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ABSTRACT

As automated machine learning (AutoML) systems con-
tinue to progress in both sophistication and performance,
it becomes important to understand the ‘how’ and ‘why’ of
human-computer interaction (HCI) within these frameworks,
both current and expected. Such a discussion is necessary for
optimal system design, leveraging advanced data-processing
capabilities to support decision-making involving humans,
but it is also key to identifying the opportunities and risks
presented by ever-increasing levels of machine autonomy.
Within this context, we focus on the following questions:
(i) What does HCI currently look like for state-of-the-art
AutoML algorithms, especially during the stages of develop-
ment, deployment, and maintenance? (ii) Do the expecta-
tions of HCI within AutoML frameworks vary for different
types of users and stakeholders? (iii) How can HCI be man-
aged so that AutoML solutions acquire human trust and
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broad acceptance? (iv) As AutoML systems become more
autonomous and capable of learning from complex open-
ended environments, will the fundamental nature of HCI
evolve? To consider these questions, we project existing lit-
erature in HCI into the space of AutoML; this connection
has, to date, largely been unexplored. In so doing, we review
topics including user-interface design, human-bias mitiga-
tion, and trust in artificial intelligence (AI). Additionally, to
rigorously gauge the future of HCI, we contemplate how Au-
toML may manifest in effectively open-ended environments.
This discussion necessarily reviews projected developmental
pathways for AutoML, such as the incorporation of high-
level reasoning, although the focus remains on how and why
HCI may occur in such a framework rather than on any
implementational details. Ultimately, this review serves to
identify key research directions aimed at better facilitating
the roles and modes of human interactions with both current
and future AutoML systems.
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1
Introduction

Broad interest in machine learning (ML) has ebbed and flowed ever
since the 1950s, but recent years have arguably witnessed a new phase
in the history of the field: an unprecedented level of technological
uptake and engagement by the mainstream. From deepfakes for memes
to recommendation systems for commerce, ML has become a regular
fixture in broader society. Unsurprisingly though, this ongoing transition
from purely academic confines is not smooth; the general public does
not have the extensive expertise in data science required to fully exploit
the capabilities of ML.

The ideal solution for democratisation is to make the application of
ML optionally independent of human involvement. This is the primary
goal of automated/autonomous machine learning (AutoML/AutonoML),
an endeavour that, despite a rich multi-faceted history (Kedziora et al.,
2020), has only truly taken off within the last decade. Of course, ML
itself already involves automation, relying on computers mechanically
processing algorithms to build models from sample data. Thus, it is
essential to note that the meaning of AutoML has come to encom-
pass operations around and beyond fitting a specific model. Even then,
the definition of AutoML can be fuzzy in the literature. Some lean

3
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4 Introduction

towards user-centric commentary, describing AutoML by its goal of
empowering domain experts to effortlessly construct ML applications
without relying on data scientists, even with limited expertise in statis-
tics and ML (Yao et al., 2018; Zöller and Huber, 2021). Others focus
on the technical operations themselves, e.g. defining AutoML in terms
of mechanising ML pipeline construction, with tasks including data
preparation, feature engineering, hyperparameter optimisation, and
model selection (He et al., 2021). Notably, though, there has yet to be
a consensus on the limits of AutoML, with some, for instance, including
automated model deployment (Waring et al., 2020). In short, originally
popularised by significant optimisation advances applied narrowly to
model selection (Thornton et al., 2013; Swearingen et al., 2017; Salvador
et al., 2019), the scope of AutoML has since expanded to automating all
aspects of an ML application. The AutonoML term was even recently
coined to differentiate one-and-done ML solutions from next-generation
continuous learners that, in principle, could operate without human
intervention ad infinitum. Such is the promise of AutoML/AutonoML:
as long as there is a will and a way, it seems inevitable that ML systems
will move ever closer towards autonomy.

