A Survey of Augmented Reality

Mark Billinghurst, Adrian Clark, and Gun Lee

The Human Interface Technology Laboratory New Zealand
University of Canterbury
Christchurch, New Zealand
{mark.billinghurst, adrian.clark, gun.lee}@hitlabnz.org
Foundations and Trends® in Human-Computer Interaction
Volume 8, Issue 2-3, 2014
Editorial Board

Editor-in-Chief
Desney S. Tan
Microsoft Research
United States

Editors
Gregory Abowd
Georgia Institute of Technology
Ben Bederson
University of Maryland
Batya Friedman
University of Washington
Jon Froehlich
University of Maryland
Jonathan Grudin
Microsoft Research
Jason Hong
Carnegie Mellon University
Juan Pablo Hourcade
University of Iowa
Karrie Karahalios
University of Illinois at Urbana-Champaign
Gary Klein
The MITRE Corporation
Joe Konstan
University of Minnesota
Chris North
Virginia Tech
Yvonne Rogers
University College London
Orit Shaer
Wellesley College
Desney Tan
Microsoft Research
Kentaro Toyama
UC Berkeley
Jacob Wobbrock
University of Washington

Full text available at: http://dx.doi.org/10.1561/1100000049
Editorial Scope

Topics

Foundations and Trends® in Human-Computer Interaction publishes surveys and tutorials on the foundations of human-computer interaction. The scope is broad. The list of topics below is meant to illustrate some of the coverage, and is not intended to be an exhaustive list.

- History of the research community
- Design and evaluation
- Theory
- Technology
- Computer supported cooperative work
- Interdisciplinary influence
- Advanced topics and trends

Information for Librarians

Foundations and Trends® in Human-Computer Interaction, 2014, Volume 8, 4 issues. ISSN paper version 1551-3955. ISSN online version 1551-3963. Also available as a combined paper and online subscription.
A Survey of Augmented Reality

Mark Billinghurst, Adrian Clark, and Gun Lee

The Human Interface Technology Laboratory New Zealand
University of Canterbury
Christchurch, New Zealand
{mark.billinghurst, adrian.clark, gun.lee}@hitlabnz.org
Contents

1 Introduction 2

2 Definition and Taxonomy 5

3 History 13

4 AR Tracking Technology 31
 4.1 Magnetic Tracking 32
 4.2 Vision Based Tracking 33
 4.3 Inertial Tracking 50
 4.4 GPS Tracking 50
 4.5 Hybrid Tracking 51
 4.6 Summary 53

5 AR Display Technology 54
 5.1 Combining Real and Virtual View Images 54
 5.2 Eye-to-World spectrum 67
 5.3 Other Sensory Displays 72
 5.4 Summary 74

6 AR Development Tools 75
 6.1 Low Level software libraries and frameworks 76
Table of Contents

6.2 Rapid Prototyping/Development Tools 81
6.3 Plug-ins to Existing Developer Tools 84
6.4 Stand Alone AR Authoring Tools 86
6.5 Summary ... 91

7 AR Input and Interaction Technologies 93
7.1 AR Information Browsers .. 94
7.2 3D User Interfaces in AR ... 95
7.3 Tangible User Interface in AR .. 97
7.4 Natural User Interfaces in AR .. 100
7.5 Multimodal Interaction in AR ... 102
7.6 Other Interaction Methods ... 104
7.7 Summary ... 105

8 Design Guidelines and Interface Patterns 107
8.1 Case Study: levelHead .. 111
8.2 Using Design Patterns .. 112
8.3 Designing for Special Needs .. 115
8.4 Summary ... 116

9 Evaluation of AR Systems .. 117
9.1 Types of User Studies .. 119
9.2 Evaluation Methods ... 131
9.3 Summary ... 134

10 AR Applications Today .. 135
10.1 Education ... 135
10.2 Architecture ... 139
10.3 Marketing ... 145

11 Research Directions .. 147
11.1 Tracking ... 148
11.2 Interaction ... 151
11.3 Displays ... 157
11.4 Social Acceptance ... 159
11.5 Summary ... 163
Abstract

