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Abstract

Recent advances in genetic testing and Internet technologies have led to
a dramatic increase in the access non-experts have to their own personal
genomic data. Such data are complex and sensitive, involve multiple
dimensions of uncertainty, and can have substantial implications on
individuals’ behavior, choices, and well-being. Personal genomic data
are also unique because unlike other personal data, which might change
frequently, genomic data are largely stable during a person’s lifetime;
it is their interpretation and implications that change over time as new
medical research exposes relationships between genes and health.

Future progress in genetic research and technologies is likely to
further increase the availability of interactive personal genomic infor-
mation to non-experts. This trend raises technological, ethical, and
regulatory concerns related to how people make sense of, engage with,
and rely on their personal genomic data. Such concerns are not only
of paramount importance for health professionals and policymakers,
but are also a pressing issue for human—computer interaction (HCI)
research. HCI tools, methods, and practices can help make genomic
information more accessible and understandable to non-experts. We
argue that the complexity, importance, and personal relevance of this
type of information makes understanding, informing, and empowering
non-experts’ interaction with personal genomics a key challenge that
lies ahead for the HCI community.

In this article, we explore the roles HCI can play in helping non-
experts contribute, understand, engage with, and share their personal
genomic information. This article is also a call-to-action for those of
us interested in the intersection of personal informatics and HCI, and,
more broadly, in facilitating non-expert interaction with large amounts
of complex, personal, and uncertain information.

O. Shaer, O. Nov, L. Wstendorf, and M. Ball. Communicating Personal Genomic
Information to Non-experts: A New Frontier for Human-Computer Interaction.
Foundations and Trends® in Human-Computer Interaction, vol. 11, no. 1,

pp. 1-62, 2017.

DOI: 10.1561,/1100000067.
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1

Introduction

“A firsthand familiarity with the code of life is bound to
confront us with the emotional, moral and political baggage
associated with the idea of our essential nature. People have
long been familiar with tests for heritable diseases, and the
use of genetics to trace ancestry — the new “Roots” — is
becoming familiar as well. But we are only beginning to
recognize that our genome also contains information about
our temperaments and abilities. Affordable genotyping may
offer new kinds of answers to the question “Who am I?7” —
to ruminations about our ancestry, our vulnerabilities, our
character and our choices in life.” [Pinker, 2009]

Recent years have seen a dramatic growth in the availability of
personal genomic data to non-experts, often online and in interactive
forms [Dudley and Karczewski, 2013]. The field of personal genomics
is rapidly growing, as the cost of sequencing a human genome has
fallen from approximately $100 million in 2001 to $1,000 in 2016, a
rate much faster than Moore’s Law [Church, 2005] (see Figure 1.1).
The Precision Medicine initiative and similar health research projects
increasingly highlight the potential for genetic data to become a
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Figure 1.1: A graph demonstrating the precipitous decline in genome sequencing
cost since the completion of the Human Genome Project in 2001. Whole genome
sequencing is now around $1,000 per genome, five orders of magnitude lower than
the $100 million cost of the Human Genome Project (from the National Human
Genome Research Institute).

standard component of health records [NIH]. In the meantime, direct-
to-consumer genetic testing (DTCGT) companies have made genomic
information available to millions of individuals without the involvement
of a healthcare provider through online platforms. These individuals are
thereby confronted with unprecedented amount of potentially sensitive
information about their genetic data, which influences their decisions,
emotional states, and wellbeing [Davies, 2010].

The use of Web-based interactive technologies to deliver personal
genomic information raises questions about how non-experts make
sense of, engage with, and rely on their personal genomic data. Future
progress in genetic research and technologies is likely to further
increase the availability of interactive personal genomic information
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to non-expert users. This trend raises technological, ethical, and
regulatory concerns. For example, in 2013, the U.S. Food and Drug
Administration (FDA) ordered 23andMe, a direct-to-consumer genetic
testing company, to stop providing risk assessment reports, stating
that “serious concerns are raised if test results are not adequately
understood” [Pollack, 2013]. Providing consumer reports partially
resumed in 2015 when 23andMe recieved FDA approval for a vetted
set of gene variant interpretations [Pollack, 2015]. While such concerns
are imperative for policymakers, it is also vital to consider these issues
from the perspective of human—computer interaction (HCI) research.

Specifically, the highly personal and dynamic nature of individually-
relevant personal genomic information, which is constantly updated
based on new research results, raises important HCI questions, includ-
ing: what are the functional requirements for supporting meaningful
engagement of non-experts’ with personal genomic information? How
can we design effective interaction with personal genomic information?
How can we evaluate the effectiveness of techniques for interaction with
personal genomic information? Can user interface design interventions
impact users’ willingness to share their personal genomic data?

An additional important aspect of communicating personal
genomics to non-experts is the understanding of the vast common-
alities and genealogical similarities among people from different racial
and ethnic backgrounds. Future HCI work on personal genomics has a
critical role in making these commonalities apparent to users, just as
much as the differences.

Because the technology that enables non-experts to interact with
personal genomic information is new, there is little HCI research on
it. Given the tremendous growth in the scale and scope of personal
genomic information available to non-experts, personal genomics rep-
resents a new and fast-growing frontier where HCI research can make
a significant difference in people’s lives.

This article explores the roles HCI can play in helping non-experts
to understand and engage with personal genomic information. It is also
a call to action for those of us interested in the intersection of personal
informatics and HCI, and, more broadly, the facilitation of interaction
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of non-experts with large amounts of complex and uncertain personal
information.

We begin with a brief tutorial of personal genetics (Section 2), fol-
lowed by a description of the historical context and new technologies
of personal genomics, and a discussion of the characteristics of per-
sonal genomic data (Section 3). We then survey related work from
human-computer interaction and personal informatics (Section 4).
Section 5 presents a framework for HCI research focusing on under-
standing, informing, and empowering non-expert users of personal
genomics. Finally, in Section 6 we discuss broader implications for HCI
researchers, for personal genomics practitioners, for policy makers, and
for society.



Full text available at: http://dx.doi.org/10.1561/1100000067

2

Personal Genetics Tutorial

The term personal genetics describes the information which an individ-
ual has inherited from their biological parents. An individual’s physical
traits — features of their biology, body, and health — are partly inher-
ited and often are influenced by environmental and behavioral factors.
At its most fundamental level, this inheritance is discrete in nature:
units of inheritance are called genes. Some traits, like rare diseases and
ABO blood types, are associated with a single gene. Many other traits
(e.g. risk for diabetes, or height) are the products of many genes, and
are also influenced by environmental factors like diet.

The biological basis of inherited traits is DNA — deozyribonucleic
acid, a linear chain of nucleic acids found in all cells. The sequence of
these four nucleic acids, a.k.a. bases — adenine, cytosine, guanine, and
thymine (A, C, G, and T) — is molecular information that drives almost
all features of life. DNA is inherited, copied, and passed from parent to
child. The collective set of DNA molecules for an individual, inherited
from their mother and father, is their genome. Each gene is a section
of a DNA molecule that contains information for creating a specific
type of protein, each of which affects a specific aspect of cell biology.
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Figure 2.1: A “karyotype” of a human genetic male shows the genome’s 23 pairs of
chromosomes. With the exception of the sex chromosomes in genetic males (X and
Y), chromosomes exist as matched pairs: one copy is inherited from each parent.
(Public domain, from NHGRI via Wikipedia.)

Proteins are the primary functioning units of life and play a variety
of roles: they can be structural elements, or they may drive chemical
reactions that would not otherwise occur.

Each individual human genome consists of two slightly different
copies of 3 billion nucleic acids, organized into 23 pairs of chromosomes
(Figure 2.1). As demonstrated in Figure 2.2, genes are distributed along
chromosomes and are often interleaved with nonfunctional DNA. The
functional fragments of gene DNA, accounting for 1% of the genome,
are called exons (because this sequence is “exported” and used else-
where in the cell).

Genetic variants account for inherited differences between individ-
uals. However, because most of the genome is nonfunctional, most
genetic variants have no biological effect. Those that do have an effect
typically occur in exon regions: and they have a biological effect because
they change the protein the gene produces.



