
Reliable Analog In-Memory
Computing with Crossbars:

Memristors for Analog
Neural Computing

Full text available at: http://dx.doi.org/10.1561/3500000018

Other titles in Foundations and Trends® in Integrated Circuits and
Systems

Towards Scalable Quantum Sensors: Interface Electronics for Quantum
Sensors
Michal Kern, Khubaib Khan, Philipp Hengel and Jens Anders
ISBN: 978-1-63828-490-1

QED and Symbolic QED: Dramatic Improvements in Pre-Silicon Verifi-
cation and Post-Silicon Validation
Keerthikumara Devarajegowda, Florian Lonsing, Mohammad R. Fadi-
heh, Saranyu Chattopadhyay, David Lin, Srinivas Shashank Nuthakki,
Eshan Singh, Clark Barrett, Wolfgang Ecker, Wolfgang Kunz, Yanjing
Li, Dominik Stoffel and Subhasish Mitra
ISBN: 978-1-63828-998-2

Energy-Efficient Time-Domain Computation for Edge Devices: Chal-
lenges and Prospects
Hamza Al Maharmeh, Mohammed Ismail and Mohammad Alhawari
ISBN: 978-1-63828-356-0

Recent Advances in Testing Techniques for AI Hardware Accelerators
Arjun Chaudhuri, Ching-Yuan Chen and Krishnendu Chakrabarty
ISBN: 978-1-63828-240-2

Systematic Design of Analog CMOS Circuits with Lookup Tables
Paul G. A. Jespers
ISBN: 978-1-63828-194-8

Of Brains and Computers
Jan M. Rabaey
ISBN: 978-1-63828-120-7

Full text available at: http://dx.doi.org/10.1561/3500000018

Reliable Analog In-Memory
Computing with Crossbars:

Memristors for Analog Neural
Computing

Alex James
Digital University Kerala

apj@ieee.org

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/3500000018

Foundations and Trends® in Integrated Circuits and
Systems

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

A. James. Reliable Analog In-Memory Computing with Crossbars: Memristors for
Analog Neural Computing. Foundations and Trends® in Integrated Circuits and
Systems, vol. 4, no. 1, pp. 1–114, 2025.

ISBN: 978-1-63828-563-2
© 2025 A. James

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise,
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment
has been arranged. Authorization does not extend to other kinds of copying, such as that for
general distribution, for advertising or promotional purposes, for creating new collective works, or
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to now
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail:
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/3500000018

Foundations and Trends® in Integrated Circuits
and Systems

Volume 4, Issue 1, 2025
Editorial Board

Editor-in-Chief
Georges Gielen
KU Leuven, Belgium

Editors

Alison Burdett
Sensium Healthcare, UK

Malgorzata Chrzanowska-Jeske
Portland State University, USA

Paulo Diniz
UFRJ, Brazil

Peter Kennedy
University College Dublin, Ireland

Maciej Ogorzalek
Jagiellonian University, Poland

Jan van der Spiegel
University of Pennsylvania, USA

Ljiljana Trajkovic
Simon Fraser University, USA

Full text available at: http://dx.doi.org/10.1561/3500000018

Editorial Scope
Foundations and Trends® in Integrated Circuits and Systems survey and
tutorial articles in the following topics:

• Analog, digital and mixed-signal circuits and systems

• RF and mm-wave integrated circuits and systems

• Wireless and wireline communication circuits and systems

• Data converters and frequency generation

• Power electronics and power management circuits

• Biomedical circuits and systems

• Sensor and imager circuits and cyber physical systems

• Security and resilient circuits and systems

• Circuits and systems in emerging non-CMOS technologies

• Circuit theory, modeling, analysis and design methods

Information for Librarians

Foundations and Trends® in Integrated Circuits and Systems, 2025,
Volume 4, 4 issues. ISSN paper version 2693-9347. ISSN online version
2693-9355. Also available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/3500000018

Contents

I Memristive Circuits and Arrays 3

1 Introduction 4

2 Bio-inspiration to Memristors 9
2.1 Generalized Memristor State Equations 9
2.2 System Behavior of a Memristor 10
2.3 Comparison Between Memristor and Biological Neuron . . 12
2.4 Membrane Potential Dynamics 13
2.5 Comparison Between HP Memristors and Biological Neurons 14

