
Distribution System
Optimization to Manage

Distributed Energy
Resources (DERs) for Grid

Services

Full text available at: http://dx.doi.org/10.1561/3100000030



Other titles in Foundations and Trends® in Electric Energy Systems

Peer-to-Peer Energy Sharing: A Comprehensive Review
Wayes Tushar, Sohrab Nizami, M. Imran Azim, Chau Yuen, David B.
Smith, Tapan Saha and H. Vincent Poor
ISBN: 978-1-63828-156-6

LLC Resonant Converters: An Overview of Modeling, Control and
Design Methods and Challenges
Claudio Adragna
ISBN: 978-1-63828-066-8

The Role of Power Electronics in Modern Energy System Integration
Saeed Peyghami, Subham Sahoo, Huai Wang, Xiongfei Wang and Frede
Blaabjerg
ISBN: 978-1-63828-008-8

Cyber–Physical System Security of Distribution Systems
Chen-Ching Liu, Juan C. Bedoya, Nitasha Sahani, Alexandru Stefanov,
Jennifer Appiah-Kubi, Chih-Che Sun, Jin Young Lee and Ruoxi Zhu
ISBN: 978-1-68083-852-7

Network-Based Analysis of Rotor Angle Stability of Power Systems
Yue Song, David J. Hill and Tao Liu
ISBN: 978-1-68083-778-0

Full text available at: http://dx.doi.org/10.1561/3100000030



Distribution System Optimization
to Manage Distributed Energy

Resources (DERs) for Grid Services

Anamika Dubey
Washington State University

anamika.dubey@wsu.edu

Sumit Paudyal
Florida International University

spaudyal@fiu.edu

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/3100000030



Foundations and Trends® in Electric Energy Systems

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

A. Dubey and S. Paudyal. Distribution System Optimization to Manage Distributed
Energy Resources (DERs) for Grid Services. Foundations and Trends® in Electric
Energy Systems, vol. 6, no. 3-4, pp. 120–264, 2023.

ISBN: 978-1-63828-189-4
© 2023 A. Dubey and S. Paudyal

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/3100000030



Foundations and Trends® in Electric Energy
Systems

Volume 6, Issue 3-4, 2023
Editorial Board

Editor-in-Chief
Marija D. Ilić
MIT and Carnegie Mellon University
United States

Editors
David Hill
University of Hong Kong and University of Sydney

Rupamathi Jaddivadal
SmartGridz

Daniel Kirschen
University of Washington

J. Zico Kolter
Carnegie Mellon University

Chao Lu
Tsinghua University

Steven Low
California Institute of Technology

Masoud H. Nazaril
Wayne State University

Ram Rajagopa
Stanford University

Lou van der Sluis
TU Delft

Goran Strbac
Imperial College London

Robert J. Thomas
Cornell University

David Tse
University of California, Berkeley

Le Xie
Texas A&M University

Full text available at: http://dx.doi.org/10.1561/3100000030



Editorial Scope
Topics

Foundations and Trends® in Electric Energy Systems publishes survey and
tutorial articles in the following topics:

• Advances in power dispatch

• Demand-side and grid scale
data analytics

• Design and optimization of
electric services

• Distributed control and
optimization of distribution
networks

• Distributed sensing for the grid

• Distribution systems

• Fault location and service
restoration

• Integration of physics-based
and data-driven modeling of
future electric energy systems

• Integration of Power
electronics, Networked FACTS

• Integration of renewable energy
sources

• Interdependence of power
system operations and planning
and the electricity markets

• Microgrids

• Modern grid architecture

• Power system analysis and
computing

• Power system dynamics

• Power system operation

• Power system planning

• Power system reliability

• Power system transients

• Security and privacy

• Stability and control for the
whole multi-layer (granulated)
network with new load models
(to include storage, DR, EVs)
and new generation

• System protection and control

• The new stability guidelines
and control structures for
supporting high penetration of
renewables (>50%)

