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ABSTRACT
Modern power systems face increasing challenges from re-
newable energy integration, distributed resources, and com-
plex operational requirements. This survey examines Safe
Reinforcement Learning (Safe RL) as a framework for main-
taining reliable power system operation while optimizing
performance. We review both model-free and model-based
approaches, analyzing how different safety constraints and
architectures can be implemented in practice. The survey
explores multi-agent frameworks for coordinated control in
distributed settings and examines runtime assurance meth-
ods that provide formal safety guarantees. Applications span
various timescales, from frequency regulation to demand
management, with different safety requirements and oper-
ational contexts. Through analysis of current simulation
environments and practical implementations, we identify
remaining challenges in scaling safe RL to large power sys-
tems, handling uncertainty, and integration with existing
infrastructure.

Ming Jin (2025), “Reinforcement Learning Meets the Power Grid: A Contem-
porary Survey with Emphasis on Safety and Multi-agent Challenges”, Founda-
tions and Trends® in Electric Energy Systems: Vol. 8, No. 3-4, pp 169–316. DOI:
10.1561/3100000043.
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1
Introduction

1.1 Modern Power System Challenges

The ongoing evolution of power systems presents a multifaceted chal-
lenge: ensuring safe and reliable operation amidst a dynamic and un-
certain environment. This necessitates not only achieving performance
objectives but also adhering to diverse constraints encompassing opera-
tional limits, regulatory compliance, and environmental goals.

Key challenges in modern power systems include:

• Uncertainty and Variability Challenges: The integration of inter-
mittent renewables, volatile demand, climate change impacts, and
market price fluctuations introduce significant uncertainty, making
it challenging to predict and manage power supply and demand.

• Complexity and Scale Challenges: Decentralization, diverse tech-
nologies (e.g., electric vehicles), interconnected grids, and increased
digital reliance create a complex and multifaceted power system
requiring sophisticated coordination and holistic management.

• Reliability and Resilience Challenges: Reduced system inertia and
the increasing frequency of natural disasters necessitate rapid

2
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1.2. Overview of Safe RL Applications in Power Systems 3

response capabilities and robust recovery strategies to ensure grid
stability and continuity of service.

• Environmental and Regulatory Challenges: Balancing the stringent
environmental goals (e.g., reduce carbon emissions) with system
stability and navigating complex regulations is crucial for ensuring
a sustainable and resilient energy future.

1.2 Overview of Safe RL Applications in Power Systems

RL, with its adaptive learning capabilities, ability to handle high-
dimensional spaces, and sequential decision-making framework, aligns
well with the dynamic and complex nature of modern power grids.
Furthermore, RL in its multi-agent form is essential for addressing the
increasing complexity and scale of power systems, allowing for effective
coordination of distributed energy resources, including electric vehicles,
and management of intricate grid topologies. By learning from real-
time interactions with the environment and optimizing for long-term
rewards, RL has the potential to develop sophisticated control policies
that outperform traditional rule-based systems. This could lead to more
autonomous, efficient, and resilient power system operations (Figure
1.1).

Table 1.1 outlines seven critical power system applications where
safe RL shows promise. These applications span economic optimization
(Optimal Power Flow (OPF), energy management), system stability
(frequency control, Volt-Var Control (VVC)), and reliability (Critical
Load Restoration (CLR), Distribution Network Reconfiguration (DNR)).
The need to handle uncertainties from renewable energy sources (RES)
and variable demands, alongside the inherent complexity of power
systems, makes these applications well-suited for RL approaches.

Safety constraints are application-specific, reflecting diverse objec-
tives and operational contexts. For instance, OPF prioritizes voltage and
line flow limits, while frequency control focuses on frequency stability
and Rate of Change of Frequency (RoCoF). These constraints define the
boundaries for RL agent operation. Across all applications, violations of
safety constraints could lead to equipment damage, system instability,
regulatory non-compliance, or service disruptions.

Full text available at: http://dx.doi.org/10.1561/3100000043
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Figure 1.1: Safe RL for modern power systems. The framework processes sys-
tem states, which may comprise of network measurements (voltage magnitude/angles
at buses, active/reactive power flows, system frequency), resource status (generation
outputs, storage SOC, RES availability), and operating conditions (load patterns,
network topology, equipment status). The Safe RL module needs to address key
challenges including safety during learning, multi-layered constraints, and uncer-
tainty handling. It determines control actions, e.g., economic operations (generator
setpoints, storage schedules), grid stability (AGC signals, reactive power control, tap
changes), and emergency control (load restoration, network reconfiguration), while
adhering to safety constraints (e.g., voltage bounds 0.95-1.05 pu, frequency ranges
59.8-60.2 Hz, thermal limits, stability margins, N-1 security). This can be typically
implemented as either a safety layer on top of RL or as a simplex architecture (see
Section 5). This enables various RL applications spanning economic optimization
(OPF, energy management), system stability (frequency control, VVC), and grid
reliability (load restoration, network reconfiguration).