As of the early 2020s, much has been written specifically around
mechanisms and integrated systems for automating operations in both
general ML (Kedziora et al., 2020) and the fashionable subclass known
as deep learning (DL) (Dong et al., 2021); the topic of mechanising the
latter is abbreviated as AutoDL. These discussions have mostly taken
the notion of ‘automation’ to heart, wrestling with the challenges of how
computers can make high-level decisions on their own. However, one
important topic has been left underexplored: how do humans fit into the
picture? This is crucial to consider, as, no matter how far its capacity
for autonomous function evolves, the purpose of an AutoML system is
to support human decision-making. Thus, perhaps counterintuitively,
interactions cannot be an afterthought (Amershi et al., 2019).

Even with an academic focus on model accuracy and algorithmic
efficiency, systems cannot be considered optimal if they do not welcome
and make use of optional human input. Moreover, beyond academia,
the concept of ‘performant’ ML becomes much more complex and
user-centred (Scriven et al., 2022); the most promising algorithms and
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architectures will likely be ones that flexibly tailor outputs to satisfy a
very broad set of requirements. Then there is debate on just how much
autonomy ML systems should be given. While the nature of the human-
system relationship may eventually become one of collaboration (Wang
et al., 2019a), it is unlikely that humans will ever relinquish supervisory
oversight (Endsley, 2017). Many researchers have echoed similar opin-
ions, stating that human experience is indispensable and AI cannot be
expected to autonomously operate in a socially responsible way (Xin
et al., 2021). For this multitude of reasons, a holistic appreciation of
AutoML requires an associated study of human-computer interaction
(HCI).

This is a rich topic; the nature of human interactions with AutoML,
both in terms of roles and modes, has evolved and will continue to evolve
alongside developments in the field. Consider, as an analogy to those
developments, the history of artificial intelligence (AI) with respect to
the game of chess. In the late 1960s, Mac Hack became the first chess
program to play in human tournaments and even score a victory in
doing so (Greenblatt et al., 1967). Automated but heavily reliant on
domain knowledge – it incorporated approximately 50 expertise-based
heuristics – and hardly a threat to human dominance in chess, Mac
Hack can be likened to proto-AutoML model-recommendation systems
that were developed prior to the 2010s (Vanschoren, 2011; Serban et al.,
2013): novel and impressive for the time, but severely limited. Eventually
though, by 1997, the swell of computational resources and advances
in algorithmic techniques enabled a chess-playing computer known as
Deep Blue to defeat a reigning world champion (Campbell et al., 2002).
As with the new wave of hyperparameter-optimising AutoML systems
in the 2010s (Thornton et al., 2013; Swearingen et al., 2017; Salvador
et al., 2019), themselves becoming more and more capable of scaling
competition leaderboards (Erickson et al., 2020), Deep Blue heralded
an era where computers would be far more competent than humans at
performing a specific task.

Notably, even during the famed contest of 1997, Deep Blue was far
from autonomous, leveraging a human-prescribed database of openings
and endgame meta-knowledge, while also being manually adapted by
grandmasters between games. Only in 2017, with the initial release of
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6 Introduction

AlphaZero (Zhang and Yu, 2020), has human input almost completely
been removed, with an AI system autonomously learning to dominate
humans in chess via self-play. In fact, the newest generation of chess-
based AI has started to shift the roles of humans from mentors to
students, with, for instance, an AI propensity for ‘h-pawn thrusts’
giving high-level players pause for thought (Miller et al., 2020). The
field of AutoML has not yet reached the same level of autonomy1, but
it is nonetheless worth asking: is this the state of interactions to plan
for in the future? Will AutoML eventually produce more insight on how
to solve an ML task than it currently receives?
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Figure 1.1: General schematic for a machine learning (ML) workflow, i.e. the
operations involved in producing and maintaining an ML model for an ML application.

A comprehensive overview of HCI in AutoML, both current and
prospective, needs to be carefully structured. For instance, human
involvement in ML applications can be partitioned into two categories:
productive and consumptive. While the latter refers to how end-users
engage with and benefit from an ML model, the former relates to how
such a model comes about. These ‘productive’ practices can be codified
in many ways into an ‘ML workflow’ (Chapman et al., 2000; Studer
et al., 2021), but one particular representation (Kedziora et al., 2020;
Dong et al., 2021; Scriven et al., 2022) is schematised in Figure 1.1.

