h(·), for some constant
C such that f(·) is non-negative. Although both problems are equiva-
lent in the sense of finding an optimal solution, algorithms for finding
α-approximation solutions may be very different in the two cases. In
combinatorial optimization, there are numerous such examples of min-
imization and maximization versions of the same problems having
completely different approximation algorithms and approximation ra-
tios. One example is the minimum and maximum traveling salesman
problems (see, e.g., Vazirani, 2010).

1.3.2 Resource-augmented Approximation Solutions

A more relaxed definition of an approximation solution is (α, β)-approxi-
mation, which also allows violation of certain constraints, parametrized
by β. Consider a maximization problem A with a multivariate constraint
function g(·). Suppose that a feasible solution F to A is required to
satisfy g ≤ g(F ) ≤ g.

Definition 1.3. For α ∈ (0, 1) and β ≥ 1, an (α, β)-approximation
solution to maximization problem A is a solution F such that

f(F ) ≥ α ·Opt(A),
1
β · g ≤ g(F ) ≤ β · g.
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A (polynomial-time) algorithm that, for any given instance of the
problem, produces an (α, β)-approximation solution is called an (α, β)-
approximation algorithm.

Definition 1.4. For α′ > 1 and β ≥ 1, an (α′, β)-approximation solution
to minimization problem B is a solution H such that

h(H) ≤ α′ ·Opt(B),
1
β · g ≤ g(H) ≤ β · g.

A (polynomial-time) algorithm that, for any given instance of the
problem, produces an (α, β)-approximation solution is called an (α, β)-
approximation algorithm.

Note that α-approximation is (α, 1)-approximation.

1.3.3 Polynomial-time Approximation Scheme (PTAS)

In particular, a polynomial-time approximation scheme (PTAS) is a
(1− ε)-approximation algorithm to a maximization problem, or a (1+ ε)-
approximation algorithm to a minimization problem, for any ε > 0. The
running time of a PTAS is polynomial in the input size for every fixed
ε > 0, but the exponent of the polynomial might depend on 1/ε. Namely,
a PTAS allows a parametrized approximation ratio in the running time.

A resource-augmented PTAS is a (1− ε, 1 + ε)-approximation algo-
rithm for a maximization problem, and a (1 + ε, 1 + ε)-approximation
algorithm for a minimization problem, for any ε > 0. Again the running
time of such a PTAS is polynomial in the input size for every fixed
ε > 0.

1.3.4 Fully Polynomial-time Approximation Scheme (FPTAS)

An even stronger notion is a fully polynomial-time approximation scheme
(FPTAS), which is the same as a PTAS but requires the running time
to be polynomial in both input size and 1/ε.

Similarly, we define a resource augmented FPTAS, as a (1− ε, 1 + ε)-
approximation algorithm for a maximization problem, and a (1+ε, 1+ε)-
approximation algorithm for a minimization problem, for any ε > 0,
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with the running time being polynomial in the input size and 1/ε. We
will refer to these as (1 − ε, 1 + ε)-FPTAS and (1 + ε, 1 + ε)-FPTAS,
respectively.

1.3.5 Quasi Polynomial-time Approximation Scheme (QPTAS)

A weaker notion of a PTAS is a quasi-polynomial-time approximation
scheme (QPTAS), which has time complexity npolylog(n) for each fixed
ε > 0, where n is the input size.

The notions of α-approximation, (α, β)-approximation, PTAS, FP-
TAS and QPTAS can be applied to OPF.

1.3.6 Polytopes and Linear Programming

A convex polytope P in Rn is the set of points satisfying a finite number
of linear inequalities: P = {x ∈ Rn | Ax ≤ b}, for a given matrix A ∈
Rm×n and vector b ∈ Rm. Given a set of points P = {p1, . . . , pr} ⊆ Rn,
the convex hull of P , denoted by cvxhull(P ) is the set of all convex
combinations of points in P :

cvxhull(P ) ,
{ r∑
i=1

λipi |
r∑
i=1

λi = 1, λi ≥ 0 ∀i
}
. (1.32)

By the well-known Minkowski-Weyl theorem (see, e.g., Schrijver,
1986), any polytope P ⊆ Rn can be represented as the convex hull of the
set of its extreme points, also called vertices or basic feasible solutions
(BFSs) of P.