3 Memristor Models 16
3.1 Strukov’s Linear Drift (HP Memristor) Model 16
3.2 Joglekar’s Window Function Model 17
3.3 Biolek’s Window Function Model 17
3.4 Simmons Tunnel Barrier (Pickett) Model 18
3.5 Yakopcic Model (Threshold Adapted Empirical Model) . . 19
3.6 VTEAM Model (Voltage Threshold Adaptive Memristor) . 19
3.7 Energy-efficient Computation Using Memristors 20

Full text available at: http://dx.doi.org/10.1561/3500000018

4 Tutorial on Memristor Crossbar with Open-source Skywater
PDK 22
4.1 Installation Instructions 23
4.2 Integrating ReRAM with Xschem 26
4.3 Layout of ReRAM . 27
4.4 Crossbar Array . 29
4.5 Beyond Crossbar . 30

II Memristor Variability 34

5 Variability in Crossbars 35
5.1 Variability in Memristor Devices 36
5.2 Example of Variability with a HP Memristor Model 38
5.3 Variability in Memristor Crossbar Arrays 40
5.4 Variability Compensation 49
5.5 Tools for Hardware-software Co-design 53

6 Mitigating Variability with Super-resolution and
Three-dimensional Crossbars 59
6.1 Super-resolution in Memristor Crossbar 59
6.2 Modular and Three-dimensional Crossbar Array Architectures 61
6.3 Star Memristor Nodes . 64
6.4 Bridge Memristor Super-resolution Crossbars 71

III Applications 78

7 Making Use of Memristive Variability with Energy-Efficient
Echo State Networks 79
7.1 Reservoir Computing and Echo State Networks 80
7.2 Example: Predicting a Sine Wave 81
7.3 Echo State Networks (ESNs) 82
7.4 Memristive ESN implementation 84

8 Crossbars for Real-Time EM Applications 91
8.1 Position Monitoring of Human Hand Movements 91
8.2 Parasitic Effects Prediction in On-Chip-Antennas 93

Full text available at: http://dx.doi.org/10.1561/3500000018

8.3 Prediction of 3D Printed Substrate’s Dielectric Constant
Using Artificial Neural Network 94

8.4 Cloth Size Prediction using Memristive Crossbar Array . . 95
8.5 Imaging Techniques for Antenna Radiation Pattern 96

9 Summary 103

Acknowledgements 105

References 106

Full text available at: http://dx.doi.org/10.1561/3500000018

Reliable Analog In-Memory
Computing with Crossbars:
Memristors for Analog Neural
Computing
Alex James

AI Chip Centre, Digital University Kerala and Kairali Semiconductor
Pvt Ltd., India; apj@ieee.org

ABSTRACT

Memristors as devices, and the systems built with them,
have shown to be of great promise for use in analog neu-
ral computing. Every attempt to create an energy-efficient
CMOS-based general purpose neural network processor that
can compete with human intelligence seems to have failed.
Memristive systems and devices are compatible and scal-
able with CMOS technology and show response behavior to
stimuli similar to a biological neuron. This has prompted a
closer look at memristive systems in academia and industry
through the lens of beyond CMOS technologies, algorithms
and applications.

In this monograph, in-memory computing is presented with
the memristor as the enabling memory element. The practi-
cal memristor device faces several challenges when targeting
on-chip implementations. Often, there are conductance vari-
abilites of different forms resulting from device-to-device
variability, aging, circuit parasitics, read instabilities, various

Alex James (2025), “Reliable Analog In-Memory Computing with Crossbars: Memris-
tors for Analog Neural Computing”, Foundations and Trends® in Integrated Circuits
and Systems: Vol. 4, No. 1, pp 1–114. DOI: 10.1561/3500000018.
©2025 A. James

Full text available at: http://dx.doi.org/10.1561/3500000018

2

types of noises, and conductance drifts. This variability and
how it can be analysed is introduced, along with the con-
cept of super-resolution for compensating errors in analog
computing. The application of memristive processing is also
shown through echo-state networks for energy-efficient com-
puting and image filtering processing for RF applications.