Full text available at: http://dx.doi.org/10.1561/1100000067
8 Personal Genetics Tutorial
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Figure 2.2: Each chromosome consists of a single, densely packed DNA strand.
Genes occur as segments within the DNA strand, and genetic data is encoded within
the sequence of four possible bases at each position in the DNA chain: Adenine,
Cytosine, Guanine, and Thymine (A, C, G and T). Genes are often interleaved
with nonfunctional DNA (intron regions). Genetic variants which change a gene’s
behavior typically affect exon regions — the DNA sequences used to produce a
gene’s protein product.

Fach genome exists largely in duplicate: for most genes and DNA
segments, one copy is inherited from each biological parent. When an
individual carries a genetic variant, it could be present in both genes
(homozygous, referring to the sameness of each copy) or it could be
present in only one (heterozygous). The exception to this is the sex
chromosomes: males have only one copy of each “X” and “Y” chromo-
some, and their variants on these chromosomes are called hemizygous.

The biological consequences of which involve genetic variants in a
single gene can be affected by whether both copies of a gene carry
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the same variant. Genetic variants that only have an effect when both
copies of a gene are affected are called “recessive” (these typically have
little to no effect when heterozygous, resulting in an individual hav-
ing carrier status). While recessive variants have no immediate impact
on individual health, carrier status for genetic diseases can influence
reproductive decisions. In contrast, genetic variants that always have
an effect are called dominant. Not all variants are clearly recessive or
dominant: for example, a variant may have a weak effect when het-
erozygous, and a stronger effect when homozygous. Figure 2.3 explains
the effect of genetic variants within a single gene, also referred to as
monogenic effects.

2.1 DNA sequencing

There are various technologies for “reading” DNA molecules. Since
information is contained within the molecular sequence of the DNA’s
nucleic acids (i.e. bases), these technologies are commonly referred to
as DNA sequencing. Human genome sequences are mostly identical to
each other: sequence differences between two individuals account for
just 0.1% of all nucleic acids. These few genetic variants account for
many differences between two humans.

Although sequencing the human genome cost $3.6 billion when it
was completed in 2003 [NHGRI, 2016}, improvements to DNA sequenc-
ing have since outpaced Moore’s Law: whole genome sequences can now
be purchased for under $1000 (Figure 1.1) [Keshavan, 2016, Regal-
ado, 2016]. Two major technologies have led to vastly increased effi-
ciency in producing genetic data: high-throughput DNA sequencing, and
microarray-based genotyping. The first technology, high-throughput
DNA sequencing, is comprehensive — it enables whole genome sequenc-
ing (see Figure 2.4) and ezome sequencing (a lower-cost option that
targets gene exon regions for around $500 [Molteni, 2016]). The sec-
ond technology, microarray-based genotyping, is less comprehensive but
provides a lower-cost option: for $100-$200 it can be used to test a
million specific locations that are known to vary between individu-
als [23andMe, AncestryDNA]. Because genotyping is the lowest cost



Full text available at: http://dx.doi.org/10.1561/1100000067

10 Personal Genetics Tutorial
e X N X A
Recessive Dominant
A single copy has an effect. Typically a "broken" gene. No effect

Sometimes a spontaneous mutation. as long as one functioning copy
Examples: achondroplasia, remains.
hypertrophic cardiomyopathy, Examples: cystic fibrosis, blue eyes,
Huntington’s disease albinism, stomach flu resistance
Homozygous Heterozygous
// affected f affected
Heterozygous Homozygous
unaffected carrier r affected, though very
f rare or never seen
Compound \_ J
/ Heterozygous N
affected - two different I
broken variants Add Itlve
_ ) One copy has some effect, two
- ~N copies have a stronger effect.
H Magnitude of effect depends on the
X-Linked g P
variant.
In genetic males (XY) a single copy Example: Alzheimer's risk (APOE4)
has an effect, but acts as a
"recessive" in genetic females (XX). Heterozygous
Examples: colorblindness, affected, small/moderate
- effect
hemophilia
Hemizygous Homoz
ygous
// affected // affected, strong effect
. J N\ J

Figure 2.3: Monogenic effects involve variants in a single gene. Whether variants
in a gene have an effect on traits or health depends on how many copies of the
gene have variants, and on the variant’s inheritance pattern: Dominant, Recessive,

X-linked, or Additive.

option, it is currently used by leading direct-to-consumer genetic test-
ing companies like AncestryDNA and 23andMe.

Personal genetic information gained through the process of genotyp-
ing or high-throughput DNA sequencing can be used for two seemingly
disparate purposes: ancestry and biological traits. Ancestry information
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Figure 2.4: Current technology for high-throughput DNA sequencing starts with a
biological sample (e.g. blood or tissue). A parallelized sequencing process generates
millions of short “reads”. Reads are then computationally assembled to determine an
individual’s whole genome sequence [from the National Human Genome Research
Institute].

can be discovered because DNA is inherited: similarities between indi-
vidual genomes can be used to discover near relatives (e.g. cousins),
as well as predict more distant ancestry (i.e. geographical origins and
associations with race/ethnicity). But because DNA is responsible for
biological function, it can also be interpreted to understand biological
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traits. This health-relevant aspect of genome information has been sub-
ject to regulatory concerns (e.g. by the United States Food and Drug
Administration), because it can be used to determine clinically rele-
vant information. As a result, while some products have interpreted
customers’ genetic data for both traits and ancestry purposes (e.g.
23andMe), others avoid regulatory issues by only analyzing ancestry
aspects (e.g., AncestryDNA).
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Background

3.1 Historical context and new technologies

Prior to the rapid expansions in genetic technologies, genetic testing
was confined to a specialized aspect of clinical practice. Testing for the
diagnosis of a suspected genetic disorder (like Huntington’s disease or
cystic fibrosis) occurred only for affected individuals and their imme-
diate family, in rare cases. The data and information produced was
very specific, and was interpreted by a lab specialized in testing for
the particular disease. The information was conveyed to the patient
by trained experts called genetic counselors. These models for infor-
mation management have been challenged by developments in genomic
technology, which have enormously expanded both the scope of genetic
data available and the number of individuals tested.

As outlined above, developments in genetic technologies have vastly
lowered costs, creating a massive expansion in the scope of data pro-
duced by genetic testing. Analysis of this data is an area of ongoing
development, as researchers and clinicians adapt and combine disease-
specific and gene-specific analytical approaches. The ability to perform
comprehensive analysis is also limited by current knowledge, as our
understanding of the effects of gene variants continues to evolve.

13
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Parallel to this expansion in the amount of data produced is an
expansion in the scope of individuals tested. While genome and
exome technologies have seen increasing clinical applications [Manolio
et al., 2013], lowered costs for testing have also led to the growth of
direct-to-consumer genetic testing (DTCGT) companies [Turrini and
Prainsack, 2016]. These companies have brought genetic testing outside
the clinic to millions of users (e.g. [23andMe, AncestryDNA]), selling
online products that enable individuals to access their own genetic data
online for the purposes of expanding their understanding of personal
ancestry, health, and biology.

3.2 Online interaction with personal genomics

The expansion of both the amount of data and the scope of individ-
uals involved in genetic testing has led to radical changes both in the
nature of the information returned and in the process of returning
data. Automated methods and online tools have become necessary
features for sharing extensive information with many individuals. In
addition, the scale of the underlying data defies comprehensive interpre-
tation, and scientific understanding of the data is constantly evolving —
many potentially meaningful genetic variants are not yet known to be
meaningful. What can be understood from genetic data, the potential
for re-interpretation, and how to share that knowledge have provoked
extensive debates [Hughes, 2013, Conley, 2014].