• Uncertainty quantification for
the grid

• System impacts of HVDC

Information for Librarians

Foundations and Trends® in Electric Energy Systems, 2023, Volume 6,
4 issues. ISSN paper version 2332-6557. ISSN online version 2332-6565.
Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/3100000030



Contents

1 Introduction 3
1.1 Motivation for Optimizing Distribution Systems Operations 5
1.2 DGs/DERs for Grid Services and D-OPF Formulations . . 6
1.3 Organization of Monograph . . . . . . . . . . . . . . . . . 10

2 Network Modeling and Distribution Power Flow
Formulation 12
2.1 Power Distribution Systems . . . . . . . . . . . . . . . . . 12
2.2 Defining Device Models . . . . . . . . . . . . . . . . . . . 14
2.3 Distribution Power Flow Models . . . . . . . . . . . . . . 17
2.4 Illustrated Example . . . . . . . . . . . . . . . . . . . . . 20
2.5 Algorithms to Solve Distribution Power Flow Model . . . . 23
2.6 Distribution System Simulators . . . . . . . . . . . . . . . 29
2.7 Summary and Discussions . . . . . . . . . . . . . . . . . . 31

3 Distribution Optimal Power Flow (D-OPF) Formulations 32
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Basics D-OPF Problem . . . . . . . . . . . . . . . . . . . 33
3.4 Distribution Nonlinear Optimal Power Flow Models . . . . 36
3.5 Approximation and Relaxation Techniques . . . . . . . . . 38
3.6 Multi-period Optimization: D-OPF problems . . . . . . . . 44

Full text available at: http://dx.doi.org/10.1561/3100000030



3.7 Illustrated Example . . . . . . . . . . . . . . . . . . . . . 44
3.8 Modeling Tools and Solvers . . . . . . . . . . . . . . . . . 55
3.9 Summary and Discussions . . . . . . . . . . . . . . . . . . 58

4 Mixed-Integer D-OPF Model 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Mixed-Integer Non-Linear Formulation . . . . . . . . . . . 62
4.3 Mixed-Integer Convex Formulation . . . . . . . . . . . . . 62
4.4 Performance of MISOCP DOPF Formulation . . . . . . . . 68
4.5 Performance of MILP DOPF Formulation . . . . . . . . . 71
4.6 Summary and Discussion . . . . . . . . . . . . . . . . . . 71

5 Distribution Voltage Control: Conservation Voltage
Reduction 74
5.1 Optimization Problem Formulation . . . . . . . . . . . . . 76
5.2 Solution Approach . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Large-feeder Simulation Results . . . . . . . . . . . . . . . 83
5.4 Summary and Discussions . . . . . . . . . . . . . . . . . . 92

6 Resilient Distribution Systems Operations 94
6.1 DG-assisted Distribution System Restoration . . . . . . . . 96
6.2 Optimization Problem Formulation . . . . . . . . . . . . . 97
6.3 Results and Discussions . . . . . . . . . . . . . . . . . . . 104
6.4 GridAPPS-D Integration of FLISR Application . . . . . . . 111
6.5 Summary and Discussions . . . . . . . . . . . . . . . . . . 117

7 Conclusions and Future Directions 118
7.1 Algorithmic Challenges with Grid-Edge Optimization . . . 119
7.2 Learning-for-Control for DGs/DERs Coordination . . . . . 122
7.3 Open-source Grid Optimization Packages/Simulator

Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Acknowledgements 125

References 127

Full text available at: http://dx.doi.org/10.1561/3100000030



Distribution System Optimization
to Manage Distributed Energy
Resources (DERs) for Grid Services
Anamika Dubey1 and Sumit Paudyal2

1Washington State University, USA; anamika.dubey@wsu.edu
2Florida International University, USA; spaudyal@fiu.edu

