Interactive Information Visualization to Explore and Query Electronic Health Records
Interactive Information Visualization to Explore and Query Electronic Health Records

Alexander Rind
rind@ifs.tuwien.ac.at

Taowei David Wang
tdwang@partners.org

Wolfgang Aigner
aigner@ifs.tuwien.ac.at

Silvia Miksch
miksch@ifs.tuwien.ac.at

Krist Wongsuphasawat
kristw@cs.umd.edu

Catherine Plaisant
plaisant@cs.umd.edu

Ben Shneiderman
ben@cs.umd.edu

Full text available at: http://dx.doi.org/10.1561/1100000039
Editorial Scope

Foundations and Trends® in Human–Computer Interaction
will publish survey and tutorial articles in the following topics:

- History of the research Community
- Design and Evaluation
 - Ergonomics/Human Factors
 - Cognitive engineering and performance models
 - Predictive models of interaction
 - User-centered design processes
 - Participatory design
 - Graphic design
 - Discount evaluation techniques
 - Design and interaction
 - Ethnography
- Theory
 - Models of cognition
 - Empirical methods of evaluation
 - Qualitative methods of design and evaluation
- Technology
 - Programming the graphical user interface
 - Input technologies
 - Output technologies
- Computer supported cooperative work
 - History of CSCW in HCI
 - Organizational issues
 - Online communities
- Games
- Communication technologies
- Interdisciplinary influence
 - The role of the social sciences in HCI
 - MIS and HCI
 - Graphic design
 - Artificial intelligence and the user interface
 - Architecture and the role of the physical environment
- Advanced topics and trends
 - Information visualization
 - Web design
 - Assistive technologies
 - Multimodal interaction
 - Perception and the user interface
 - Specific user groups (children, elders, etc.)
 - Sensor-based or tangible interaction
 - Ubiquitous computing
 - Virtual reality
 - Augmented reality
 - Wearable computing
 - Design and fashion
 - Privacy and social implications

Information for Librarians
Foundations and Trends® in Human–Computer Interaction, 2011, Volume 5, 4 issues. ISSN paper version 1551-3955. ISSN online version 1551-3963. Also available as a combined paper and online subscription.
Interactive Information Visualization to Explore and Query Electronic Health Records

Alexander Rind¹, Taowei David Wang², Wolfgang Aigner³, Silvia Miksch⁴, Krist Wongsuphasawat⁵, Catherine Plaisant⁶, and Ben Shneiderman⁷

¹ Vienna University of Technology, Austria, rind@ifs.tuwien.ac.at
² University of Maryland, USA, tdwang@partners.org
³ Vienna University of Technology, Austria, aigner@ifs.tuwien.ac.at
⁴ Vienna University of Technology, Austria, miksch@ifs.tuwien.ac.at
⁵ University of Maryland, USA, kristw@cs.umd.edu
⁶ University of Maryland, USA, plaisant@cs.umd.edu
⁷ University of Maryland, USA, ben@cs.umd.edu

Abstract

Physicians are confronted with increasingly complex patient histories based on which they must make life-critical treatment decisions. At the same time, clinical researchers are eager to study the growing databases of patient histories to detect unknown patterns, ensure quality control, and discover surprising outcomes. Designers of Electronic Health Record systems (EHRs) have great potential to apply innovative visual methods to support clinical decision-making and research. This work surveys the state-of-the-art of information visualization systems for exploring and querying EHRs, as described in the scientific literature.
We examine how systems differ in their features and highlight how these differences are related to their design and the medical scenarios they tackle. The systems are compared on a set of criteria: (1) data types covered, (2) multivariate analysis support, (3) number of patient records used (one or multiple), and (4) user intents addressed. Based on our survey and evidence gained from evaluation studies, we believe that effective information visualization can facilitate analysis of EHRs for patient treatment and clinical research. Thus, we encourage the information visualization community to study the application of their systems in health care. Our monograph is written for both scientific researchers and designers of future user interfaces for EHRs. We hope it will help them understand this vital domain and appreciate the features and virtues of existing systems, so they can create still more advanced systems. We identify potential future research topics in interactive support for data abstraction, in systems for intermittent users, such as patients, and in more detailed evaluations.
Contents

1 Introduction 1

2 Background 5

2.1 The Challenges 6

2.2 Information Visualization 7

2.3 Related Surveys 8

3 Methods 11

3.1 Literature Search 11

3.2 Review Criteria 14

4 Results 19

4.1 Visualization of a Single Patient Record 19

4.2 Visualization of Collections of Patient Records 32

5 Discussion 53

5.1 Analysis of Review Criteria 53

5.2 Empirical Evaluation in Medical Context 62

5.3 Patient Data Visualization in Commercial EHR Systems 65

5.4 Limitations 73

5.5 Recommendations and Future Directions 74
1

Introduction

Medical decision-making is a complex process. A patient’s well-being depends on correct diagnosis and appropriate treatment. Physicians must incorporate large amounts of information such as a patient’s status, symptoms, medical history, past and ongoing treatments, which are encompassed in the electronic health record (EHR). In addition, these records are an invaluable data source for clinical research and improvement of clinical quality, as they provide longitudinal health information about patient populations [49, 131, 138].