Full text available at: http://dx.doi.org/10.1561/3500000018

Part I

Memristive Circuits and
Arrays

Full text available at: http://dx.doi.org/10.1561/3500000018

1
Introduction

Artificial intelligence (AI) hardware is a growing area of research that
focuses on implementing specialized hardware chips designed for ma-
chine learning, neural networks, and their applications [23, 37]. The
AI hardware and related chips include the design of efficient proces-
sors, memory, and dedicated circuits running AI workloads at extreme
efficiency and processing speeds.

At the heart of neural network implementations, there are model
neurons that are primarily memory functions capable of learning and
adapting to new information. Memory is essential for enabling various
learning functions and is inherent in all intelligent beings.

1.1 Intelligence in the Natural World

Intelligence exists from humans to microorganisms, with humans having
the highest level of intelligence abilities in the natural world (Table
1.1). Humans are able to achieve this using the long-term and short-
term memory that is hardwired by approximately 86 billion neurons
that can perform around 100 trillion synaptic operations per second.
This processing power, paired with advanced learning abilities and an
estimated memory capacity of 2.5 petabytes, allows humans to adapt

4

Full text available at: http://dx.doi.org/10.1561/3500000018

1.2. Comparison with Machines 5

Table 1.1: Comparison of intelligence in the natural world.

Category Memory Neurons/
Cells

Processing
Capability Learning Adaptability Power

Consumption

Memory
Capacity
(Numbers)

Humans

Long-term
memory,
short-term
memory

86 billion
neurons

100 trillion
synaptic
operations per
second

Advanced learning
through experience
and education

Highly adaptable,
able to modify
environment

20 Watts Estimated at 2.5
petabytes

Animals Episodic memory,
spatial memory

Millions to
billions of
neurons

Millions to
billions of
synaptic
operations per
second

Learning from
experience,
conditioning

Adaptable to
different
environments,
capable of
behavioral
changes

5-10 Watts
(depending on
animal)

Estimated in
terabytes (varies
by species)

Birds

Spatial memory
(especially for
migratory
species)

100 million
to 1 billion
neurons

Specialized
processing for
navigation and
mimicry

Learning through
imitation and
problem-solving

Adaptable,
especially in
terms of
migration and
diet

2-5 Watts

Estimated in
gigabytes to
terabytes (varies
by species)

Insects

Short-term
memory,
collective memory
in colonies

Thousands
to hundreds
of thousands
of neurons
(in ganglia)

Distributed
processing
within colonies

Limited learning
through
conditioning and
trial-and-error

Highly adaptable
in colonies,
capable of
optimizing
foraging paths

0.001-0.01
Watts

Estimated in
megabytes to
gigabytes

Plants
Cellular memory
through chemical
signaling

No neurons,
but complex
signaling
pathways

Slow chemical
processing

No learning in the
traditional sense,
but responds to
environmental
changes

Adaptable
through growth
patterns and
chemical
responses

Negligible

N/A (memory
through chemical
signalling rather
than discrete
units)

Micro-
organisms

Chemical
gradients as
memory

Single cells
with
receptors

Basic
processing via
chemical
reactions

Adaptation rather
than learning

High adaptability,
rapid response to
environmental
changes

Negligible
N/A (memory
through chemical
gradients)

to and even manipulate their environment. The power consumption for
this remarkable cognitive activity is approximately 20 Watts.

Other mammals and birds also exhibit significant cognitive abilities
with memory capacity ranging from gigabytes to terabytes. They also
possess spatial memory and problem-solving skills, and have complex
social behaviors. Birds have specialized processing and spatial memory
that help them excel in navigation and mimicry. Insects have fewer
neurons, but are able to work collaboratively to create collective intelli-
gence with a memory capacity in the range of megabytes to gigabytes.
In plants, the intelligence is less neuron-like, instead, the memory and
adaptability are exhibited through chemical signaling and environmental
responsiveness.

1.2 Comparison with Machines

When the human brain develops over time, the memory capacity, the
neural connections, and the ability to learn new information also increase.
Figure 1.1 shows that a 1-year-old human brain consumes around 15
Watts of power, and by adulthood, say 20 years, the human brain
consumes around 20 Watts of power. The learning ability and complex

Full text available at: http://dx.doi.org/10.1561/3500000018

6 Introduction

Figure 1.1: Comparison of power consumption.

cognitive skills developed dramatically over these years. On the other
hand, many of the modern processors, for example the Intel Core i7
consume approximately 95 Watts, and GPUs like the NVIDIA A100
consume around 300 Watts. In comparison to the human brain, they
are inefficient and do not pose the abilities of learning, adaptation, or
generalization.