Linear programming (LP) is the problem of maximizing or mini-
mizing a linear objective function subject to linear constraints. Linear
programs (LPs) can be solved efficiently (in polynomial-time assuming
rational input of finite precision), see Bertsimas and Tsitsiklis (1997)
for an introduction to LP.

The following lemma will be used in our approximation algorithms.
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Lemma 1.1 (see, e.g., Bertsimas and Tsitsiklis, 1997; Schrijver, 1986).
Consider the following LP:

(LP) max
x∈[0,1]n

cTx (1.33)

subject to Ax ≤ b, (1.34)

where A is an m× n matrix and b is an m-dimensional vector. Then

1. there is an optimal basic feasible solution;

2. any basic feasible solution x? has at mostm fractional components.
Namely, |{i ∈ {1, ..., n} | x?i ∈ (0, 1)}| ≤ m.

1.3.7 Second Order Cone Programming

A Second-order cone program (SOCP) is a convex optimization problem
in which a linear objective function is maximized or minimized subject
to `2-norm constraints of the following form:

(SOCP) max
x∈Rn

cTx (1.35)

subject to ‖Aix+ bi‖2 ≤ dTi x+ fi, ∀i ∈ {1, ...,m}, (1.36)

where Ai ∈ Rni×n, bi ∈ Rni , c, di ∈ Rn and fi ∈ R.
There are also efficient polynomial-time algorithms for solving (ap-

proximately) SOCPs; (see, e.g., Boyd and Vandenberghe, 2004). In
fact, such algorithms can find a near-feasible solution x′ that satisfies
the constraints within an absolute error δ > 0 (that is, ‖Aix+ bi‖2 ≤
dTi x + fi + δ), such that cTx′ ≥ Opt? − δ, in polynomial time in the
input size (including the bit complexity) and log 1

δ , where Opt? is the
optimal objective value of (SOCP).

In many cases, it is possible to convert such an approximately feasible
solution x′ to an exactly feasible solution without losing much in the
approximation guarantee; see, for example, Section 2.3.1. For simplicity
in this monograph, unless otherwise stated, we will assume that the
convex programming solver returns an exact optimal solution.
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1.4 Organization

This monograph covers approximation algorithms and inapproximability
results for various settings of AC electric systems in the following
chapters:

• (Chapter 2) Basic single-capacitated AC electric power systems
to establish the foundation of a more sophisticated electric grid.

• (Chapter 3) Constant-sized AC electric grid networks with power
flows and common operating constraints of power systems.

• (Chapter 4) Scheduling of AC electric power that involves temporal
optimization with heterogeneous users’ preferences.

Moreover, we provide hardness results in Chapter 5 for the above
settings to show that our approximation algorithms are among the
best achievable in theory. We also provide simulation studies of our
algorithms in several practical case studies in Chapter 6. Finally, we
conclude this monograph with an outline of several on-going extensions
and future work in Chapter 7.

1.5 Notes

The optimal power flow (OPF) problem was introduced in 1962 (Carpen-
tier, 1962; Carpentier, 1979), and since then has been studied extensively
(see Frank et al. (2012a) and Frank et al. (2012b) for a survey). There
are several formulations of OPF, with subtle differences. For example,
Gan et al. (2015) and Huang et al. (2017) adopt the opposite flow
orientation from leaves to root. Also, Huang et al. (2017) implicitly con-
siders power capacity constraints in one direction only. Our formulation
explicitly considers bi-directional power capacity constraints. Although
Gan et al. (2015) considers the possibility of discrete power injections,
it provides efficient algorithm for finding the optimal solutions only in
the continuous case, under some assumptions. For the minimization
version of OPF, Gan et al. (2015) and Huang et al. (2017) consider only
non-increasing objective functions for the exactness of convex relaxation.
However, convex objective function is required for solving OPF.
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