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ABSTRACT

The human brain – which we consider to be the prototypal
biological computer – in its current incarnation is the result
of more than a billion years of evolution. Its main functions
have always been to regulate the internal milieu and to
help the organism/being to survive and reproduce. With
growing complexity, the brain has adopted a number of
design principles that serve to maximize its efficiency in
performing a broad range of tasks. The physical computer,
on the other hand, has had only 200 years or so to evolve, and
its perceived purpose is considerably different and far more
constrained – that is, to solve a set of mathematical functions.
This picture is rapidly changing however. One may argue
that the functions of brains and computers are converging.
This transition comes at a critical time when the roadmap for
physical computing is becoming murky after a long period
of exponential growth. Hence the existential questions arise
if the underlaying design principles may converge or cross-
breed, or if the different mechanisms (physics versus biology)
will always translate into radically different solutions.

Jan M. Rabaey (2022), “Of Brains and Computers”, Foundations and Trends® in
Integrated Circuits and Systems: Vol. 2, No. 1–2, pp 1–192. DOI: 10.1561/3500000006.
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1
Introduction

After many decades of phenomenal growth in both complexity and per-
formance, the continuation of the pervasive Von-Neumann computing
paradigm [274] is being challenged at every level – from the applica-
tion and programming models all the way down to the architecture,
circuit and technology layers. In fact, we are at the confluence of three
simultaneous transitions. First, the exponential growth in complexity
conveniently offered by technology scaling and Moore’s Law, while
surely continuing for another decade, is progressing at a slowing rate
with a reduced return on investment, as foreseen by Gordon Moore in
his ISSCC keynote address in 2003 [175]. A most significant outcome
of this is that the energy cost of doing a computation is ceasing to
scale accordingly. At the same time, the nature of computing itself is
being transformed before our very eyes. Rather than using algorith-
mic approaches to tackle hard problems or to model complex systems,
computers of today are being programmed by observing and absorb-
ing large/huge data sets, adopting a machine-learning model. While
instruction-based compute systems combined with massive parallelism
have helped to scale machine-learning engines to impressive levels, these
approaches again come at a huge energy cost, hampering their capability

2
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Figure 1.1: Projected growth in worldwide compute needs (in Zillions of Operations
per Second) and the required energy. (Adopted from [300]).

to scale to ever larger or complex problems. A third transformation is
the incredible pervasiveness of computation. While many computational
tasks are performed in centralized compute/data facilities (the “Cloud”),
computing is progressively diffusing into the physical world around us
and even onto/into us or our own human body (“the Extreme Edge”),
putting extraordinary demands on form factor and again energy budget
[197].

The combined impact of all these factors is quite severe, as is
beautifully captured by the graphs of Figure 1.1, which plot the projected
growth in worldwide computation [300]. It shows how computational
growth may be stunted by an emerging energy wall, that is the total
energy projected to be available to humankind.

These observations force us to think about alternative computational
paradigms and platforms that may help extend computational growth
into the far future by providing vastly improved energy efficiency. This
need equally holds for the “Cloud”, the “Extreme Edge”, and everything
in between. A number of candidate solutions come to mind: quantum
[181] and cryogenic [130] computing on one end, and organic/molecular
computing [84] and synthetic biology [98] on the opposite end of the
spectrum. Any one of these makes a legitimate case, but is not the focus
of this monograph.

Full text available at: http://dx.doi.org/10.1561/3500000006



4 Introduction

Rather we are exploring how insights in the operation of the human
brain, the prototypal biological computer, can help foster a new genera-
tion of physical computational engines with vastly improved efficiency.
Over a span of hundreds of thousands of years, the brain has emerged,
evolved and adapted to deal with evermore complex tasks. To do so,
it has embraced a number of design principles that serve to maximize
its efficiency while performing a broad range of tasks. And extremely
successfully so, to say the least. Consuming only 20 W on average,
the brain performs tasks that either require orders of magnitude more
power, or are simply not possible on the computers of today.

Of course, this has not gone unnoticed. As early as the mid-1940s,
researchers including McCullough and Pitts, inspired by biological neural
nets that constitute animal brains, started to explore how to build
“artificial neural networks” (ANNs or NNs in short) [163], ultimately
leading to the following understanding:

An ANN is based on a collection of connected units or nodes
called artificial neurons, which loosely model the neurons in
a biological brain. Each connection, like the synapses in a
biological brain, can transmit a signal to other neurons. An
artificial neuron receives a signal then processes it and can
signal neurons connected to it. The “signal” at a connection
is a real number, and the output of each neuron is computed
by some non-linear function of the sum of its inputs. The
connections are called edges. Neurons and edges typically
have a weight that adjusts as learning proceeds. [20]

While this model in itself is simple enough, it took decades to turn
it into useful paradigm, and it required contributions from a great
many researchers to bring the field to where it is today. These include
the structure, topology and dimension of the networks, the numbers
of layers, and the mechanisms for learning (that is, programming the
weights). While the initial results were exciting as harbingers of a
new paradigm, they were mediocre in scale and complexity at best. It
was not until the advent of CMOS technology and VLSI (Very Large
Scale Integration) [165] in the mid 1980s, with its exponential growth in

Full text available at: http://dx.doi.org/10.1561/3500000006
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complexity, that artificial neural networks gave a semblance of becoming
practical. Today’s networks, buoyed by the availability of specialized
high-performance processors such as the nVidia GPU [93] and the Google
TPU [264], have risen to unprecedented levels of complexity solving really
hard problems that had escaped traditional (algorithmic) computers
so far. This is best illustrated by the chart of Figure 1.2. It shows how
the computational complexity of the leading ANN flavor of the day
increased by a factor of 300,000 between 2012 and 2018, an impressive
growth factor of 8.2/year! The state-of-the-art game-playing AlphaZero
network [240] consists of many tens of layers, contains hundreds of
thousands of nodes, and hundreds of millions of weights. This amazing
performance comes at a severe energy/power cost: During inference
(playing), it uses only 4 TPUS and consumes around 1 kW. However,
for training (learning), it employs 5000 TPUs for about 40 days, which
translates into a total energy cost of around 4.5 TJ (= 1012 J) [168].
This is equivalent to powering 1400 houses for one month (assuming a
power consumption of 900 kWh/month for an average home).