This survey summarizes almost 50 years of research and development in the field of Augmented Reality (AR). From early research in the 1960’s until widespread availability by the 2010’s there has been steady progress towards the goal of being able to seamlessly combine real and virtual worlds. We provide an overview of the common definitions of AR, and show how AR fits into taxonomies of other related technologies. A history of important milestones in Augmented Reality is followed by sections on the key enabling technologies of tracking, display and input devices. We also review design guidelines and provide some examples of successful AR applications. Finally, we conclude with a summary of directions for future work and a review of some of the areas that are currently being researched.

In 1977 many moviegoers were amazed as a small robot projected a three-dimensional image of a woman in mid air. With the words "Help me Obiwan-Kenobi, you’re my only hope", a recording of Princess Leia delivered a message that would change Luke Skywalker’s life forever. In this Star Wars\(^1\) scene, special effects were used to create the magical impression that three-dimensional virtual content was appearing as part of the real world. The movie forecast a future where people could interact with computers as easily as interacting with the real world around them, with digital and physical objects existing in the same space.

Thirty years later, in the 2008 US presidential campaign, a version of technology was shown for real. During the CNN election coverage reporter Wolf Blitzer turned to an empty studio and suddenly a life sized three-dimensional virtual image of reporter Jessica Yellin appeared beamed in live from Chicago\(^2\). Just like Princess Leia, she appeared to be part of the real world, but this time it was real and not through movie special effects. Wolf was able to talk to her as easily

\(^1\)http://www.starwars.com
as if there was there face to face, even though she was thousands of miles away. It had taken only thirty years for the Star Wars fantasy to become reality.

The CNN experience is an example of technology known as Augmented Reality (AR), which aims to create the illusion that virtual images are seamlessly blended with the real world. AR is one of the most recent developments in human computer interaction technology. Ever since the creation of the first interactive computers there has been a drive to create intuitive interfaces. Beginning in the 1960’s, computer input has changed from punch cards, to teletype, then mouse and keyboard, and beyond. One overarching goal is to make the computer interface invisible and make interacting with the computer as natural as interacting with real world objects, removing the separation between the digital and physical. Augmented Reality is one of the first technologies that makes this possible.

Star Wars and CNN showed how the technology could enhance communication and information presentation, but like many enabling technologies, AR can be used in a wide variety of application domains. Researchers have developed prototypes in medicine, entertainment, education and engineering, among others. For example, doctors can use AR to show medical data inside the patient body [Navab et al., 2007, Kutter et al., 2008], game players can fight virtual monsters in the real world [Piekarski and Thomas, 2002a], architects can see unfinished building [Thomas et al., 1999], and students can assemble virtual molecules in the real world [Fjeld and Voegtli, 2002]. Figure 1.1 shows a range of applications.

The potential of AR has just begun to be tapped and there is more opportunity than ever before to create compelling AR experiences. The software and hardware is becoming readily available as are tools that allow even non-programmers to build AR applications. However there are also important research goals that must be addressed before the full potential of AR is realized.

The goal of this survey is to provide an ideal starting point for those who want an overview of the technology and to undertake research and development in the field. This survey compliments the earlier surveys of
Introduction

(a) ARQuake outdoor AR game [Piekarski and Thomas, 2002a]

(b) AR architecture by Re+Public http://www.republiclab.com

(c) AR in medicine [Kutter et al., 2008]

Figure 1.1: Typical AR applications.

Azuma [1997], Azuma et al. [2001], Van Krevelen and Poelman [2010] and Carmigniani et al. [2011] and the research survey of Zhou et al. [2008]. In the next section we provide a more formal definition of AR and related taxonomies, then a history of the AR development over the last 50 years. The rest of this survey gives an overview of key AR technologies such as Tracking, Display and Input Devices. We continue with sections on Development Tools, Interaction Design methods and Evaluation Techniques. Finally, we conclude with promising directions for AR research and future work.