ABSTRACT

The proliferation of distributed energy resources (DERs) and
the deployment of advanced sensing and control technologies
in electric power distribution systems calls for coordinated
management of the grid’s resources. This has sparked a
growing interest in optimization methods for large-scale
unbalanced power distribution systems, with the goal of
improving grid’s operational efficiency and resilience. The
current fast-paced research in this domain is driven by the
challenging mathematical problem of three-phase optimal
power flow (OPF). This monograph introduces the state-of-
the-art optimization methods applied to unbalanced power
distribution systems for the provisioning of grid services from
DERs. To that end, fundamentals of D-OPF methods are
introduced along with the unique challenges and differences
compared to the bulk grid and related aspects of compu-
tational complexity due to mutual coupling, unbalanced
loading conditions, and control of legacy devices. Different
models for formulating D-OPF problems are described in

Anamika Dubey and Sumit Paudyal (2023), “Distribution System Optimization
to Manage Distributed Energy Resources (DERs) for Grid Services”, Founda-
tions and Trends® in Electric Energy Systems: Vol. 6, No. 3-4, pp 120–264. DOI:
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detail, as are methods for relaxing or approximating the for-
mulations to achieve computational tractability. Finally, the
use of D-OPF formulations to solve distribution-level opera-
tional problems via advanced distribution-level applications
is described in detail. The specific applications discussed
in this monograph include: (1) Volt-VAR control and Con-
servation Voltage Reduction using legacy voltage control
devices and DERs, and (2) Solutions for Tomorrow’s Grid
Reconfiguration and Restoration using DERs.
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1
Introduction

With the integration of numerous actionable agents, distributed gen-
eration resources, and sensing devices, the electric power distribution
system is rapidly evolving into an autonomous and intelligent system.
For example, behind-the-meter photovoltaic (PV) output has reached
71.3 GW in the U.S. power grid, with over 2.5 million PV panels in-
stalled. Likewise, a recent study shows California’s fleet of light-duty
plug-in EVs could double the total transportation electricity demand,
from under 5,000 GWh in 2019 to over 10,000 GWh by 2030. Simultane-
ously, the grid is also getting overwhelmed with extreme weather events
that are happening at a higher frequency and causing greater dam-
age. Recent fire-related damages and fatalities caused by high-voltage
transmission lines combined with dry weather are costing billions of
dollars each year, with the only practical solution being de-energizing
the lines and disrupting the power supply to millions of customers. The
recent advances in the distribution systems, including the integration of
distributed generation (DGs), distributed energy resources (DERs), and
microgrids provide potential means to improve the grid’s operational
resilience. An advanced decision-support system is needed to plan and
manage grid operations by proactively managing the grid’s variable,

3
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4 Introduction

uncertain, and distributed resources. Consequently, resilient operational
solutions for power distribution grids have drawn significant attention.
These applications range from leveraging recent advances in smart grid
technology, such as remote control capabilities and DERs, to enable ad-
vanced grid services such as frequency and voltage support for the bulk
grid and resilient operations through intentional islanding to support
critical services during disruptions.

The need for advanced grid support functionality from a large
number of DERs has sparked increased interest in optimization methods
for large-scale unbalanced power distribution systems. This monograph
provides a much-needed primer on optimization methods used in active
power distribution systems for advanced operations, with the goal of
benefiting researchers working in this field. The graduate students
and young researchers working in the area of DERs and distribution
systems operations need a background on not only topics related to
power distribution engineering but also a wide variety of interdisciplinary
subjects to address the upcoming challenges. The monograph will benefit
a diverse pool of researchers and industry practitioners by building the
necessary background on modeling the distribution systems (with DERs)
and system optimization methods for provisioning grid services.

Specifically, we introduce the state-of-the-art optimization methods
applied to unbalanced power distribution systems for the provisioning
of grid services for efficient and resilient grid operations. We begin
with mathematical descriptions of the unbalanced power flow and opti-
mal power flow (OPF) models and describe a systematic approach to
problem formulation using an example test feeder. Our discussion also
includes a mathematical description of distribution system components
and controllable devices. We describe the mathematical complexity of re-
sulting optimization problems and introduce commonly used relaxation
and approximation techniques for computational tractability. We also
detail the limitations of the existing formulations. The mathematical
formulations are complemented by open-source codes using example
distribution systems. Following that, we will describe the problem for-
mulation for multiple grid service application cases that use distribution
OPF. These algorithms are tested with large-scale distribution test
systems, and the implications of using DGs/DERs for specific grid

Full text available at: http://dx.doi.org/10.1561/3100000030



1.1. Motivation for Optimizing Distribution Systems Operations 5

services are discussed. Finally, we summarize outstanding challenges
and the need for additional research in this area.