DTCGT companies enable individuals to acquire genetic informa-
tion without the involvement of a healthcare provider by sending a
saliva sample to a DTCGT company, at a relatively low cost. To date,
DTCGT do not offer whole genome or exome sequencing, but rather
microarray-based genotyping. Results are delivered through online
interactive reports. Several popular DTCGT services offer interactive
online reports of ancestry information (e.g. 23andMe, AncestryDNA,
and FamilyTreeDNA). The service 23andMe also provided risk assess-
ment results for about 250 traits and conditions; however, in response to
concerns from the FDA current 23andMe health-related reports return
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a more limited list of FDA-approved analyses [Pollack, 2013, 2015] (see
Figure 3.1). Services also allow users to share and compare genetic data
with each other, enabling comparison reports related to ancestry and
gene inheritance (See Figures 3.2 and 3.3).

To date, all of the DTCGT services mentioned above also return
raw genotyping data to users, who in turn can actively engage with
their personal genomic data, for example, by learning about specific
gene variants or conditions of interest. Indeed, consumers of genomic
data have been observed transporting their data between services to
capitalize on different features that allow them to engage more deeply
with their data. For example, 23andMe users may export their data
to FamilyTreeDNA for genealogy, or to various genetic data analysis
tools [Bettinger, 2013]. Because this data is digital, and because its
interpretation gets updated frequently based on new research findings,
we anticipate increased focus on the development of online interactive
report methods that perform automatic reanalysis.

3.3 Omic technology

The revolution in genetic data is paralleled by other omic technolo-
gies that bring similarly broad, untargeted biological data to clinical
and direct-to-consumer contexts, including microbiome and metabolite
profiling [Khamsi, 2014, Seetharaman, 2015, Dillet, 2015]. Microbiome
profiling uses high-throughput DNA sequencing to profile microbiota
that live in the human gut, as well as other tissues, potentially impact-
ing digestion, weight, and other aspects of health. Metabolite profiling
assays numerous small molecules in the blood, and can reveal abnor-
malities in metabolism and health. Like genome analyses, these and
other omic technologies produce large amounts of data relevant to
many potential conditions. It seems likely that these technologies will
confront parallel challenges with management of comprehensive data,
potentially limited and shifting interpretations, and the demand for
tools to communicate information to non-expert individuals.
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Figure 3.2: DTCGT providers typically share information about ancestry, and
sometimes information is provided for specific chromosome regions. For example,
this 23andMe data comparison illustrates shared DNA segments in a pair of sibling
genetic data sets.

3.4 Genomic data privacy and access

Commercial companies typically provide their customers with access to
raw genetic data. This raw data contains an individual’s gene variant
information, without interpretation, and can potentially be reanalyzed
using third-party tools and resources. In contrast, research studies only
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Figure 3.3: In some cases, DTCGT companies may be able to share information for
more complex data comparisons. For users that have genetic data from their grand-
parents, 23andMe’s “family tree” tool can be used to discover which grandparents
contributed genetic material for specific genes.

rarely give their research subjects access to their raw genetic data,
possibly due to legal concerns regarding regulation of genetic testing
[Evans, 2014, Karow, 2014].

Privacy of genetic information has been a major concern for many
individuals interested in genetic data analysis. Because it contains
extensive ancestry and trait information, genetic data is potentially
identifiable (especially when combined with additional data), and in
2013 a re-identification study demonstrated that inference of surnames
from Y-chromosome data could be used to re-identify dozens of “anony-
mous” public research genomes [Gymrek et al., 2013]. Many individ-
uals are concerned about discrimination in access to insurance based
on genetic data despite some legal protections (e.g. the United Status
Genetic Information Nondiscrimination Act of 2008) [EEOC, 2008;
Sanderson et al., 2016]. Discrimination is still possible in other con-
texts such as employment and in some cases can be impossible to reg-
ulate. Genome data privacy has thus been a concern in both research
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and commercial contexts [Nature, 2013, Phillips, 2015], and controlled-
access sharing for genome data research is common (e.g. as performed
by the United States Database of Genotypes and Phenotypes, dbGaP),
while commercial groups often promise privacy for individual-level
genetic data.

3.5 Public genomes and follow-up research

The Harvard Personal Genome Project (PGP) is a research study, ini-
tiated in 2005 by George Church of the Harvard Medical School, that
seeks to improve understanding of how genomic and environmental
factors influence human traits through the creation of a public dataset
[Church, 2005]. PGP volunteers agree to share their genomic sequences,
as well as health data, with the scientific community and the public.
Today, more than 5,000 volunteers are enrolled in the project through
a process of open consent [Lunshof et al., 2008, Ball et al., 2012, 2014]
and have agreed to share their genomic information publicly. Of these,
over 300 individuals have had whole genome sequencing data produced
by the project and publicly shared.

Public genome data produced by the Harvard PGP is accompa-
nied by a preliminary research report produced by the GET-Evidence
system [Ball et al., 2012]. This report is given to participants prior to
public data release, to better inform them regarding the data they are
choosing to publicly share. Upon consent, these reports are publicly
shared alongside public genome data, as is the underlying database for
variant interpretations.

The Harvard PGP is distinguished from other public genome
resources in its ongoing work with participants. The PGP has histori-
cally invited other research groups to work with its volunteers, enabling
follow-up research with this population and providing a unique oppor-
tunity for studying HCI in genomic data. This process is now stream-
lined and explicitly supported within the Open Humans platform, a
successor project to the PGP. In Open Humans, researchers can recruit
and work with PGP participants, as well as other members with other
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public and private genetic data such as microbiome, activity logs, GPS,
and other diverse data sources [Open Humans].

3.6 Characteristics of personal genomic data

The data produced by genome sequencing, exome sequencing, and com-
prehensive genotyping spans all ~20,000 genes of the human genome.
Comparing any two genomes reveals millions of genetic differences, and
the database of all observed variations in all humans currently exceeds
150 million genetic variants [dbSNP, 2016]. The information that can be
learned from this comprehensive data is diverse, complex, and evolving.

One of the most popular uses of this information is for ancestry
analysis. By comparing individual data with population-level informa-
tion, analysis of DNA segments can predict racial and ethnic origins.
More recent ancestry — the discovery of cousins and near relatives —
is also possible through large databases that detect shared segments
of DNA between individuals. In addition to ancestry, everything about
ourselves that is heritable is — in theory — contained within the data.
Although many gene variants have disease associations that imply clin-
ical utility, individuals are also motivated by curiosity and entertain-
ment to learn about variants with no medical purpose (e.g. physical
traits) [Vayena et al., 2012]. Analyzing data to produce health and trait
insights is daunting: ClinVar, a public database aggregating reported
effects, now has over 100,000 gene variants. Aggregating and filtering
results to facilitate understanding of any individual genome is challeng-
ing, and it is still unclear how to combine information from multiple
genes affecting a single trait or disease.

3.7 Uncertainty in personal genomics

The relationships between genes and health effects are in many cases
not well understood, and knowledge about such relationships evolves
dynamically with the development of new technologies, processes, and
research results. Individuals are therefore often required to continu-
ously reconsider their genomic information against the most current
research evidence. As a result, interaction with personal genomic data
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is unique compared to other forms of personal data, where the dynamic
element is often the data itself, which is usually sampled at intervals
over time with the objective of creating an incremental feedback loop
to influence an individual’s behavior [Li et al., 2011]. In such tradi-
tional forms of personal informatics, uncertainty often results from the
context and accuracy of data tracking. Genomic data, on the other
hand, are largely stable during a person’s lifetime —99.9999% accuracy
is typical, and continues to improve [Peters et al., 2012]. The uncer-
tainty in personal genomics stems from the interpretation of the data,
and from the evidence of related implications for the user’s health and
traits (see, for example, 23andMe’s “confidence” score, Figure 3.1). This
form of uncertainty arises because our understanding of genetic vari-
ants changes over time: hypotheses are corrected or updated, and new

“

medical research exposes new relationships between people’s genetic
makeup and their effects.
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4.1 Personal informatics

Quantified Self, also known as personal analytics [Regalado, 2013] and
personal informatics [Li et al., 2010], refers to research and practice
involving communities, practices, and systems that help people collect
and reflect on their personal information. The increasing availability of
low-cost sensors has accelerated the practice of self-tracking as well as
the rise of the Quantified Self movement [Quantified Self]. Researchers
and designers have developed and studied numerous self-tracking tech-
nologies and applications for health and wellness [Klasnja and Pratt,
2012, Swan, 2009]. An underlying assumption driving the growth of
this field is that individual’s knowledge of their data facilitates reflec-
tion, which in turn leads to self-discoveries and to lifestyle changes.
While researchers of personal informatics and Quantified Self acknowl-
edge the value of self-tracking technologies [e.g., Bentley et al., 2013,
Consolvo et al., 2008, Lin et al., 2006, Mamykina et al., 2008, Patel
et al., 2012], they also discovered several barriers toward the adoption
and effective use of self-tracking technologies including data integration

22
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and interpretation, unsuitable visualization and analytics tools, poor
skills for analyzing data, and fragmented data scattered across multiple
platforms [Bloss et al., 2010, Choe et al., 2015]. It is important to note
that most of the research identifying practices and barriers in personal
informatics has been conducted with expert users, quantified-selfers,
who are early adopters, health enthusiasts, or patients.