The diversity of decision variables (continuous, discrete, mixed)
across applications influences RL algorithm selection. Additionally,
applications span transmission and distribution levels, each with unique
challenges: transmission-level applications (e.g., OPF) often involve
larger-scale considerations, while distribution-level applications (e.g.,
VVC) face higher uncertainty due to limited information.

The diverse requirements across power system applications create a
complex landscape for safe RL. Real-time transmission-level applications
(e.g., frequency control) necessitate rapid decision-making with continu-
ous variables under strict safety constraints, whereas distribution-level
applications (e.g., DNR) allow for more computational time but involve
discrete decisions and complex network topology constraints.
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Table 1.1: Overview of power system applications for safe RL. V: Voltage, Q:
Reactive Power. Time scales – RT: Real-time, S: Short-term (minutes to hours), M:
Medium-term (hours to days). System levels – D: Distribution, T: Transmission.
Action types - C: Continuous, D: Discrete, M-D/C: Mixed Discrete-Continuous.

Objective Challenges Why RL? Safety Features

OPF min. costs
w/
constraints

RES
uncertainty,
fast
computation

fast
decisions,
adaptability

V limits,
line flows,
oper. limits

S;
M-D/C;
T

Energy
Mgmt.

balance sup-
ply/demand,
min. costs

gen./
demand
uncertainty,
prices

adapt, learn
strategies

grid
stability, V
levels

S-M;
M-D/C;
D/T

Freq.
control

maintain
freq. in
range

uncertain-
ties, RES
dynamics

adapt to
rapid
changes

freq.
stability,
RoCoF

RT; C;
T/D

VVC manage V
profiles, Q
flow

V
fluctuations,
rev. power
flow

coord.
control w/o
full info

V range,
device
limits

S;
M-D/C;
D

CLR restore
critical loads

multi-step
decisions,
DER
uncertainty

handle
complexity,
uncertainty

power flow
constraints,
stability

S;
M-D/C;
D

DNR optimize
feeder
topology

incomplete
info,
computation

RT
application,
handle
uncertainty

radial, V/f
stability

M; D; D

EV
charg-
ing

optimize
charging
schedules

variable
demand,
RES
integration

adapt to
changing
conditions

grid
stability, V
levels

S-M; C;
D

1.3 Safe RL: Bridging the Gap to Power System Applications

The primary challenge of applying standard RL to power systems is
ensuring safety, given the potential for catastrophic consequences in this
critical infrastructure, ranging from equipment damage and financial
losses to life-threatening blackouts. Standard RL faces limitations in
addressing power system safety due to:

• Safety During Decision-Making: One of the foremost challenges
identified is ensuring safety during the learning and decision-

Full text available at: http://dx.doi.org/10.1561/3100000043



6 Introduction

making processes. As power systems operate under dynamic condi-
tions, Safe RL (SRL) algorithms must guarantee safe performance
while adapting to real-time changes in the environment. Failure to
maintain safety can lead to critical system failures, emphasizing
the need for robust safety mechanisms in RL applications

• Multi-layered & Dynamic Constraints: Power system constraints
span various levels (e.g., physical equipment limitations, system-
level stability requirements, regulatory rules) and can change over
time, making comprehensive handling difficult for standard RL.

• Handling Uncertainties: Another significant challenge is managing
the uncertainties that are prevalent in power system operations,
such as fluctuations in demand and variability in renewable energy
sources. SRL techniques must be capable of effectively coping
with these uncertainties to make reliable predictions and decisions.
Studies have indicated that existing algorithms often struggle with
robustness in uncertain environments, impacting their practical
applicability.

• Complex Safety-Performance Trade-offs: Finding the right bal-
ance between safety and optimal performance poses an ongoing
challenge. Overly conservative safety constraints can hinder the
efficiency of power systems, while inadequate focus on safety may
lead to operational risks. Balancing these competing priorities is
essential for the successful application of SRL.

• Scalability & Uncertainty: Ensuring system-wide safety while coor-
dinating numerous distributed resources and handling rare events
under uncertainty poses a significant challenge.

• Integration with Existing Infrastructure: Integrating SRL ap-
proaches with existing power system infrastructure also presents
challenges. Many current systems were not designed with advanced
machine learning strategies in mind, making it difficult to imple-
ment SRL solutions directly. The need for seamless integration is
critical to harness the benefits of RL without disrupting existing
operations.