1The AlphaZero approach is shared by AutoML systems such as AlphaD3M (Drori
et al., 2018), but, for the purpose of the chess analogy, the two are not equivalent;
automation in chess is significantly more advanced than automation across an entire
ML application.
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Within the depiction of an ML workflow, it is clear that there are
several phases of operations involved in developing, deploying and main-
taining an ML model. Of these, the model development stage receives
the most focus in academic AutoML research, especially in the case
of DL and neural architecture search (NAS) (Dong et al., 2021), but
there have been numerous automation efforts applied to the rest of an
archetypal ML workflow. In fact, the capacity to continuously monitor
performance and adapt to dynamic changes in data environments has
previously been highlighted as a key prerequisite for the transition be-
tween AutoML and AutonoML (Kedziora et al., 2020). Relatedly, there
exist many theoretical proposals for supporting online learning (Laird
and Mohan, 2018), and initial experimental research towards mak-
ing AutoML systems ‘persistent’ has recently been undertaken within
academia (Bakirov et al., 2021; Celik and Vanschoren, 2021). Meanwhile,
in industry, the emerging trend of ‘MLOps’ reflects the importance of
automated deployment to real-world demands (Scriven et al., 2022).
In essence, any developers interested in engineering a comprehensive
AutoML/AutonoML system must understand the idiosyncrasies of each
and every workflow phase, e.g. the associated formats of human in-
puts/guidance, the minimal requirements for baseline operations, the
possible opportunities for additional human-assisted learning, and so
on.

Alternatively, rather than partitioning HCI in AutoML by when an
interaction occurs, it is sometimes more informative to consider who
is undertaking the interaction. This perspective is particularly natural
in commerce and industry (Scriven et al., 2022), where, beyond the
end-users that consume the outputs of an ML model, there are typically
numerous stakeholders linked to the production of a model. These may
include technicians in the form of data scientists or software develop-
ers, business staff in the form of project managers or domain experts,
regulatory groups in the form of third-party auditors or government
agencies, etc.

Importantly, the obligations and interests of different stakeholders
are usually not mappable to individual stages within the ML workflow
depicted in Figure 1.1. Moreover, the modes of their interactions may
also vary substantially. Some roles will demand fine control over AutoML
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8 Introduction

processes, while others will simply require an entry point for inputs.
Some roles will desire a window into the mechanisms involved, while
others will only want to be alerted if things go wrong. Whatever the
case may be, these requirements must be considered at the fundamental
level of algorithm and architecture. It is not optimal to focus solely on
predictor accuracy and efficiency during system design, only to service
any remaining real-world expectations with a hasty patch-up.

Crucially, it is worth emphasising that the concept of a ‘user’ is
intrinsic to the stakeholder view of AutoML. This may seem like an
unnecessary distraction to those that are solely interested in improving
the statistical theories underlying ML algorithms, but that attitude
ignores the greater ecosystem in which ML operates: human decision-
making. For instance, humans may be willing to tolerate disliking 40%
of AI-recommended music, whereas a 20% false-positive rate for AI-
recommended convictions is arguably abysmal. Simply put, human
context matters more than any agnostic accuracy metric. It follows then
that successfully translating ML model performance into real-world
outcomes is contingent on a set of engagement-related requirements
(Arrieta et al., 2020; Shin, 2021; Drozdal et al., 2020; Schmidt and
Biessmann, 2019; Ehsan et al., 2021), which we will bundle here under
the title of ‘user experience’ (UX). This includes topics that have recently
diffused into academic discussions around ML and AutoML, such as
accessibility, transparency, fairness, reliability, and so on (Xin et al.,
2021).

Accordingly, the concept of a user interface (UI) – the implemen-
tation need not be monolithic – becomes particularly important to
AutoML within the stakeholder perspective, as this is where UX can
most directly be managed. Indeed, designing intelligent UIs is crit-
ical for supporting human-guided AutoML (Gil et al., 2019; Lee et
al., 2019a), where a technical user might, as an ideal, tweak problem
settings, explore data characteristics, limit model search spaces, etc.
These interactions may also be constrained or facilitated by the manner
in which they occur, e.g. via touch-screen, voice commands, gesture
recognition, or even brain signals (Xing-Yu et al., 2013). In short, the
field of AutoML would be well served by greater discussions around the
concept of interfacing so that, beyond simply enabling the control of
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ML operations, users can both inject domain knowledge and extract
comprehensible information with ease.