Clearly, further scaling of this approach is problematic unless ways
are found to make computation more energy-efficient. As we observed
earlier, technology scaling on itself may yield relatively little over the
long term. An alternative approach is to delve deeper into the operation
of the brain, identifying and exploiting the mechanisms that make it so
efficient.

As an example, consider the way how data is represented. All ANN
engines mentioned in the previous section represent data in a digital
format. This is in contrast with the brain, where data is represented
as spiking events and processing in the neuron is mostly analog. This
observation inspired Carver Mead at CalTech (among others) to explore
the realization of neurons using analog CMOS circuits, an approach he
called “neuromorphic” [164]. In recent times, the term neuromorphic
has been used to describe analog, digital, mixed-mode analog/digital
VLSI, and software systems that implement models of neural systems
for perception, motor control, or multisensory integration [183]. The
original target of these neuromorphic systems was to mimic human
sensory capabilities such as auditory or vision processing, but the focus
has expanded considerably since. Applications now include navigation
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6 Introduction

Figure 1.2: Advances in ANNs and their computational requirements (Adopted from
[6]). A petaflop/s-day (pfs-day) consists of performing 1015 neural net operations per
second for one day, or a total of about 1020 operations. This compute-time product
serves as a mental convenience, similar to kWh for energy.

and robot control. On an even larger scale, neuromorphic systems have
been conceived leading to systems that encompass many millions of
neurons. The allure of the neuromorphic approach is that it opens the
door for realizations that are potentially a lot more efficient by using
innovative architecture, circuit and device concepts. At the same time,
formidable hurdles towards scalability, programmability and robustness
need be overcome.

Neuromorphic systems are just one possible form of cross-fertilization
between biological and physical computing. Other neural concepts at
different levels of abstraction can help inspire us to rethink how to
efficiently perform a number of meaningful tasks and functions. This
leads to the topic of this monograph. Our goal is to review some of the
insights arising from both computational neuroscience and computer
engineering, and evaluate how these could combine to help us build a
next generation of “computing” systems – systems that are evolutionary;
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adapt to the task at hand and changes in the environment; are close to
optimally efficient; and inherently robust and resilient. To create insights
and identify opportunities, we first put organic (neural) and physical
computing face-to-face, and compare how they arose (Section 2), how
they differ right now with respect to a number of metrics such as
computational and power density (Section 3), and how these metrics
may change over the future decades (Section 4). A similar analysis is
performed at the architectural/computational model level (Section 5).
While doing so, we establish some ground truths in terms of obtainable
performance, bandwidth and power/energy efficiency. Moving forward,
a number of neural design principles that may translate into design
guidelines for future computers are identified (Section 6). On close
examination of these and other observations, it becomes apparent that
cross-fertilization between the domains is already happening at multi-
ple levels, albeit in an incremental way (Section 7). The monograph
completes with perspectives on where brain-inspired computing may
lead us (Section 8), some speculative bets (Section 9), and a number of
forward-looking reflections (Section 9.1).

Before diving into the details, it is important to outline what this
monograph does not attempt to address. Throughout the discourse
or organic versus digital computing, one compelling question keeps
resurfacing: if and when will it be possible to build a computer with the
same computational density as the human brain at a power density that
is equivalent or smaller. Many attempts have been and are being made to
address this question. Kurt Kurzweil in his blockbuster book titled “The
Singularity is Near: When Humans Transcend Technology” estimates the
time it will take for computational capacity, on an exponential growth
path, to rival the raw computing power of the brain [142]. Based on an
estimation of the computational capacity of the brain, he estimated that
$1000 will buy computer power equal to a single brain “by around 2020”
(!). As we show in this monograph, we are not at that point just yet. Even
so, Kurzweil identified a number of important metrics and establishes
clear roadmaps on how to potentially get there. He rightly points out
that creating true artificial intelligence (AI) requires more than raw
computational capacity, and requires us to first understand human
intelligence. Without a question, neuroscience is making steady progress
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8 Introduction

towards that understanding. A broad variety of imaging techniques
(such as fMRI, PET, optogenetics, etc.) have emerged that allow us to
peer into the brain, reverse engineer the circuitry and the network, map
functionality, and study its dynamics with increasing space and time
resolution. [160] presents a great overview of the different mechanism
currently in use, under development or under consideration.

Notwithstanding all this progress, a full understanding of the compu-
tational principles and models of the brain is far from within reach, and
making educated statements of brain-computer equivalence is premature.
Hence, we restrict ourselves in this text to a face-to-face study of the
underlaying fabrics (devices, circuits, architectures and models) of phys-
ical and biological computers in our quest to derive universal principles
and concepts for a future generation of energy-efficient computers.
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