1.1 Motivation for Optimizing Distribution Systems Operations

The utility distribution systems are designed to deliver reliable electric
power economically to the electrical consumers at their place of con-
sumption. However, over the last decade, the electric power grid has
been transforming unprecedentedly, necessitating a significant change in
how we design, operate, and control traditional power systems. Starting
with the high penetration of DERs, the integration of electric vehicles
(EVs), bi-directional power flow, and smart metering, the power grid, as
we know, is changing. The inherent variability of renewable generation
and the vulnerability of traditional power systems to the demand and
generation stochasticity can potentially result in system-level problems.
However, if deployed and controlled purposefully, these new technologies
can provide multiple crucial grid services that can help improve the
efficiency, reliability, and resilience of the power grid.

Historically, distribution system operations have been mostly pas-
sive, with rule-based methods primarily used to control the feeder’s
few legacy voltage control devices, such as capacitor banks and voltage
regulators. These control rules were pre-designed and acted based on
local measurements. Since the loads were predictable and the system
lacked any local generation resources, the rule-based controls were suffi-
cient to ensure desirable system operations. However, the integration of
DERs led to added variability and uncertainty in distribution system
operations rendering rule-based and local-control-only algorithms inap-
plicable. Multiple studies showed that the integration of active grid-edge
resources such as photovoltaic generation (PVs) or new load types, such
as EVs may lead to multiple system-level challenges, including, but
not limited to, voltage limit violations (overvoltages/undervolatges),
increased voltage variability and three-phase voltage unbalance, and
thermal limit violations [42]–[44], [88], [137]. It was also shown that
the local control might result in unnecessary tap changes and capacitor
bank operations; these are mechanical devices, and a higher number of
operations can lead to mechanical failures [1]. Mitigating these system-
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6 Introduction

level operational challenges requires a coordinated operation of systems’
controllable devices, including the new resources. It was also recognized
that the new grid-edge resources could provide additional grid services,
such as capacity, flexibility, ramping, voltage support, and so on, that
were previously not possible in a passive power distribution system. This
resulted in the development of new methods and advanced applications
to actively manage grid-edge resources [41].

With the evolution of active power distribution systems and new grid
requirements, optimal power flow (OPF) methods emerged as a poten-
tial mechanism to optimize distribution system operations for different
grid service requirements. A comprehensive review of OPF methods is
provided in the following articles [26], [63], [95], [97]. When compared to
the bulk power grid, distribution-level OPF (D-OPF) presents distinct
challenges due to three-phase unbalanced loading, mutual coupling
among the different phases of the line, the presence of single-phase and
two-phase branches, and radial topology with a high R/X ratio, which
causes significant voltage drops. Furthermore, grid-edge optimization
necessitates the integration of various technologies such as battery stor-
age, smart inverters, capacitor banks, voltage regulators, and secondary
voltage controllers resulting in mixed-integer decision variables and
inter-temporal constraints. Besides that, distribution-level optimiza-
tion necessitates the inclusion of multiple sources of uncertainty from
model and measurement data, resulting in computationally intractable
stochastic optimization formulations. As a result, D-OPF formulations
and approaches require separate consideration than bulk-grid models.

