Universal Usability: Past, Present, and Future
Universal Usability: Past, Present, and Future

Gabriele Meiselwitz
Towson University
USA
gmeiselwitz@towson.edu

Brian Wentz
Towson University
USA
bwentz2@students.towson.edu

Jonathan Lazar
Towson University
USA
jlazar@towson.edu

Full text available at: http://dx.doi.org/10.1561/1100000029
Foundations and Trends® in Human–Computer Interaction
Volume 3 Issue 4, 2009
Editorial Board

Editor-in-Chief:
Ben Bederson
Human–Computer Interaction Lab
University of Maryland
3171 A. V. Williams Bldg
20742, College Park, MD

Editors
Gregory Abowd (Georgia Institute of Technology)
Jonathan Grudin (Microsoft Research)
Clayton Lewis (University of Colorado)
Jakob Nielsen (Nielsen Norman Group)
Don Norman (Nielsen Norman Group and Northwestern University)
Dan Olsen (Brigham Young University)
Gary Olson (UC Irvine)

Full text available at: http://dx.doi.org/10.1561/1100000029
Editorial Scope

Foundations and Trends® in Human–Computer Interaction will publish survey and tutorial articles in the following topics:

- History of the research Community
- Design and Evaluation
- Ergonomics/Human Factors
- Cognitive engineering and performance models
- Predictive models of interaction
- User-centered design processes
- Participatory design
- Graphic design
- Discount evaluation techniques
- Design and interaction
- Ethnography
- Theory
- Models of cognition
- Empirical methods of evaluation
- Qualitative methods of design and evaluation
- Technology
- Programming the graphical user interface
- Input technologies
- Output technologies
- Computer supported cooperative work
- History of CSCW in HCI
- Organizational issues
- Online communities
- Games
- Communication technologies
- Interdisciplinary influence
- The role of the social sciences in HCI
- MIS and HCI
- Graphic design
- Artificial intelligence and the user interface
- Architecture and the role of the physical environment
- Advanced topics and trends
- Information visualization
- Web design
- Assistive technologies
- Multimodal interaction
- Perception and the user interface
- Specific user groups (children, elders, etc.)
- Sensor-based or tangible interaction
- Ubiquitous computing
- Virtual reality
- Augmented reality
- Wearable computing
- Design and fashion
- Privacy and social implications

Information for Librarians
Foundations and Trends® in Human–Computer Interaction, 2009, Volume 3, 4 issues. ISSN paper version 1551-3955. ISSN online version 1551-3963. Also available as a combined paper and online subscription.
Universal Usability: Past, Present, and Future

Gabriele Meiselwitz\(^1\), Brian Wentz\(^2\), and Jonathan Lazar\(^3\)

\(^1\) Department of Computer and Information Sciences, Universal Usability Laboratory, Towson University, 8000 York Road, Towson, Maryland 21252, USA, gmeiselwitz@towson.edu

\(^2\) Department of Computer and Information Sciences, Universal Usability Laboratory, Towson University, 8000 York Road, Towson, Maryland 21252, USA, bwentz2@students.towson.edu

\(^3\) Department of Computer and Information Sciences, Universal Usability Laboratory, Towson University, 8000 York Road, Towson, Maryland 21252, USA, jlazar@towson.edu

Abstract

Computers are used all over the world in a variety of contexts by users with all levels of technical experience. This includes users such as kindergarteners, older users, people with various impairments, people who are busy doing other tasks (such as driving a car), and users with differing levels of education, literacy, and socio-economic means. The concept of computer interfaces that will be easy to use, for all of these users, in all of these different situations, is known as “universal usability.” Making progress toward this goal requires innovations in techniques for gathering and understanding requirements, designing and developing interfaces, evaluation and assessment, development.
and use of standards, and public policy, and much work in this field remains to be done. This monograph will present an overview of universal usability as it currently exists in the human–computer interaction literature, and will also present some future directions for work in universal usability.
Contents

1 Introduction 1

2 History of Universal Usability (UU) 5

3 Technological Diversity 11
 3.1 Hardware 11
 3.2 Software 13
 3.3 Network 21

4 User Diversity 25
 4.1 Impairments 25
 4.2 Learning Disabilities 36
 4.3 Low Literacy Levels 37
 4.4 Age 39
 4.5 Gender 44
 4.6 Socio-economic Status 45
 4.7 Cultures 46