Personal Genomics shares the main goals and assumptions of
personal informatics — facilitating self-discovery based on personal
information. In the popular media, personal genomics is viewed as an
extension of quantified self: “It’s the ultimate quantified-self set of num-
bers. Forget how many steps you average in a week, or what your rest-
ing heart rate is — DNA genotyping allows us to create the complete
spec-sheet for our bodies” [Lamkin, 2016]. However, personal genomics
is different from other self-tracking data in being largely stable during
a person’s lifetime while its interpretation, and related implications
for the user’s health, are dynamic. In addition, while personal genomic
information is inherently personal, it is also shared among family mem-
bers, thus affecting the health and wellbeing of its owner as well as of
family members and future offspring. Furthermore, personal genomic
information could lead to discoveries about one’s ancestry that could
impact not only one’s identity and sense of belonging but also families
and communities.

Considering the complex and sensitive nature of personal genomics,
its scale, and the dynamic nature of its interpretation, we view personal
genomics as a new frontier for personal informatics.

4.2 Communicating uncertainty

One of the key tasks of a personal genomic report is to communicate
to its reader the uncertainty that is associated with their data and its
implications. An abundance of work has investigated the visualization
of uncertain information in other domains.

Existing taxonomies for communicating uncertainty identify sources
of uncertainty (and visual presentation techniques) [Skeels et al., 2008,
Taylor and Kuyatt, 1994, Thomson et al., 2005]. Additional work
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explores cognitive biases of decision-making under uncertainty and cor-
rective visual approaches [Inbar, 2007, Tversky and Kahneman, 1974].

In particular, researchers explored public perception and communi-
cation of weather forecast uncertainty, showing that the general public
understands that uncertainty is inherent in weather forecasts as well
as some of the factors that increase uncertainty [Morss et al., 2008,
Joslyn and Savelli, 2010, Joslyn et al., 2013]. The research shows that
when communicated carefully, uncertainty in forecast leads to better
outcomes such as increased precautionary action for extreme weather
events [LeClerc and Joslyn, 2012, Savelli and Joslyn, 2012]. Research
also indicates that communicating uncertainty in an interface or visu-
alization of weather forecast could increase trust and help people make
better decisions [Gigerenzer et al., 2005, Roulston et al., 2006, Joslyn
and LeClerc, 2013]. Evidence from other application domains such as
remaining driving range in electric cars [Jung et al., 2015] and weight
scale [Kay et al., 2013] indicates that not including uncertainty infor-
mation can decrease trust in the application.

Numerous applications tracking new types of personal and often
uncertain data have explored how to present the data to encourage
behavior change and reflection [Rooksby et al., 2014, Epstein et al.,
2015, Choe et al., 2015, Lee et al., 2015]. A study comparing visu-
alizations of uncertainty found that participants’ judgment of these
visualizations was significantly influenced by familiarity, ease of under-
standing, and visual appeal [Greis et al., 2016]. Another study com-
paring the impact of various representations of uncertainty on different
activities concluded that different types of visualizations lead to differ-
ent learning outcomes and suggested that an interactive display may be
best for communicating uncertain information [Nadav-Greenberg et al.,
2008]. Similarly, a different study shows that the amount of presented
uncertainty leads to different outcomes of risk taking within a game
context [Greis et al., 2016].

This growing body of work is important for researchers to draw
upon when studying how to communicate uncertainty of personal
genomic information.
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4.3 Interaction with biological data sets

To date, little HCI research has focused on direct user engagement with
personal genomic information. Instead, researchers focused on develop-
ing new ways of interacting with large-scale and complex biological data
sets for use as a platform to explore novel interaction techniques, such
as tangible interaction [Shaer et al., 2013, Manshaei et al., 2016]. Sys-
tems developed include a tangible interface for scientists designing new
DNA molecules [Schkolne et al., 2004], a tabletop tangible interface for
system biologists [Wu et al., 2011], and several tabletop interfaces for
interactive visualization of biological data sets in informal and formal
learning settings, such as DeepTree [Block et al., 2012] and PhyloGenie
[Schneider et al., 2012]. G-nome Surfer [Shaer et al., 2011] is a tabletop
interface for collaborative exploration of genomes; Tangible mtDNA is
an active tangible and tabletop system for collaborative exploration of
mitochondrial DNA sequencing data in breast cancer patients [Man-
shaei et al., 2016]. However, these systems were not designed to sup-
port non-expert users in the self-exploration of their own genomic data
but rather to support researchers and learners in exploring genomic
data sets.

4.4 DIY genome analysis

Individuals can potentially explore and analyze their genetic data in a
variety of ways including: exploring information provided by the pri-
mary testing service; secondary analyses performed by third parties; or
personal analyses drawing on various resources and databases.
However, information from primary testing services is often the only
information explored. In some services this information can be quite
extensive. 23andMe, for example, provides in-depth reports on each of
the variants included in the health and trait analyses. These reports
summarize current research, population statistics, and provide links to
primary literature. Due to regulatory concerns, however, many other
testing providers avoid providing information regarding health and
traits associated with genetic variants. Even services that do provide
this information (e.g. 23andMe) are still limited to the set of variants
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Table 4.1: A selection from a growing variety of products giving consumers to
access to genetic data, as well as analysis tools and resources for interpretation.

Tools, products,
& resources

Type(s)

Notes

23andMe

AncestryDNA

ClinVar

Enlis Genomics Personal

Exome Aggregation
Consortium (ExAC)

FamilyTreeDNA

Gedmatch

Genos

Illumina Understand

Your Genome

Interpretome

Genotyping testing service
Ancestry interpretation

Relative finding

Health & trait interpretation

Genotyping testing service
Ancestry interpretation

Relative finding

Variant information
database

Variant function analysis

Variant information
database

Genotyping testing service
Ancestry interpretation

Relative finding

Ancestry interpretation

Relative finding

Exome sequencing

Whole genome sequencing

Health & trait interpretation

Ancestry interpretation

Health & trait interpretation

Primary testing service
Exportable raw data

Over 1 million customers

Primary testing service
Exportable raw data

Over 2 million customers

Aggregated reports
Expert resource

Public domain
Accepts data import

Variant frequency
information

Share-alike license

Primary testing service
Accepts data import

Exportable raw data

Accepts data import

Primary testing service

Exportable raw data

Primary testing service

Exportable raw data

Data analysis software

(Continued)
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Table 4.1: (Continued)

Tools, products,

& resources Type(s) Notes
Online Mendelian — Gene information database — Curated summaries of
Inheritance in Man i literat
o . . . primary literature

(OMIM) Variant information

database
PubMed — Publications database — Search primary literature
Promethease — Health & trait interpretation — Accepts data import
SNPedia — Variant information — Crowdsourced

database

— Non-commercial license

Veritas Genetics — Whole genome sequencing — Primary testing service

— Health & trait interpretation — Exportable raw data
(added fee)

they are reporting upon. Thus, many individuals are interested in addi-
tional analyses of raw genetic data from primary providers.