Full text available at: http://dx.doi.org/10.1561/3100000043



1.4. Safe RL Formulations for Power Systems 7

These limitations reveal persistent challenges that must be addressed
by SRL to ensure safe, efficient, and reliable operations in evolving energy
landscapes. It’s not merely an incremental improvement but a crucial
adaptation designed to address the unique safety challenges of power
systems. By prioritizing safety from the outset, SRL ensures operational
safety, regulatory compliance, and risk mitigation, thus helping pave
the way for wider adoption of RL in this critical domain.

1.4 Safe RL Formulations for Power Systems

RL is formulated as Markov Decision Processes (MDPs), defined by
the tuple M := ⟨S,A,P, r, γ, ρ⟩, where S represents the state space,
A the action space, P : S × A → ∆(S) the transition function gov-
erning state transitions based on actions, r : S × A → R the reward
function quantifying the desirability of state-action pairs, γ ∈ [0, 1)
the discount factor weighing future rewards, and ρ ∈ ∆(S) the initial
state distribution. In power systems, as illustrated in Figure 1.1, st ∈ S
includes system states such as network measurements, resources status
and operating conditions, while at ∈ A could represent control actions
such as economic operations, grid stability and emergency control.

A common performance measure is the expected cumulative reward
discounted over the infinite horizon:

Jr(π) := Eπ[
∞∑
t=0

γtr(st, at)] (1.1)

Here, Eπ[·] denotes expectation over trajectory τ = (s0, a0, s1, ...) un-
der policy π and stochastic transition dynamics P: s0 ∼ ρ, at ∼
π(·|st), st+1 ∼ P(·|st, at). To make the dependence on state and ac-
tion explicit, we express the on-policy value function as V π

r (s) :=
Eπ[

∑∞
t=0 γ

tr(st, at)|s0 = s], the on-policy action-value function (or Q
function) as Qπr (s, a) := Eπ[

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a], and the
advantage function as Aπr (s, a) := Qπr (s, a) − V π

r (s). Another often used
quantity is the discounted future state distribution (or occupancy mea-
sure), dπ(s) := (1−γ)

∑∞
t=0 γ

tP(st = s|π), which allows us to compactly
express the difference in performance between two policies π′ and π as

Jr(π′) − Jr(π) = 1
1 − γ

Es∼dπ′ ,a∼π′ [Aπr (s, a)],

Full text available at: http://dx.doi.org/10.1561/3100000043



8 Introduction

where we use the shorthand a ∼ π′ for a ∼ π′(·|s). See Kakade and
Langford (2002) for the proof of this identity.

Safe RL, crucial for safety-critical power system applications, extends
standard RL by incorporating safety constraints, formalized through
Constrained Markov Decision Processes (CMDPs) (Altman, 2021). A
CMDP is represented as M∪C, where C := (c, ξ) is the constraint tuple.
Here, c : S × A → R denotes the cost function associated with safety
violations, and ξ is the corresponding cost threshold. While we consider
single cost function for simplicity of presentation, multiple constraints
can be incorporated with individual cost function and threshold. We
define on-policy value functions V π

c , action-value functions Qπc , and
advantage functions Aπc for the cost in analogy to V π

r , Qπr , and Aπr with
c replacing r in their respective definitions.

The safe RL objective is to find a policy π : S → ∆(A) that
maximizes the expected cumulative reward Jr(π) while adhering to the
safety constraint:

max
π∈Π

Jr(π) subject to π ∈ Πsafe (1.2)

where Π is the set of all policies. Various safety formulations of π ∈ Πsafe
can be considered:

1. Expected Cumulative Safety Constraint: Eπ
[∑∞

t=0 γ
tc(st, at)

]
≤ ξ.

This ensures that the expected cumulative cost remains below a
threshold ξ; suitable for applications where occasional breaches are
acceptable if the long-term average stays within safe limits, such
as managing thermal loading, battery lifecycle, carbon emissions,
or user comfort.

2. Expected Instantaneous Safety Constraint: Eπ[c(st, at)] ≤ ξt, ∀t.
This ensures the expected instantaneous cost remains below a
threshold ξt at all times; suitable for applications where near-
constant safety is crucial but occasional deviations are tolerable,
such as managing voltage levels or EV charging rates.