5 Bridging Gaps in User Knowledge 49
Introduction

Many people use computers to access information electronically, to accomplish a variety of tasks. Computers are integrated into daily life in many ways, such as booking vacations online, paying bills, using the Internet to research health information, or even to earn college degrees online. Users with all levels of training and education, users with disabilities, the very young, and the very mature are using computers for many different tasks. This diversity makes it challenging for information and communication system designers to provide systems which will be easy to use by all, everywhere. Universal usability addresses this challenge and has the goal to design systems which enable the largest possible group of users to successfully use Information and Communication Technology (ICT) [205, 335, 337, 384]. Ben Shneiderman, a pioneer in the field of universal usability, defines universal usability in a more formal way as “having more than 90% of all households as successful users of information and communication services at least once a week” [334].

Universal usability is a concept known in other settings, and technologies like phones, televisions, or automobiles are addressing universal usability. Remote controls, mobile phone operation, and GPS
interfaces all have the goal to make people’s lives easier; yet, many of these technologies have significant drawbacks. Response times can be slow, operating instructions and help functions are often unclear and not intuitive, and small buttons and screens can make operation difficult \[220, 287, 289, 329\]. Electronic voting machines, for example, are expected to simplify the voting process, but some studies have shown that error rates are higher when comparing voters using e-voting machines with voters using traditional voting recording methods. In addition, older users, users with disabilities, and users with low literacy levels frequently experience problems using e-voting machines. Security and privacy concerns compound the issue and make this a political as well as an international issue \[44, 229, 270, 387\].

Computer technology with its frequent changes, updates, and new products makes attaining the goal of universal usability more difficult \[300, 320, 334\]. Some critics caution that this goal may only be reached by designing for a lowest-common-denominator solution and by limiting high end innovations \[149, 334, 384\]. However, many examples document how special accommodations can benefit all users. The most popular example is the sidewalk curb-cut. Pieces of sidewalk were originally modified (cut-out) to provide access for wheelchair users, but it turned out to benefit many other groups like delivery personnel, people with strollers, bicyclists, and skateboarders \[222, 337\]. Universal usability not only benefits users with vision, hearing, or motor impairment, but also users with environmental constraints, such as users working in areas under poor lighting conditions. Another good illustration is speech-recognition software, which assists users with physical impairments, but is also valuable for users who are busy doing other tasks (like driving a car) or users with special ergonomic requirements as a result of repetitive strain injuries \[170, 222, 334\].

Designing for universal usability not only improves the user experience, but also has several advantages for the business community. Businesses, including e-businesses, can reach a larger audience, and are able to expand their market share. Service and non-profit organizations can experience an increased volume of visitors, as well as a more diverse group of visitors to their web sites, providing a more successful diffusion of information and better service to all \[12, 222, 267, 285, 383, 406\].
Researchers have identified three primary challenges in achieving universal usability: technology diversity, user diversity, and gaps in user knowledge [66, 334, 337]. Technology diversity addresses the need to support a broad range of hardware, software, and network access; user diversity focuses on accommodating users with different skills, knowledge, age, gender, disabilities, disabling conditions, literacy, socio-economic means, and others; and gaps in user knowledge refer to the need to bridge the gap between what users know and what they need to know. Addressing these challenges will improve usability for first-time, intermittent, and frequent users, and it will also stimulate innovation and promote quality [12, 205, 320, 334, 351].

Full text available at: http://dx.doi.org/10.1561/1100000029
References

References

References

References

Full text available at: http://dx.doi.org/10.1561/1100000029

References

References 107

References

Full text available at: http://dx.doi.org/10.1561/1100000029
References

References

References

Full text available at: http://dx.doi.org/10.1561/1100000029
References

References

References

Full text available at: http://dx.doi.org/10.1561/1100000029
References

References

References

References

References

References

125

Full text available at: http://dx.doi.org/10.1561/1100000029
References

Full text available at: http://dx.doi.org/10.1561/1100000029