There are a variety of third-party services and tools for analyzing
genetic data, which provide tools for ancestry analysis or health/trait
analysis (see Table 4.1). Services like FamilyTreeDNA and Gedmatch
accept third-party data for ancestry analysis, and enable relative find-
ing within their communities. Health and ancestry analyses are also
possible using third-party tools like Enlis, Interpretome, and Prometh-
ease. These tools often provide links to resources and databases con-
taining variant function predictions and reported effects (e.g. ClinVar,
ExAC, OMIM, SNPedia, PubMed).

Table 4.1 presents a selection of primary testing providers, as well
as third-party analysis services, tools, resources, and databases used
for exploring personal genomic information. For each of these we sum-
marize its main features.

The rest of this article lays the ground for future HCI research on
direct engagement of non-experts with personal genomics.
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Emerging Framework for HCI for Personal
Genomics

In this section, we present a framework for HCI research for personal
genomics. The framework provides a research agenda, which inves-
tigates the role of HCI methodology and interventions in personal
genomics. We center our framework on three themes — Understanding,
Informing, and Empowering users:

Understanding users — examining users’ motivations, needs, informa-
tion practices, and concerns in engaging with and sharing their personal
genomic information;

Informing users — investigating how variations in user interface design
affect users’ deliberation on their consent to genetic testing, their com-
prehension of genomic information, as well as their intentions to share
such information with others;

Empowering users — focusing on the design and development of inter-
active tools that empower users to engage with their personal genomic
information over time in applicable and meaningful ways.

For each theme we review the recent and current research, and highlight
open questions for future HCI research.

28
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5.1 Understanding users

Since the technology that enables lay people to interact with per-
sonal genomic information directly is relatively new, many questions
remain open regarding non-expert engagement with personal genomic
information.

For example, what motivates non-expert individuals to acquire per-
sonal genomic information? What concerns do they have about engag-
ing with personal genomics? What are their goals in exploring their
personal genomics? How do they learn from their personal genomic
information? Which tools do they use and how do users document and
organize their findings? How do they validate their findings? What kind
of information do they share and with whom?

Gaining insights into individuals’ motivations, needs, information
practices, and concerns of engaging with and sharing their personal
genomic information plays a vital role in the design of new inter-
active tools that empower non-experts to learn from their personal
genomic information. However, the importance of understanding per-
sonal genomic users goes beyond the development of new tools to
informing future policy about personal genomics as well as to envi-
sioning the future of personal informatics.

5.1.1 Current research on understanding users

Several studies have investigated the motivation of DTCGT users. In
these studies, curiosity was mentioned as the participants’ primary
motivation for undergoing genomic testing [Goldsmith et al., 2012].
Most participants wanted to learn more about themselves, were curious
about their genetic makeup, or wanted to learn about individual genetic
risk factors. Participants also stated that they would use information
gained from the test to take personal responsibility for their future
health [McGowan et al., 2010]. Other themes included fascination with
genealogy, contribution to research, and recreation [Goldsmith et al.,
2012]. Studies also identified several concerns among DTCGT users,
including privacy, as well as the nature of the results and their future
impact [Kuznetsov et al., 2015]. For example, users may develop anxiety
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surrounding the risk of particular conditions, the possibility of discrim-
ination from employers and insurance companies, or the possession of
sensitive and personal data. The Impact of Personal Genomics Study
[PGen, 2016] is a current large-scale longitudinal study that surveys
consumers of two U.S. DTCGT providers — 23andMe and Pathway
Genomics — to determine the characteristics of consumers, the psy-
chological, behavioral, and health impact of genetic testing, and the
ethical, legal, and social issues associated with DTCGT services.

Little empirical data exists about the attitudes and motivations
of people who have had their whole genome sequenced [Goldsmith
et al., 2012, Linderman et al., 2016], since a relatively a small num-
ber of users around the world have had their entire genome sequenced
and returned to them. Of the individuals that have access to their
whole genome information, a significant subset have been volunteers of
the Harvard Personal Genome Project (PGP). We established a design
partnership with the Harvard PGP and have collaborated closely with
its researchers and volunteers to study the information practices and
needs of personal genomics users. PGP volunteers can be categorized
as early adopters [Rogers, 2003] or extreme user group [Choe et al.,
2014, Troshynski et al., 2008]. They tend to have advanced education
and possess favorable attitudes toward science. Their motivations and
information practices might not be generalizable or applicable to the
broader population. However, in areas that evolve rapidly based on
technical and scientific innovations, the perspectives of early adopters
provide important insights, because they have used the existing tech-
nologies and have had the opportunity to identify challenges and poten-
tial solutions [Choe et al., 2014, Troshynski et al., 2008].

To better understand the needs and information practices of PGP
participants, we conducted a qualitative study with 63 participants
from the Harvard PGP volunteer community [Shaer and Nov, 2014].
Participants filled out an online questionnaire that consists of 10
open questions (see Shaer and Nov [2014]) regarding their motivation,
goals, and information practices, in addition to demographics ques-
tions. Although study participants were motivated by a diverse set of
goals, ranging from understanding traits, to identifying health risks,
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Figure 5.1: Five common information tasks of non-expert personal genomic users.

to learning about their ancestry, to contributing to science, they used
interactive tools to perform mostly the five common information tasks
listed in Figure 5.1. The study also identified high-level needs of non-
experts seeking to learn more from their personal genomic data infor-
mation. Figure 5.2 presents a summary of these needs.

From an HCI perspective, these findings can serve as a basis
toward the design of new interaction techniques and tools for personal
genomics. To that end, it is important to gain further and more nuanced
insight into how users engage with, and learn from, their annotated
personal genomic reports. For that reason, we conducted a second qual-
itative study of personal genomics users [Shaer et al., 2015]. We inter-
viewed and observed 36 PGP participants, who have had their whole
genome sequenced, as they explored their personal genomic data using
the GET-Evidence interactive genomic report [Block et al., 2012]. This
study deepened our understanding of the needs and practices of per-
sonal genomic users, highlighting that individuals are predominantly
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Figure 5.2: Needs of non-experts seeking to learn from their personal genomic data
information.

concerned with genetic variants that are well-established, pathogenic,
and have high clinical importance.

While these insights are important for the development of inter-
active tools and reports, important questions about user engagement
with personal genomics remain open.

5.1.2 Open questions for future research

In this section, we highlight two open questions for future HCI research
on understanding users:

1. Perceiving uncertainty and discrepancies: Although personal
genomic data are largely stable during a person’s lifetime, their
interpretation and implications might change over time as new
medical research exposes relationships between genes and health.
In order to accurately communicate the inherent uncertainty of
personal genomic interpretations, HCI research should investigate
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how users of personal genomics perceive uncertainty and discrep-
ancies between their personal genomic information, their expe-
riences, and their family history. Such investigations could draw
upon research the rich body of literature examining how lay indi-
viduals understand uncertainty in other domains (e.g. weather
forecasting), which we discuss in Section 4.

2. Motivation for curating and sharing information: While per-
sonal genomic information is personal, it is also shared among
families and community members. Curating and sharing find-
ings from a personal genomic report could motivate families
to seek the advice of healthcare providers, promote scientific
understanding of relationships between genes and traits, enable
biomedical research into rare conditions, and bring together com-
munities of shared origins or interests. Additional research is
required to understand how people curate personal genomic and
related information, what factors influence people to share per-
sonal genomic information, what information they share with oth-
ers, and with whom they share such information. Such research
could be informed by the increasing amount of literature on fam-
ily informatics [Colineau and Paris, 2011, Grimes et al., 2009,
Pina et al., 2017] and on engaging patients and their family care-
givers in perusal of patient-provided data and clinical data, e.g.
[Grimes et al., 2009, Colineau and Paris, 2011, Chung et al., 2016,
Woollen et al., 2016, Pina et al., 2017]

Qualitative HCI research methods including longitudinal semi-
structured studies [Blandford et al., 2016] have an essential role in
addressing these questions. However, when choosing a research method,
careful attention should be directed toward considering the ethical
implications of the study. Due to the sensitive nature of genetic test-
ing, researchers should consider a range of ethics and privacy issues
ranging from asking participants to share private information, to gath-
ering sensitive information from social media and discussion groups,
to presenting users with new interpretations of their personal genomic
information that could drastically impact their understanding of their
health risks, identities, and of their families.
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5.2 Informing users

The decreasing costs of obtaining personal biological data, coupled with
the proliferation of websites and digital devices for self-tracking and
testing, have resulted in a reduced barrier to entry for participation in
online biomedical research in general, and in genetic testing in partic-
ular, and have highlighted the importance of informed online consent
processes. Taken together, these factors require us to re-evaluate the
effectiveness and potential of digital, interactive consent in this new
context of enrolling in biomedical research.