References

References

References

References

References

References

References

David Gelernter. *Mirror worlds, or, The day software puts the universe in a shoebox--; how it will happen and what it will mean*. Oxford University Press New York, 1991.

References

References

References

Gun A. Lee, Ungyeon Yang, and Wookho Son. Layered multiple displays for
immersive and interactive digital contents. In Entertainment Computing-

Gun A. Lee, Hyun Kang, and Wookho Son. Mirage: A touch screen based
mixed reality interface for space planning applications. In Virtual Reality

Gun A. Lee, Ungyeon Yang, Wookho Son, Yongwan Kim, Dong Sik Jo, Ki-
Hong Kim, and Jin Sung Choi. Virtual reality content-based training for
spray painting tasks in the shipbuilding industry. ETRI Journal, 32(5):
695–703, 2010a.

Gun A. Lee, Andreas Dunser, Seungwon Kim, and Mark Billinghurst.
Cityviewer: A mobile outdoor AR application for city visualization. In Mixed
and Augmented Reality (ISMAR-AMH), 2012 IEEE International Sympo-

Gun A. Lee, Andreas Dünser, Alaeddin Nassani, and Mark Billinghurst.
Antarcticar: An outdoor AR experience of a virtual tour to antarctica.
In Mixed and Augmented Reality-Arts, Media, and Humanities (ISMAR-

Jae Yeol Lee, Gue Won Rhee, and Dong Woo Seo. Hand gesture-based tangi-
ble interactions for manipulating virtual objects in a mixed reality environ-
ment. The International Journal of Advanced Manufacturing Technology,
51(9-12):1069–1082, 2010b.

Minkyung Lee, Richard Green, and Mark Billinghurst. 3d natural hand in-
teraction for AR applications. In Image and Vision Computing New Zealand,

Minkyung Lee, Mark Billinghurst, Woohyuk Baek, Richard Green, and
Woontack Woo. A usability study of multimodal input in an augmented

Taehee Lee and Tobias Hollerer. Handy AR: Markerless inspection of aug-
mented reality objects using fingertip tracking. In Wearable Computers,

Alexander Lenhardt and Helge Ritter. An augmented-reality based brain-

Vincent Lepetit and Pascal Fua. Keypoint recognition using randomized trees.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(9):

References

References

References

References

References

References

References

References

Yan Xu, Evan Barba, Iulian Radu, Maribeth Gandy, Richard Shemaka, Brian
Schrank, Blair MacIntyre, and Tony Tseng. Pre-patterns for designing
embodied interactions in handheld augmented reality games. In Mixed
and Augmented Reality-Arts, Media, and Humanities (ISMAR-AMH), 2011

Suya You and Ulrich Neumann. Fusion of vision and gyro tracking for robust

Suya You, Ulrich Neumann, and Ronald Azuma. Orientation tracking for out-
door augmented reality registration. Computer Graphics and Applications,

Jürgen Zauner and Michael Haller. Authoring of mixed reality applications
including multi-marker calibration for mobile devices. In 10th Eurographics

Jürgen Zauner, Michael Haller, Alexander Brandl, and W Hartman. Author-

Shumin Zhai and Paul Milgram. Telerobotic virtual control system. In Robo-
tics-DL tentative, pages 311–322. International Society for Optics and
Photonics, 1992.

Zhengyou Zhang. Microsoft kinect sensor and its effect. MultiMedia, IEEE,

Feng Zhou, Henry Been-Lirn Duh, and Mark Billinghurst. Trends in aug-
Mixed and Augmented Reality, pages 193–202. IEEE Computer Society,
2008.

Dmitry N. Zotkin, Jane Hwang, R. Duraiswaini, and Larry S. Davis. Hrtf
personalization using anthropometric measurements. In Applications of Signal Processing to Audio and Acoustics, 2003 IEEE Workshop on., pages