Turning to factors that influence UX, explainability is high up on
the list. This is especially a challenge for AutoML, as the core principle
of automation is to decouple humans from certain operations. It may
seem wasteful then, if not counterproductive, to spend research effort in
making those processes transparent, consequently encouraging humans
to reinvolve themselves. Sure enough, many current AutoML tools are
staunchly black-box systems (Xin et al., 2021), veiling how ML models
are built and how predictive/prescriptive outputs are generated. But
herein lies the nuance; the aim of AutoML is to remove the necessity
for human engagement, not the option. Thus, technical obscuration
actually impedes ML performance if users cannot understand how to
properly insert domain knowledge that would otherwise be beneficial
to an ML task (Liu et al., 2017). This is especially a drawback at the
current point in time, because human-in-the-loop learning is still often
more advantageous than machine-centric ML (Tam et al., 2016).

Regardless, even if AutoML systems were to be completely au-
tonomous, their innards untouched by humans, explainability is also
necessary to promote trust (Marcus and Davis, 2019). Surveys indi-
cate data scientists tend to be sceptical of ML models provided by
AutoML tools if there are no mechanisms for transparency and un-
derstandability (Drozdal et al., 2020). Similarly, end-users only follow
ML recommendations if the system can show the reasoning behind
them (Van der Waa et al., 2021). This reticence by people to use re-
sults they cannot understand or explain can be frustrating for simple
business applications, but it is completely warranted in high-stakes
contexts (Rudin, 2019), including medical diagnosis, financial invest-
ment and criminal justice. To do otherwise could be disastrous. For
example, adverse outcomes have been linked to the COMPAS recidivism
prediction model (Dieterich et al., 2016), the BreezoMeter real-time air-
quality prediction model used by Google during the California wildfires
in 2018 (McGough, 2018), and black-box medical diagnosis models in
general (Duran and Jongsma, 2021).

Another factor that affects UX, even and especially if stakeholders
are not directly aware that they are ‘using’ the results of ML, is fairness.
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This socially conscious requirement has recently been taken up as an
important issue by academic research (Zarsky, 2016; Caton and Haas,
2020; Mehrabi et al., 2021), indicating just how far ML has embedded
itself into the mainstream, and recognises that predictive/prescriptive
accuracy and error may disproportionately affect different people in
different ways. Now, granted, there have been efforts towards automat-
ing mechanisms for discovering and preventing discrimination in ML
models (Hajian et al., 2016), but the challenge is that there are many
possible technical definitions for fairness, often orthogonal and some-
times contradictory (Verma and Rubin, 2018; Saxena et al., 2019). Once
again, human context matters. So, it is an open question as to how
human oversight can best be integrated within an AutoML system,
enforcing ethical requirements upon a mechanised process.

Of course, while every ML algorithm applies its own assumptions,
many ‘unfair’ biases are often sourced from biological neurons, i.e. hu-
man brains. These can be injected into learning systems via data and
knowledge, manifesting in both information content and sampling. As
a result, human cognitive biases that are internalised can lead to a
deterioration in model reliability, and there are many high-profile ex-
amples of this occurring (Hunt, 2016; Zemcik, 2021). The severity of
these impacts can also vary depending on context. Healthcare is one
example of a high-stakes environment, where cognitive biases in clinical
practice can have a strong influence on medical outcomes (Saposnik
et al., 2016; Preisz, 2019). Indeed, similar flaws in predictive systems
have been shown to hinder social minorities from receiving extra care
services (Obermeyer et al., 2019). Accordingly, there is an imperative
to more thoroughly consider the nature and implementation of bias
mitigation strategies within AutoML.

Fundamentally, the point of all this discussion is that, given a
suitable conceptual framework, such as the dual workflow/stakeholder
perspective of ML operations, it is possible to engage with many HCI-
related issues that, unaddressed, will impede the heretofore surging
pace of progress in AutoML. Moreover, this kind of systematic approach
does not just clarify the current state of HCI in AutoML; it provides
a lens through which the future of this trend in ML can be forecasted.
This does not mean speculating on detailed implementations of HCI-
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related mechanisms, but rather understanding the projected evolution of
human-system interactions, particularly as algorithms and architectures
become better at their job. Thus, the aforementioned chess analogy
remains useful in illustrating this progression as AutoML systems shift
further along the spectrum of autonomy (Simmler and Frischknecht,
2021).