1.3 Generalisation and Bio-inspiration

The ability of human intelligence to generalize information and knowl-
edge for multiple tasks and situations makes it superior to all different
forms of AI that exist today. The underlying mechanisms of neural
plasticity, pattern recognition, and abstraction play a pivotal role in
the intelligence ability. Because of neural plasticity, it is possible for
the brain to adapt to new situations, create new neural connections,
and thereby reorganize the networks to perform complex tasks. This
flexibility is essential when put in new and unfamiliar environments.
Pattern recognition is a fundamental process in the human brain that
allows patterns to be detected and relationships between patterns to

Full text available at: http://dx.doi.org/10.1561/3500000018

1.3. Generalisation and Bio-inspiration 7

be established, drawing conclusions for higher cognitive tasks. The
ability to abstract concepts and situations based on partial information
or relationships between information allows for the development of
generalization abilities.

Analogical reasoning involves the brain drawing similarities between
experiences that help with solving problems in a creative way. When
put in a society, the learner gets reinforced through the experience
of others. Curiosity to learn new experiences or concepts frequently
sparks new experiences, which in turn improves people’s capacity for
generalization. The fact that memories are at the core of every neural
network means that these experiences are stored in neural networks,
which also drive the experiences to be associated with emotions, thereby
making emotional intelligence an important aspect of a learning brain.
Aspects such as empathy and context sensitivity are critical in social
contexts and help adapt the intelligent being to be inclusive in society.
Together, these components enable human intelligence to learn, adapt,
and generalize at a scale that is not possible today with AI.

Because human intelligence is far ahead in terms of energy efficiency,
function, and generalization ability, it becomes important to draw
inspiration from it. This enables us to build systems that are better in
design and eventually make the AI systems capable of more generalized
intelligence. The human brain is well known for generalizing across
diverse contexts with limited data, while the present state-of-the-art AI
systems, like deep neural networks, use vast amounts of training data
to achieve limited generalization capabilities. Understanding the neural
plasticity in the brain can help develop algorithms and hardware that
adapt dynamically to new inputs and make AI models flexible. In deep
artificial neural networks, plasticity mechanisms can be incorporated
by dynamically updating weights based on new data or experiences
without the need to do extensive retraining.

Beyond generalization, the ability to extract abstract information
from complex inputs, i.e., analogical reasoning, is considered a hallmark
ability of the human brain. By designing algorithms and architectures
that can seamlessly find the similarities between information and apply
these to new experiences or situations, it becomes possible to solve
uncharted complex problems. Analogical problem-solving can get help

Full text available at: http://dx.doi.org/10.1561/3500000018

8 Introduction

from bio-inspiration, as integrating perception, memory, and learning
processes from natural systems into computational models can enable
context-aware adaptability. Profound characteristics such as emotional
learning, curiosity, and exploration are inevitable if AI has to find
acceptance in human society, thereby making it necessary for the AI
system design and hardware to be compatible for handling uncertainty
and making nuanced decisions in unforeseen environments.

Full text available at: http://dx.doi.org/10.1561/3500000018

2
Bio-inspiration to Memristors

Along with the resistor, capacitor, and inductor, Leon Chua proposed
the memristor as the fourth fundamental circuit component in 1971
[13]. It is a two terminal non-linear resistor that can be programmed to
take a desired resistance value. By applying simuli, such as voltage pulses
of a certain amplitude and period, one can program the memristor to a
target conductance value. There are many two terminal resistive devices
that can be mapped to the theory of memristors, possessing resistive
and memory behavior [10, 16, 33, 43]. By continuously applying a series
of voltage pulses, the conductance can be varied as a function of the
history of the current that has flowed through it. This property shows
the ability of memristors to be state-dependent and show biomimicry
of adaptive learning, i.e., emulating a biological synapse that responds
to the strength of previous activity [75].