From an HCI perspective, interactive consent poses several chal-
lenges and opportunities to informing users: whereas individuals par-
ticipating in biomedical research in general or in genetic testing in
particular were formerly able to engage with a professional in a face-
to-face dialogue, potential online research or DTCGT participants have
fewer opportunities to ask questions and express their concerns in real
time [Balestra et al., 2015]. Furthermore, presentation techniques and
design interventions may influence an individual’s decision to partici-
pate [Friedman et al., 2000, Das et al., 2015], raising concerns about
the voluntariness of participation. In response to such concerns, federal
agencies are drafting guidelines for electronic consent [FDA, 2015]. At
the same time, interactivity offers unique advantages to the consent-
seeking and deliberation process: through interactive consent forms,
consent seekers may provide additional on-demand information based
on participants’ interests; through careful use of feedback and user ana-
lytics, consent seekers may also be able to gain insights into the parts
of the consent forms that participants find more useful, more chal-
lenging, or requiring additional clarification. Yet another way in which
web-based interactive consent forms can help the consent-seeking and
deliberation process includes the use of social features, such as rat-
ings, recommendations, and annotations. Such features could enable
individuals deliberating on their consent decision to share information,
evaluate different perspectives, and ultimately explore the risks and
benefits of the research beyond the scope of one-on-one dialogue with
a research staff member.
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In addition to facilitating an informed consent process, HCI has
an important role in enhancing non-expert comprehension of personal
genomic reports, and in particular to help individuals make sense of
the uncertainty of personal genomic data and its implications.

5.2.1 Current research on informing users
5.2.1.1 Improving online consent processes

The decision to consent to participate in medical research is medi-
ated by two main factors: participants’ comprehension of the details of
the study, and their trust in the research organization [Kneipp et al.,
2009]. Recent studies on consent form design focus predominantly on
the impact of content structure, graphical enhancements, and multi-
media on comprehension [Dresden and Levitt, 2001, Dunn et al., 2002,
Murphy et al., 2007, Stiles et al., 2001].

To understand how social features can enhance online consent
forms, we studied the use of social annotations in personal genomic
research [Balestra et al., 2016a,b]. First, we explored the impact of
social annotation, embedded in online consent forms, on individuals’
informed consent beliefs and decisions. Participants were presented
with an online consent form for a personal genomics study, and were
randomly assigned to either a social annotation condition that exposed
them to previous users’ comments on-screen (Figure 5.3), or to a tra-
ditional consent form without annotation. We compared participants’
perceptions about their consent decision, their trust in the organiza-
tion seeking the consent, and their consent decision across conditions.
We found that while consent rates did not differ across conditions, on
average individuals exposed to social annotation felt that their decision
was more informed, and furthermore, that the effect of the exposure to
social annotation was stronger among users characterized by relatively
lower levels of prior privacy-preserving behaviors.

In a second study [Balestra et al., 2016b], we focused on the influ-
ence of annotations’ valence on participants’ perceptions and behaviors
surrounding online consent for biomedical research: participants were
presented with an online consent form for a personal genomics study
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that contained social annotations embedded in its margins. Individu-
als were randomly assigned to view the consent form with positive-,
negative-, or mixed-valence comments alongside the text of the con-
sent form. We compared participants’ understanding of the material
and perceptions of informedness, their trust in the organization seek-
ing the consent, and their consent across conditions. We found that
consent forms containing positive-valence annotations are likely to lead
participants to feel less informed and simultaneously more trusting of
the organization seeking consent. In certain cases where participants
spent little time considering the content of the consent form, partici-
pants exposed to positive-valence annotations were even more likely to
consent to the study.

5.2.1.2 Transforming personal genomic reports to a long-term
information partnership

Traditionally, informed consent is a one-time event in which a person
agrees to participating in research and is informed of what is known
to the science at that point in time. However, as medical research,
and information about the relationships between genetic and health
information develop, digital informed consent offer opportunities for
long-term information partnerships between scientists and users. In
such partnerships, the person consenting can be continuously informed
of new knowledge about risks and benefits emerging from research,
and the ensuing new interpretations of their genetic data. Further-
more, by combining the nature of genetic information as data-static
but interpretation-dynamic with design that incorporates social fea-
tures and curation, genetic data can be curated by the users or rel-
evant others (including healthcare professionals, family members, or
others with exposure to the user’s genetic data), such that emerg-
ing new research information is shared with the user based on their
genetic profile. Such approach turns a one-time consent event to an
ongoing informing mechanism which the user can enhance individually
and socially. It also, however, represents potential risks of people con-
senting to one thing (based on existing medical knowledge at the time
of consent) and being potentially exposed to information about other
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things (based on advances in research). This may, in some cases, be
more stressful or mentally taxing than these people had anticipated
at the time of consent. Mechanisms can be designed for such cases,
for example, by making the consent time-specific or with placing the
control of information sharing extent with the user.

5.2.1.3 Increasing comprehension of personal genomic reports

Existing research has focused on participants’ comprehension of anony-
mous sample personal genetic reports. Lachance et al. [2010] examined
the informational content, literacy demands, and usability of DTCGT
service websites. They found that websites vary widely, and most users
would struggle to use these resources effectively. The authors suggested
that future tools focus on distilling and prioritizing important informa-
tion while considering readability and usability elements. Other stud-
ies have looked more specifically at users’ comprehension of genomic
reports. Ostergren et al. [2015] assessed participants’ comprehension
of anonymized genomic reports and found that comprehension var-
ied widely according to demographic characteristics, numeracy and
genetic knowledge, and types and format of the genetic information
presented. They suggested that the presentation of genomic data be tai-
lored to the test type and to consumer characteristics. To investigate
the effect of different visualizations on consumers’ understanding of
personal genomic data, we conducted a comparative study, which indi-
cated an advantage to non-zoomable visualizations, with best results
(in terms of both objective comprehension and subjective preference)
from using bubble graphs [Shaer et al., 2015].

In contrast to the studies, which presented users with anonymized
genetic data, Kuznetsov et al. [2015] presented users with their own
23andMe data to understand how they make sense of and contextu-
alize their results, critique and evaluate the underlying research, and
consider the broader implications of genetic testing. They framed con-
sumers as members of biocitizen publics in which there is an empha-
sis on individuals’ engagement with the community and higher-order
learning processes [Airasian et al., 2001], rather than merely perceiving
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results and individually gathering information. The authors recom-
mend the development of platforms for aggregating hybrid knowledge
for creative reflection on professional science, and for supporting col-
laborations across communities.

5.2.1.4 Communicating uncertainty

The personal genomics context offers a form of uncertainty not
addressed by existing taxonomies and applications. In the genomics
context, unlike most personal informatics contexts, the full data set
is known and is mostly stable — the source of uncertainty is the
interpretation of the data, which depends on new scientific findings.
Furthermore, personal genomics requires the communication of multi-
dimensional uncertainty — uncertainty that emerges from the accumu-
lation of several levels of uncertainty that the user encounters. Consider
for example cases where known relationships between genetic charac-
teristics and medical conditions convey a probabilistic message (e.g.
that the carrier of a certain genetic variant has a 10% likelihood of
developing a certain medical condition). On top of that uncertainty,
consider cases where the data supporting this relationship between the
variant and the medical condition is not well-established empirically, or
that it is based on studies that have not been replicated. Such accumu-
lation of even two sources of uncertainty is highly complicated for most
non-expert users, and more research is needed in order to understand
how to convey such information to non-experts in understandable ways.
Karczewski et al. [2012] stress the importance of teaching the methods
of genetic risk calculations.