3. Almost Surely Cumulative Safety Constraint: Pπ[
∑∞
t=0 γ

tc(st, at)
≤ ξ] = 1, where Pπ(·) represents probability under π and stochas-
tic transition dynamics. This guarantees long-term safety with
absolute certainty. It mandates that the cumulative cost remains

Full text available at: http://dx.doi.org/10.1561/3100000043



1.4. Safe RL Formulations for Power Systems 9

below a threshold ξ for all possible trajectories under policy π;
essential for critical applications like ensuring trajectory-wise grid
stability, where even rare violations can have severe consequences.

4. Almost Surely Instantaneous Safety Constraint: Pπ[c(st, at) ≤
ξt] = 1, ∀t. This is the strictest safety guarantee, demanding
that the instantaneous cost remains below a threshold ξt with
absolute certainty at every time step; crucial for critical safety
parameters in power systems, such as maintaining grid frequency
within strict limits or ensuring every action during critical load
restoration is safe and avoids further system damage.

The State Constraint can be applied to any constraint type, where the
cost function directly penalizing entry into unsafe states c(s, a) = I(s ∈
Sunsafe), where Sunsafe ⊂ S is the set of unsafe states and I(·) is the
indicator function.

Cumulative constraints (1, 3) prioritize long-term average perfor-
mance, allowing for temporary violations if compensated over time.
They are suitable for slow-changing processes and systems where opera-
tional flexibility is needed. Instantaneous constraints (2, 4), on the other
hand, ensure safety at every time step, which is crucial for fast-dynamic
systems where even brief violations are critical. The choice between
these should be guided by the system’s dynamics, the criticality of
immediate safety, and the need for operational flexibility.

Expectation-based constraints (1, 2) offer more flexibility and are
generally easier to implement and solve computationally. They allow for
occasional violations, making them suitable for less critical parameters
or systems with some tolerance for safety breaches. This approach
often leads to policies with greater operational freedom and can be
advantageous in multi-objective scenarios where strict safety might
overly constrain other important objectives. In contrast, probability-
based (Almost Surely) constraints (3, 4) provide stronger, trajectory-
wise guarantees, ensuring no violations occur.1 They are appropriate
for critical safety parameters and align well with strict regulatory

1Probability-based constraints imply expectation-based ones: Pπ[c(st, at) ≤ ξt] =
1 =⇒ Eπ[c(st, at)] ≤ ξt. Conversely, expectation-based constraints can approximate
probability-based ones: Eπ[c(st, at)] ≤ ξt

κ
=⇒ Pπ[c(st, at) > ξt] ≤ 1

κ
by Markov’s

inequality.

Full text available at: http://dx.doi.org/10.1561/3100000043
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Figure 1.2: Safety constraint selection in power system applications spans a spec-
trum, from the most stringent for critical real-time operations like frequency/voltage
regulation and system restoration, to more moderate levels for long-term planning
and scheduling, and intermediate levels for grid-user interface management such
as EV charging coordination. This adaptability of safe RL showcases its ability
to balance the need for safety with the diverse operational requirements of power
systems, ranging from strict real-time control to flexible long-term planning.

frameworks. However, these constraints may lead to more conservative
policies and are typically more computationally intensive to implement
and solve. The decision should consider the criticality of the safety
parameter, regulatory requirements, available computational resources,
and the system’s tolerance for violations.

In power systems, these safety constraint formulations find applica-
tion in a wide range of control and optimization problems, balancing ef-
ficiency and safety. Critical, fast-acting systems may require probability-
based instantaneous constraints, while less critical, slower-changing
aspects can utilize expectation-based cumulative constraints. The choice
of formulation depends on factors such as safety requirements, system
dynamics, computational resources, and uncertainty characterization,
often benefiting from a combination of these approaches.

For example, Risk-Aware MDPs (RA-MDPs) introduce risk mea-
sures such as Conditional Value-at-Risk (CVaR) to model safety risk:
CVaRβ

(∑∞
t=0 γ

tc(st, at)
)

≤ ξ. This constraint can be viewed as a variant
of probability-based cumulative safety constraint and has been applied
for managing risks associated with renewable energy integration and
demand uncertainty (Yu et al., 2024). Wu et al. (2024) apply probabilis-
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tic constraints to manage voltage levels, line thermal limits, and ensure
grid stability under high DER penetration, addressing both instanta-
neous and dynamic violations. These approaches offer more flexible
safety management, allowing for occasional constraint violations while
maintaining probabilistic guarantees. This is crucial in power systems
where strict constraints may lead to overly conservative or infeasible
solutions, particularly in the presence of uncertainties from renewable
sources and dynamic loads. Figure 1.2 provides a visual representation
organized by temporal scope and safety guarantee strength.

Full text available at: http://dx.doi.org/10.1561/3100000043
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