2.1 Generalized Memristor State Equations

For a generalized memristor [3, 13, 14, 17], the state of the device can
depend on one or more state variables, often denoted by a state vector
x. Different types of memristor implementations have different physical
mechanisms and dependence, making the state variable determination

9

Full text available at: http://dx.doi.org/10.1561/3500000018

10 Bio-inspiration to Memristors

something that is specific to the type of memristor device. In general,
the state equations are given as follows:

1. Voltage-Current Relationship:

V (t) = M(x, I) · I(t). (2.1)

Here, V (t) is the voltage across the memristor, I(t) is the current
flowing through memristor, and M(x, I) is the memristance (or
memristor-resistance), which is a function of both the current
state variables x and the current I(t). This equation can also be
called state-dependent Ohms law.

2. State Variable Dynamics:
dx
dt

= f(x, I). (2.2)

The state variable x represents the internal state of the memristor,
that could be related to physical properties such as ion positions
or internal charges. The function f(x, I) shows the dependency
of internal state over time, along with dependence on the current
I(t) and the existing state x.

2.2 System Behavior of a Memristor

We can represent the memristor device as a state equation showing
dynamic system behaviour. Depending on the nature of the inputs and
functional dependencies, various system behaviors can occur including
stability, instability, chaos, and the edge of chaos.

• Stable Behavior:
The system is considered stable when small perturbations of
state variable x decay over time such that the system returns
to its equilibrium state. This means that the system is stable if
eigenvalues of the Jacobian matrix of f(x, I) have negative real
parts. To demonstrate an example, a memristor with the following
state equation can be considered:

dx

dt
= −αx + I(t), (2.3)

Full text available at: http://dx.doi.org/10.1561/3500000018

2.2. System Behavior of a Memristor 11

where α > 0 is a constant. The negative term −αx indicates that
any form of deviation in x will decay over time, which in turn
leads to stability. The system will be returning to equilibrium
state if perturbed, thus exhibiting a stable behavior.

• Unstable Behavior:

Contrary to a stable system, the system becomes unstable when
the small perturbations grow over time, causing the system state
to diverge. Mathematically, this occurs when eigenvalues of the
Jacobian matrix of f(x, I) have positive real parts. For example,
consider the memristor with the state equation:

dx

dt
= βx + I(t). (2.4)

Here, β > 0 is a constant. When the positive term βx causes
small perturbations in x and it grows over time, that results in
an unstable system. The state in this case thus diverges rather
than returns to equilibrium.

• Chaotic Behavior:

When the state evolution of a system is highly sensitive to the
initial state of the system, it can lead to unpredictable dynamics
and thereby chaotic behavior. In memristive systems, this can
often happen if the function f(x, I) is non-linear and contains
feedback mechanisms that create complex attractors, where the
chaos can be characterized by a positive Lyapunov exponent. A
memristor can exhibit chaotic behavior with a non-linear state
equation such as:

dx

dt
= γx(1 − x) + I(t) sin(x), (2.5)

where γ is a parameter that controls the system dynamics. The non-
linear interaction and dependency between x and sin(x) introduces
a feedback that can lead to chaotic behavior, which is characterized
by sensitivity to initial conditions and complex, unpredictable
dynamics.

Full text available at: http://dx.doi.org/10.1561/3500000018

12 Bio-inspiration to Memristors

• Edge of Chaos:
In many bio-inspired systems, often the behavior switches from
being stable to exhibiting chaos. In system dynamics studies, this
is known as the edge of chaos [15], a transitional region between
order and chaos where the system can exhibit both stable and
chaotic dynamics. When the system parameters are finely tuned
such that it neither falls into total randomness nor settles into a
static state, the edge of chaos is observed. For example, consider
the state equation:

dx

dt
= δx(1 − x) + I(t)(1 − x2), (2.6)

where δ is a finely tuned parameter. In this case, the dynamics of
the system are balanced between stable and chaotic states, placing
it at the edge of chaos. Such a system can exhibit both structured
and unpredictable behaviors, making it highly adaptable and
similar to many biological systems.

2.3 Comparison Between Memristor and Biological Neuron

The reason why the memristor grew in prominence is its ability to be
linked to the behaviour of biological neurons, among others. To explore
this understanding, let us consider a HP memristor with the following
state equations.