In recent years, many health care institutions have introduced EHR systems to replace their paper-based health records. However, current clinical information systems have focused on faster and cheaper management, storage, and sharing of EHRs. Unfortunately, EHR systems have been shown to have little positive effects on the quality of care, and in some cases have decreased quality [66]. A 2009 report by a committee of the National Research Council of the National Academies found that care providers spend considerable time entering data into EHRs for billing and legal purposes, but that this data rarely improves the quality of care, largely because EHR systems fail to provide cognitive support to healthcare providers, patients, and families [134].

Introduction

Information visualization has the potential to address those issues and deliver much-needed cognitive support. Indeed, a 2012 report of the US Institute of Medicine [72], which focuses on improving patient safety, recommends “cross-disciplinary research” on “user-centered design and human factors applied to health IT.” The report also notes that “Information visualization is not as advanced in parts of clinical medicine as compared with other scientific disciplines.”

In the scientific literature, several information visualization techniques have been proposed that encourage users to explore EHR data visually, gain insights, and form hypotheses. Those systems have demonstrated some level of success, but it is difficult to get an overview and compare them. In this work we report on an extensive literature survey of visualization and interaction techniques applied to EHRs. We review and compare state-of-the-art research systems and examine their support for medical care, clinical research, and quality control. The focus is on information visualization techniques as opposed to medical imaging techniques. It also excludes techniques aiming to support the management of administrative or financial data.

This work presents:

1. A survey of state-of-the-art information visualization systems from academic literature.
2. A review of the visualization and interaction techniques found in 14 of these systems (Table 1.1) including strengths and weaknesses. These systems are categorized by the tasks and data (type, complexity, and scale) they support. Furthermore, there are compact descriptions of 32 additional EHR visualization systems.
3. A summary of evaluation studies conducted in medical context.
4. An overview of data visualization in commercial EHR systems.
5. Recommendations and future research directions for information visualization in EHR systems.

Our analysis of single patient and multiple patient systems is written for both scientific researchers and designers of future user interfaces.
Table 1.1. Overview of the 14 systems reviewed in detail.

<table>
<thead>
<tr>
<th>System</th>
<th>University/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LifeLines</td>
<td>University of Maryland [110]</td>
</tr>
<tr>
<td>MIVA</td>
<td>Indiana University [50]</td>
</tr>
<tr>
<td>WBIVS</td>
<td>University of Minnesota [107]</td>
</tr>
<tr>
<td>Midgaard</td>
<td>Otto-von-Guericke University of Magdeburg [32]</td>
</tr>
<tr>
<td>VisuExplore</td>
<td>Vienna University of Technology [123]</td>
</tr>
<tr>
<td>VIE-VISU</td>
<td>University of Vienna [69]</td>
</tr>
<tr>
<td>Lifelines2</td>
<td>University of Maryland [147, 148]</td>
</tr>
<tr>
<td>Similan</td>
<td>University of Maryland [155]</td>
</tr>
<tr>
<td>PatternFinder</td>
<td>University of Maryland [53]</td>
</tr>
<tr>
<td>VISITORS</td>
<td>Ben-Gurion University of the Negev [80, 81]</td>
</tr>
<tr>
<td>Caregiver</td>
<td>Fachhochschule Nordwestschweiz [36]</td>
</tr>
<tr>
<td>IPBC</td>
<td>University of Udine [45]</td>
</tr>
<tr>
<td>Gravi++</td>
<td>Vienna University of Technology [67]</td>
</tr>
<tr>
<td>TimeRider</td>
<td>Danube University Krems [122]</td>
</tr>
</tbody>
</table>
for EHR data analysis. These interface designers face a substantial challenge in understanding medical care, clinical research, and quality control sufficiently well to create effective interfaces. If these designers appreciate the features and virtues of existing systems, they will be more capable in creating still more advanced systems.

We first provide background information on information visualization in the medical domain, highlight its significance, and compare this survey to existing work. The Methods section presents our approach to searching relevant literature and our review criteria. The Results section presents 14 information visualization systems and briefly describes related systems. The Discussion section evaluates the 14 systems using our review criteria, reports on evaluation studies, gives an overview of commercial systems, explains limitations, and provides recommendations for future work.

Full text available at: http://dx.doi.org/10.1561/1100000039
References

References

References

References

References

90 References

References

References