5.2.2 Open issues for future research

The following are some of key issues to be addressed by future HCI
research on informing users:

1. Enhancing the online consent process with social features: while
recent research indicates that adding social annotation to online
consent forms could potentially inform participants and improve
their deliberation processes, many research questions remain
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open. For example, what are the most effective ways to solicit
useful content for social annotation? How, whether, and to
what extent should the content contributed by non-expert users
through social annotation tools be curated and edited before is it
presented to readers of informed consent forms? If such curation
takes place, who should be in charge of it? To what extent should
the social intervention be based on explicit user choices — for
example, should the exposure to social annotation be based on
opt-in versus opt-out design defaults? What other social inter-
ventions can be considered for an interactive informed consent
form? And, finally, what are the ethical concerns associated with
interventions in consent forms, and what are the responsibilities
of the consent seekers in this respect?

. Personalized presentation and user choice: existing research sug-

gests that the presentation of genomic information be tailored to
the test type and to the characteristics of the user. However, more
research is required to understand what elements should be inter-
active and/or customized and in what ways. What are the best
practices for design interventions that are tailored, transparent,
and valuable to the user? How much autonomy should the user
receive to make sure they are well-informed, and to what extent
should design interventions be based on explicit user choices?

. Communication of multidimensional uncertainty: delivering per-

sonal genomic information to users requires the communication of
multidimensional uncertainty — that is, uncertainty that emerges
from the accumulation of several dimensions of uncertainty the
user encounters. Communicating such accumulating uncertainty
is not currently well addressed by existing taxonomies and tools,
and poses a challenge to researchers and practitioners. Open ques-
tions for researchers and practitioners include: How to best con-
struct effective representations of multidimensional uncertainty?
How should different levels of visual and statistical literacy be
served through interactive tools to facilitate multidimensional
uncertainty communication? And finally, how to evaluate users’
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comprehension of multidimensional uncertainty? These investiga-
tions could potentially draw upon the body of research on com-
municating uncertainty described in Section 4, as well as on the
proceedings of CHI 2017 workshop on Designing for Uncertainty
in HCI [Greis et al., 2017].

5.3 Empowering users

The applicability of personal genomic information to individuals, and
its evolving understanding based on new scientific discoveries, evoke
compelling HCI questions when considering digital tools that mediate
the interaction between the individual and their data: What are the
functional requirements for supporting meaningful engagement with
personal genomic information? How can we design tools which allow
users to explore and make sense of their personal genomic information?
How can we design tools that support long-term engagement and per-
sonal research? How can we empower users to contextualize and act
upon their genomic information?

Interaction with personal genomic data often begins by reviewing
a personalized genetic report [Shaer et al., 2015]. Thus, the design
of interactive reports for non-expert individuals that support sense-
making and exploration plays a vital role in empowering people to
learn from and engage with their personal genomic information. Self-
exploration tools should also enable non-experts to contextualize and
compare their personal genomic information with other individuals
(e.g. family members), ancestry information, and family medical his-
tory [Kuznetsov et al., 2015] as well as to share information with a doc-
tor, friends, family, or the public. Finally, since genetic research evolves
with the development of novel technologies, processes, and new scien-
tific findings, tools for non-experts should support long-term engage-
ment, allowing people to re-interpret their information in light of new
scientific findings as well as personal developments.

5.3.1 Current research on empowering users

Our studies with personal genomic users indicate that non-expert indi-
viduals mostly use the tools offered by their genetic data provider (e.g.
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23andMe, PGP, AncestryDNA, 2016, fTree) [Shaer et al., 2014, Shaer
and Nov, 2014]. However, tools offered by DTCGT companies pro-
vide interpretations that reflect the preferences and limitations of the
genetic testing company and are mostly not customizable by the indi-
vidual users. Typically, the results can only be generated and curated
by the DTCGT company. Also, since DTCGT tools may use propri-
etary algorithms, their genome analysis is not always transparent to the
user and the user may not understand how the analysis was done or be
able to replicate the results with other tools [Karczewski et al., 2012].
Many of our study participants [Shaer et al., 2014, Shaer and Nov, 2014]
have found the existing tools, both those offered by DTCGT providers
and other online tools, to be too complicated and overwhelming in
terms of the amount of information they present and their use of sci-
entific jargon.

To address these challenges, we presented a design case study of
a novel interactive tool, named GenomiX, which was developed using
a user-centered design process [Shaer et al., 2016]. It is important to
note that GenomiX does not provide new genome interpretations but
rather draws upon the interpretation provided by the Harvard PGP’s
GET-Evidence report. The requirements and design goals of GenomiX
draw upon findings from our previous research exploring users’ motives,
needs, and interaction patterns with genomic data [Shaer et al., 2015].

Drawing upon these findings, we defined the following goals for
an interactive tool for exploring personal genomic information: (G1)
Presenting a visual summary of personal genomic information that
highlights which variants are potentially concerning and require fur-
ther investigation; (G2) Communicating the level of certainty of the
scientific evidence associating a particular gene variant to health con-
ditions. Since the certainty of the evidence can change over time, the
report needs to provide up-to-date evidence. (G3) Relating variants to
medical conditions while conveying complex relations, which associate
multiple variants with a particular condition or the same variants with
multiple conditions. (G4) Allowing users to curate information about
variants, giving them a basis from which to conduct further research.

GenomiX is implemented as a web tool, presenting the user with
a visualization that provides an overview of their genetic variant data
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Figure 5.4: GenomiX: Gene Variant Report displaying the overview of a partici-
pant’s results.

(Figure 5.4). Gene variants are represented as bubbles that are plot-
ted between two axes: clinical importance (X axis), and certainty of
evidence (Y axis); the size, color, and placement of these bubbles com-
municate specific information about each variant. Individuals can sort
the data on the plot by either risk or rarity of the variant. Alterna-
tively, users can view a report organized by categories where variants
are sorted according to the anatomical system they might impact (see
Figure 5.5). Users can save information about particular gene variants
to a Notebook tab. GenomiX also offers contextual help regarding ter-
minology as well as a glossary.

In addition to an interactive visual gene variant report, GenomiX
offers Curator, a tool designed to help users curate personal genomic
information, make new connections, and engage with their personal
genomic information over time. Curator consists of two parts: a down-
loadable Google Chrome extension, which allows users to save web
pages, pdf files, videos, and images; and a Notebook, which displays
gene variants and web pages that a user has saved (Figure 5.6).



Full text available at: http://dx.doi.org/10.1561/1100000067
Emerging Framework for HCI for Personal Genomics

44

Report Notebook Glossary Instructions
Select report type: | Overview | Category Display size by: Risk | Rarity
Key Anatomical @ Blood @ Breathing @ Cancer @ Variant Information
SLC3A1-M467T X s
8 & ®
a recessive manner, which can
ead to kidney stones when
Drug Response € Genital & Urinary € Hearing & Vision € Heart & symptomatic. This variant is one
Circulatory @ of the most common cystinuria-

Filled vs. Hollow €)
Potentially Affected
Q carrier

Size by Risk €)

0000000

Less Risk More Risk

@

Mental Mouth, Liver
&Digestive €
Muscular, Skeletal. & Nervous System € Skin @ Other @
Connective Tissue €)

causing variants, and may be
‘somewhat milder than other
causal variants

Certainty of Evidence: Well-
established

Health Effect: Moderate
Impact: Pathogenic

Rarity:
0.00044099999999999993% of
people have two copies of this,
like you (021% allele frequency)
Risk: 50% - 100% increased risk
(complete or highly penetrant)

Patanans Canital am

Figure 5.5: GenomiX: Gene Variant Report displaying participant’s results sorted

by category.
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Figure 5.6: The Notebook tool, displaying gene variants and web pages that a user

has saved.
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To evaluate the usability and utility of GenomiX, we conducted
the first study of a new genome interpretation tool to date, in which
users viewed their own personal genomic data [Shaer et al., 2016]. Our
findings indicate that GenomiX offered its users a number of bene-
fits afforded by the tool’s design features: visually reducing complex-
ity improves users’ ability to prioritize gene variants, communicating
uncertainty helped users when interpreting genomic data and choosing
which variants to focus on, and color coding helped users to identify
information they overlooked in prior tool such as distinguishing pro-
tective or carrier variants.