1.2 DGs/DERs for Grid Services and D-OPF Formulations

In this section, we identify the commonly discussed grid services that
DERs could potentially provide. These services are identified as those
that originated for the distribution system or for the bulk-grid level.
We also identify the possible class of objective functions associated with
each grid service, controllable devices, and DER control variables, see
Table 1.1. It is worth noting that many of these DER-enabled grid
services are currently being validated through field demonstrations or
are in the process of being deployed in the field, see [5], [6], [40], [78],
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1.2. DGs/DERs for Grid Services and D-OPF Formulations 7

Table 1.1: Grid Services from DGs/DERs that can benefit from Distribution Optimal
Power Flow Models and Algorithms

Grid Services Problem Objective Controllable Devices
Improved support
for voltage and
power quality

Manage feeder voltages (mag-
nitude, variability, unbalance),
reduce losses

Voltage regulators, ca-
pacitor banks, DG ac-
tive/reactive power

Network congestion
management service

Manage network thermal limit
constraints via network recon-
figuration, network tariff de-
sign and flexibility procure-
ment

Tie switches, sectionaliz-
ing switches, Building en-
ergy management system
(BMS), active/reactives
power from DGs and
other DERs (BESS, EVs)

Avoided or deferred
distribution capac-
ity costs

Conservation voltage reduc-
tion, reduce system peak, man-
age system constraints

DG active/reactive power
from DGs and other
DERs (BESS, EVs), volt-
age control devices

Leverage demand re-
sponse capability

Reduce system peak Manage
system constraints

Building energy manage-
ment system (BMS), ac-
tive power from DGs and
other DERs (BESS, EVs)

Reduce wholesale
energy costs

Distribution market to opti-
mize social welfare cost

Reliability via DG-
assisted restoration

Reduce outage duration Tie switches, sectionaliz-
ing switches, grid-forming
DGs, microgridsResilience via Inten-

tional Islanding
Reduce outage duration, Sta-
ble islands

Ancillary service
(Bulk-grid fre-
quency support)

Active power control for fre-
quency support

Active power support
from DGs and other
DERs (BESS, EVs, BMS)

Ancillary service
(Bulk-grid voltage
support)

Reactive power control for
voltage support

Reactive power support
from DGs and other
DERs (BESS, EVs, BMS)

Black-start regula-
tion

Reduce system peak, Manage
system constraint

Grid forming DERs

Flexibility reserve Manage renewable variability BESS, BMS, EVs
Energy and Ancil-
lary service markets

Generate revenue by market
participation

BESS, BMS, EVs

[143]. The procurement of these grid services can be formulated as
an OPF problem with a specified objective function and constraints.
The optimization problem type is dictated by control variables, the
optimization time horizon, and the problem objective. Some grid ser-
vices, such as bulk grid frequency and voltage support, may require
a closed-loop formulation instead of an open-loop OPF model. Addi-
tionally, the problem formulation may involve multiple decision-making
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8 Introduction

hierarchies, such as coordinating distribution-level markets with whole-
sale markets. Although such applications can be modeled as one large
optimization problem, they require hierarchical or distributed optimiza-
tion approaches to manage the resulting computational complexity and
information and data privacy requirements.

Mathematically, D-OPF is a constrained optimization problem. In its
most general form, this results in a nonlinear mixed-integer optimization
problem. However, several versions of the general model are solved
depending on the decision variables and power flow models used in the
problem definition [67]. A nonlinear D-OPF formulation is often solved
where only continuous decision variables are modeled, excluding any
discrete control devices in the formulation. These models can use bus-
injection or branch-flow power flow models, resulting in different D-OPF
formulations. In this case, the primary source of nonlinearity is due to
nonlinear power flow equations. Given the difficulty of solving nonlinear
optimization problems, power flow equations can be approximated or
relaxed to produce a simpler linear or convex optimization formulations.
Real-world D-OPF problems often require optimizing for both discrete
and continuous control variables, resulting in a mixed-integer nonlinear
optimization problem. These are some of the most difficult optimization
problems to solve.