However, it is still valuable to conjecture just a little bit further.
AlphaGo (Silver et al., 2016) and AlphaZero (Silver et al., 2018) are
extremely competent at their respective games, but they remain con-
strained within particular environments. An equivalent AutoML system
would essentially be autonomous for every phase of the ML workflow
in Figure 1.1 except for one holdout: problem formulation and context
understanding. Such a constraint is not unexpected, as this phase is
likely to be the last bastion of necessary human involvement in ML.
Unfortunately, it does stand in the way of numerous AI applications.
For instance, there exists plenty of research and development in the
field of autonomous vehicles (Hawkins, 2018; Lechner et al., 2020), yet
the challenge of operating in unpredictable and effectively boundless
driving environments remains, to date, daunting (Harel et al., 2020).
Nonetheless, without delving into the domain of artificial general in-
telligence, these constraints will eventually relax. The novel MuZero
system (Schrittwieser et al., 2020) is already emblematic of an emerging
reinforcement-learning approach that can be applied agnostically to a
variety of games with diverse rules, autonomously building competent
models from first principles. In theory, cognitive models may eventually
supercharge this process even further, enabling ML systems to efficiently
transfer knowledge from one problem to another by actually under-
standing context, rather than by outright ignoring it. So, as AutoML
truly becomes AutonoML, and then begins to relax into open-world
learning: will human-system interactions change yet again?

As is evident by now, there are many important issues to consider
in the overlap between AutoML and HCI. This review addresses these
topics, marking the final part in a series of monographs dedicated to a
systematic and conceptual overview of AutoML (Kedziora et al., 2020;
Dong et al., 2021; Scriven et al., 2022). Specifically, with the series
having previously focussed on how computers may perform ML/DL
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12 Introduction

in the absence of humans (Kedziora et al., 2020; Dong et al., 2021),
this work aims to recontextualise AutoML/AutonoML back within the
ecosystem of human decision-making. In fact, because ML does not
operate in a vacuum within the real world, some organically arising
consequences of this interlinkage are already captured by the previous
technological survey in the series (Scriven et al., 2022). This review,
however, dives much deeper into the fundamentals of HCI in AutoML,
driven by the following set of questions:

• What does HCI currently look like for state-of-the-art AutoML al-
gorithms, especially during the stages of development, deployment,
and maintenance?

• Do the expectations of HCI within AutoML frameworks vary for
different types of users and stakeholders?

• How can HCI be managed so that AutoML solutions acquire
human trust and broad acceptance?

• As AutoML systems become more autonomous and capable of
learning from complex open-ended environments, will the funda-
mental nature of HCI evolve?

To best grapple with these questions, the rest of this monograph
is structured as follows. Section 2 examines HCI and state-of-the-art
AutoML as of the early 2020s. It does so with respect to the work-
flow/stakeholder perspectives of AutoML, after these are first system-
atised. Modern approaches to UIs and current concerns around UX,
e.g. in terms of explainability and fairness, are also surveyed. Section 3
then extrapolates progress in AutoML to where associated systems
are effectively autonomous in all high-level ML operations, excluding
problem formulation and context understanding. The evolution of HCI
with respect to genuine high-performance AutonoML, albeit restricted
to constrained environments, is considered. Section 4 follows by pushing
this limit, relaxing restrictions and considering ML within open-ended
environments. To anchor such a scenario, modern theories for incorpo-
rating high-level ‘reasoning’ in ML systems are surveyed and debated.
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Subsequently, changes to the nature of HCI with respect to these up-
graded forms of AutonoML systems are theorised upon. A synthesising
discussion is then presented in Section 5, identifying existing issues
and potential research directions that may hinder or facilitate the suc-
cessful interplay of HCI and AutoML, both now and in the future.
Finally, Section 6 concludes this review, summarising key findings and
perspectives around the roles and modes of human interactions with
AutoML/AutonoML systems.
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