While the design and evaluation of GenomiX offer insights into the
development of future interactive personal genomics exploration tools,
there are a number of key issues that should be considered in future
research about tools for empowering non-experts’ self-exploration of
personal genomics. Future research should also draw upon lessons from
a rich body of research on using genetic data to empower patients in
the context of clinical care [e.g., Gilbar, 2007, Rosas-Blum et al., 2007,
Berg et al., 2017]. Such lessons could be helpful in the design of novel
tools for personal genomics exploration

5.3.2 Open issues for future research

Here, we highlight three key issues for future HCI research on empow-
ering users:

1. Comparing and relating genomes: while existing tools present
users with their own ancestry and allow relatives to view which
segments of their DNA are shared (or not shared) between two
individuals, additional research is needed to enable users to
compare and relate genomes in order to understand trait- and
health-related information. Scientific methods to understand risk
in the context of genome-sharing among family members are
complex and are still evolving. Contextualizing genetic testing
results in respect to other family members or friends could play
an important role in understanding and acting upon personal
genomic information. However, many questions remain open.
What criteria for comparison are meaningful and informative for
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non-experts? How to visualize multiple genome comparison for
non-experts in an effective manner? And how to facilitate shar-
ing of information for comparison across individuals?

. Facilitating sharing: from a societal perspective, information

sharing is an important aspect of users’ engagement with per-
sonal genomic information. However, sharing such information
is rarely facilitated by existing tools, and is mostly limited to
exploring ancestry and to discovering new biological relatives.
Information sharing can be supported in a number of forms:

(1) Sharing personal genomic information: users can share their
genomic information with other users (e.g. family mem-
bers), with their healthcare provider, with research projects
such as Harvard’s PGP, or with commercial efforts such as
23andMe. In each one of these cases, users may choose to
share some parts of their information and withhold others;

(2) Sharing meta-information with social circles: this category
includes all information that is not the actual personal
genomic data, but rather related to it. The recipients of
the information are the user’s social circles, online and
offline. Examples of such meta-information sharing include:
the fact the user shared their information with a research
project, the user’s thoughts about genomic information and
the role they play and can play in modern medicine, and
things the user learned as a result of engaging with their
personal genomic information. The value of this type of
information-sharing stems from its social impact: sharing
such meta-information helps to increase awareness about
the opportunities and challenges associated with sharing
personal genomic information;

(3) Sharing interpretations, insights, and other relevant infor-
mation based on self and others’ personal genomic infor-
mation. Examples of such information sharing include new
scientific research findings related to personal genomic data
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(of self or others) along with explanations of how the new
research findings may be relevant to the genomic informa-
tion, and what other relevant information might be needed
as a next step in exploring it, or pointers for others who
shared their information about relevant online resources or
communities (e.g. online communities of people with certain
medical conditions).

In all of the cases above, in addition to understanding users’ needs
and concerns about sharing genomic information, it is important
to investigate which design and implementation features allow
for sharing while also supporting transparency regarding access,
storage, and usage, and ensuring users control the level of privacy
they prefer.

3. Fvaluation methods — Personal genomic data are personal, and
therefore more studies are needed in which participants are pre-
sented with their own data. Prior studies on user-facing genomics
tools mostly use fictional or anonymized data; that is, genomic
test results that do not belong to the participant. Thus, these
studies fail to incorporate the impact and meaning of the data
to the user whose data is reported. Also, existing studies tend
to use novice participants who are unfamiliar with their genomic
data to evaluate visualizations, thereby being unable to look at
participants’ evolving understanding of their genome, or how
well a proposed tool or platform provides new insights. Future
studies should further investigate how new tools allow users to
explore and learn from their own data. In addition, tools for self-
exploration of personal genomics have the potential to help users
make sense of their genomic data over time as the research that
links this data to health outcomes evolves, and as users’ personal
circumstances change. Longitudinal studies are needed to exam-
ine participants’ information needs and interactions over time and
to understand how the use of personal genomic tools changes and
how to support users over time.
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Broader Implications

Making interaction with personal genomic information more accessible
for non-experts, has broader implications for HCI researchers, practi-
tioners, policymakers, and society.

6.1 For HCI researchers

Personal genomics presents a unique challenge to HCI scholars and
practitioners: while many contributions to HCI and personal informat-
ics focus on novel ways to represent constantly-changing data, personal
genomics represents the opposite case: data is sampled only once and is
largely static over the user’s lifetime, but the interpretation of the data,
as well as its importance, can change dramatically over time, with new
medical research revealing hitherto unknown relations between genetic
characteristics on one hand and physical attributes or medical condi-
tions on the other. This combination of static information and dynamic
interpretation calls for new HCI approaches and tools that allow cap-
turing dynamically and constantly changing new knowledge about a
stable data set. Such new tools may include dynamic curation of infor-
mation related to genetic data, or adaptive decision support tools and

48
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visualization, which change based on incoming new medical research. A
related issue concerns the development of tools to facilitate sharing of
this unique information—interpretation combination: future tools will
need to facilitate sharing with relevant others (e.g. family members,
health providers, or scientists) not only personal genomic information,
but also its changing interpretations, which may require the atten-
tion — and in some cases action — of others. Finally, advances in HCI
research may contribute to better communication of multidimensional
uncertainty by exploring the potential use of interactive, customized,
and adaptive design.

6.2 For practitioners

HCI research can also contribute to the work of practitioners in areas
related to personal genomics by exploring what information users value
and what information they are likely to be confused by. By studying
information behavior in a personal genomics context, we can improve
the ways in which genetic findings are communicated to users in clinical
and non-clinical settings. Products and tools based on HCI research
may also underpin the development of an ecosystem of commercial
and non-commercial services based on added layers of information, and
on connecting people with relevant information, with relevant service
providers and with each other.

6.3 For society and policymakers

Better understanding and more effective engagement of users with their
personal genomic information can help increase genetic and health lit-
eracy among non-experts. Moreover, rich and effective engagement may
also lead to the further growth of burgeoning genomics-based citizen
science, in which members of the public contribute to professional
research projects as they collectively interpret and critique relevant
information [Kuznetsov et al., 2015]. The accumulation of personal
genomic data and analysis contributed by members of the public can
support the work of professional scientists in diverse areas such as
genetics, public health, and others.
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HCI work on personal genomics can also inform public discourse
about the relationship between people and their personal informa-
tion, and in addition, between people and entities who can benefit
from access to this personal information such as researchers, health-
care providers, commercial companies, and public health organizations.
As the scope of personal genomics grows and its effects on the public
become clearer, HCI work can inform regulators, policymakers, and
standard-setting institutions as they devise policies and regulations on
how personal genomics should be presented to the individuals (1) stati-
cally, (2) interactively, and (3) dynamically. Recent events in which the
FDA barred and then allowed personal genomics company 23andMe
to offer personal genomic health-related reports to its users [Pollack,
2015] exemplify some of the sensitivities and complexities involved in
how government can regulate the exposure of individuals to their per-
sonal genomic data, and how interpretation of such data can or should
be provided to non-experts.

Finally, a societal aspect of the growing availability of DTCGT
services is that their customer base tends to gravitate toward white
and well-educated users [Roberts and Ostergren, 2013]. It is there-
fore our role as researchers to increase awareness and understanding of
genetic information and its implications to populations that are under-
represented in this user base. It should be also noted, that at a societal
level, enabling wide-spread understanding of the commonalities — and
in particular, genealogical similarities — among people from different
ethnic backgrounds may contribute toward reducing racial categoriza-
tion and bias.
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