A list of problem types is described in Table 1.2. The control variables
and optimization horizon will define the problem type. DG control
parameters, such as active and reactive power dispatch from DGs, are
modeled as continuous variables. However, integers, especially binary
variables, are often included to model the connectivity/availability
statuses of DG/DER devices; for example, the on/off status of EV
charging, and the charge/discharge status of BESS are modeled as binary
variables. Likewise, tap settings for voltage regulators and capacitor
bank switch status are modeled as discrete decisions. The optimization
time horizon is defined by the type of controllable device and whether
they result in inter-temporal constraints. For example, the state-of-
charge for BESS at future time intervals is a function of the current
decision requiring a multi-time period optimization formulation. On the
contrary, the reactive power dispatch from smart inverters connected to
PVs does not carry any memory for the next time step and hence a single-
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1.2. DGs/DERs for Grid Services and D-OPF Formulations 9

Table 1.2: Taxonomy of D-OPF Problem Types

D-OPF type Power flow model Optimization
model

Decision
variables

Nonlinear
models

Bus-injection model [26] NLP Continu-
ous

Branch flow model [10], [11] NLP
Linear Ap-
proximate
model

Lin-dist flow [46], [50] LP Continu-
ous

Other linearized models [58], [68],
[127], [141]

LP

Convex Relax-
ation models

Semi-definite relaxation [8], [46] SDP Continu-
ous

Second-order cone relaxation [46],
[65], [68]

SOCP

Mixed-integer
models

Nonlinear power flow model [108],
[148]

MINLP Continu-
ous,
discreteLinear approximate model [99],

[128]
MILP

Convex relaxation [4], [129], [134],
[153]

MISOCP,
MISDP

period optimization will suffice. A stochastic optimization problem can
be considered when it is important to incorporate uncertainty in the
model parameters and measurements.

Table 1.3 details the controllable devices at the distribution level, cor-
responding controllable variables, and their types. Distribution systems
primarily include legacy voltage control devices such as capacitor banks
and voltage regulators, and feeder-level switches. Active distribution
systems are integrated with various DER technologies, including PVs,
BESS, EVs, BMS, etc. In the past decade, several power-electronics-
based devices have also emerged as a viable option to control voltage
and power flow in the distribution systems [13], [73], [91], [107]. Some
examples include Low-voltage Distribution Static Compensator (D-
STATCOM) [105], Static Var Compensator (SVC) [106], Unified power
flow controller (UPFC) [33], [104], and Soft open points [70].
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10 Introduction

Table 1.3: Distribution-level Controllable Devices

Controllable Device Controllable Parameter Decision Variable
Voltage regulator Tap setting Discrete
Capacitor bank On/Off status Discrete
Feeder Switches Connect/disconnect Discrete
PVs with smart
inverters

Active and/or reactive power Continuous
Connect/disconnect Discrete

BESS with smart
inverters

Active and/or reactive power Continuous
Charge/discharge status Discrete

EVs Active power Continuous
Charge/discharge Discrete

BMS Active power setpoints Continuous
Other DGs
(grid-following)

Active and/or reactive power Continuous
Connect/disconnect Discrete

Other DGs
(grid-forming)

Voltage and frequency Continuous
Connect/disconnect Discrete

Other Power Electronics Devices
Low-voltage Distribu-
tion STATCOM

Reactive power Continuous

Unified power flow
controller

Voltage and reactive power Continuous
Mode of operation Discrete

Static Var Compen-
sator (SVC)

Capacitor stages Discrete

Soft Open Point
(back-to-back VSCs,
multiterminal VSCs)

Active and reactive power flow Continuous

1.3 Organization of Monograph

The monograph is organized as follows. Section 1 introduces the concept
of active power distribution systems, motivates the optimization for
grid services, and describes the taxonomy for distribution-level opti-
mization problems. Section 2 briefly reviews the distribution systems
network and DER models for quasi-static analysis and optimization,
including the distribution power flow models and algorithms. Section
3 develops the analytical framework for modeling distribution opti-
mal power flow problems and introduces different approximation and
relaxation techniques for scalability. Section 4 introduces discrete de-
cisions into the distribution-level optimization problems and develops
different mixed-integer distribution optimal power flow models. Sec-
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1.3. Organization of Monograph 11

tion 5 develops application cases for distribution-level services using
DERs under normal operating conditions, namely services for voltage
optimization. This section uses different OPF models introduced in
Sections 3 and 4. Section 6 develops multiple application cases for
resilient distribution systems operations using DERs in active power
distribution systems. Section 7 presents some concluding remarks and
future research directions.
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