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ABSTRACT

This monograph will discuss different aspects of power elec-
tronics in modern energy systems. The transition from
conventional, centralized power systems with large-scale
generations to modern, deregulated systems with distributed
generations is discussed. Furthermore, the function of some
dominant green energy generation technologies based on
power electronics is explained. Moreover, the fundamentals
of the control and operation of modern systems with power
electronics-based generations are presented in this mono-
graph. The major technical challenges that are deteriorating
the overall system performance and reliability are addressed
and feasible solutions are explained.

Keywords: Power system; energy system; power electronics; power
converter; energy conversion; reliability; stability; energy storage;
power-to-x; power to gas; control; planning; operation.
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1
Introduction

Decarbonization is the key to move toward climate neutrality and
electrification plays a dominant role in making a greener society [38].
Modern society is becoming more and more dependent on electricity.
Interconnections among various sectors, e.g., heating/cooling, trans-
portation, water supplies, and traffic controls are doable with electric
power. This curtails/eliminates the carbon footprint in different sectors.
Furthermore, the supply chain of electricity from generation down to
distribution also needs to be greener. This has been started with re-
newable generations many years ago to produce clean energy instead of
using carbon-based fuels. Today, the renewable technologies are quite
mature and the contribution of green energy generation is remarkable,
as shown in Figure 1.1.

Technically, moving toward renewable generations needs funda-
mental changes in power system structures both in physical and con-
trol/operation domains. This is due to the fact that (1) the capacity of
renewable generation units is very small compared to the traditional
power plants, and (2) they are integrated and controlled with power
electronic converters. These factors induce major technical challenges to
the more or full green power systems. Less flexibility in power control,

2
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3

Figure 1.1: Change in global energy generation, 2014–2021 [38].

lower inertia, fast response, and need for communications are some of
the major issues introduced by renewable generations. These challenges
can affect system reliability and performance, thus introducing socio-
economic issues. As the latest example, the Texas 2021 power crises in
the state of Texas affected more than 4.5 million homes and businesses
due to the shortage of electricity, water, food and heat. The power cut
was initiated by frozen wind turbines and solar panels [102]. Another
interesting example is the 900-MW photovoltaic (PV) power outage in
California in 2017, which was due to the misfunction of power converter
control units, more specifically its phase lucked loop in measuring the
frequency [63]. These examples show how the transition from reliable but
non-clean energy sources to the unreliable but green sources can affect
human life. Therefore, those moving toward green energy technologies
need to understand the basics and provide solutions to guarantee energy
security and prevent irrecoverable damages.

Looking from an electricity supply chain perspective, power electron-
ics converters become one of the major components in different parts of
power systems. They are used in interconnecting renewable generations,
transferring high power among various location electronic transmission
systems, distributing energy using AC/DC medium voltage transmission
systems, and load point applications like electric vehicle (EV) chargers.
Therefore, their performance can remarkably affect the entire power

Full text available at: http://dx.doi.org/10.1561/3100000027



4 Introduction

and energy system security. This monograph aims to provide the funda-
mentals of energy transition in power systems with a specific focus on
power electronics. First, the power systems structure will be described.
Then, the concepts of planning and operation are explained in order
to understand the basics of power system reliability. Afterward, the
modern electrical energy conversion with wind and solar PV is discussed
and the application of energy storage and power to X is presented. Next,
the basic structures of power converters and their control and operation
principles are explained. Moreover, the principles of reliability in power
electronics and the fundamentals of system reliability assessment are
discussed. Finally, some technical challenges of modern green power
systems with more power electronics are presented.
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