2.3.1 State-Dependent Ohm’s Law for HP Memristor

The memristor can be modeled as a current controlled device or as a
voltage controlled device. HP came up with a memristor device that is
based on TiO2 with Pt electrodes, as a two terminal filamentary device
[64]. Such a device can be modeled, with a state equation, relating
voltage and current across the device as:

V (t) = R(w, t) · I(t), (2.7)

here, R(w, t) is the memristance that uses a state variable w(t) repre-
senting the position of the boundary between the doped and undoped
regions of the titanium dioxide layer.

Full text available at: http://dx.doi.org/10.1561/3500000018

2.4. Membrane Potential Dynamics 13

2.3.2 State Equation for HP Memristor

The state equation for such memristor is described by:
dw

dt
= µv

Ron

D
I(t) (2.8)

Where:

• w(t): State variable representing the position of the boundary
between doped and undoped regions.

• µv: Mobility of oxygen vacancies.

• Ron: Resistance of the doped region.

• D: Total width of the titanium dioxide layer.

The memristor’s resistance changes based on the evolution of the state
variable depending on the current and the physical properties of the
device.

2.3.3 Biological Neuron State Equations (Hodgkin-Huxley Model)

The Hodgkin-Huxley model [49] is a popular way to model the biological
neuron looking at the membrane potential dynamics.

2.4 Membrane Potential Dynamics

The dynamics of the membrane potential of the neuron can be modeled
as:

Cm
dVm

dt
= −(INa + IK + IL) + Iext, (2.9)

where:

• Cm: Membrane capacitance.

• Vm: Membrane potential.

• INa, IK, IL: Ionic currents through sodium, potassium, and leak
channels respectively.

• Iext: External input current.

Full text available at: http://dx.doi.org/10.1561/3500000018

14 Bio-inspiration to Memristors

The sodium current (INa), i.e., the ionic currents are dependent on
the membrane potential and follow gating dynamics that change over
time.

INa = gNam3h(Vm − ENa), (2.10)

where:

• gNa: Maximal conductance of sodium.

• m, h: Gating variables controlling sodium channels.

• ENa: Sodium equilibrium potential.

2.5 Comparison Between HP Memristors and Biological Neurons

There are several parallels we can draw between HP memristors and
biological neurons [14], some of which are listed below.

2.5.1 State Variables

The state variable for HP memristor w(t) represents the position of the
boundary between doped and undoped regions, which determines the
resistance of the device. In the biological neuron model, state variable
is membrane potential Vm, which is also dependent on gating variables
m, h, n, that control the behavior of ion channels.

2.5.2 External Input

The current input I(t) is the external stimuli for the HP memristor
model shown that affects the position of the boundary and, therefore,
the memristance. In the biological neuron, input current Iext controls
the changes in the membrane potential that affect the gating variables
and the ionic currents.

2.5.3 Non-linearity and Feedback

Both models show non-linear dynamics that are useful for implementing
learning functions. In the memristor model, the resistance changes

Full text available at: http://dx.doi.org/10.1561/3500000018

2.5. Comparison Between HP Memristors and Biological Neurons 15

following the state dependency, based on the history of current and
voltage and zero-crossing hysteresis i − v behavior. While in biological
neurons, non-linearity results from voltage-gated ion channels, whose
opening and closing depend on the membrane potential, resulting in
complex behaviors like action potentials, rhythmic firing, and chaotic
spiking patterns.

2.5.4 Memory and Adaptation

Using the resistance as a state-dependent memory element can be seen as
having a memory of past input currents. This is similar to the synapses
that adapt their strength based on prior stimuli. On the other hand, the
biological neurons use synaptic plasticity for memory behavior. Here,
the synaptic strength changes based on the history of neural activity
(e.g., long-term potentiation, LTP).

In these examples, both HP memristors and biological neurons
demonstrate state-dependent behavior, non-linearity, and memory. This
makes them well-suited to neuromorphic computing. The biological
model is a far more complex model to implement than the memristor
model. The simplistic yet powerful dynamics of memristors can be used
for practical implementation of synaptic functions. Understanding these
similarities and differences can set a direction for the development of
energy-efficient neuromorphic systems inspired by biological intelligence.

Full text available at: http://dx.doi.org/10.1561/3500000018

3
Memristor Models

3.1 Strukov’s Linear Drift (HP Memristor) Model

The Strukov model (HP’s TiO2 memristor) is a physical memristor
model that treats the device as a two-resistor region with a moving
boundary of oxygen vacancies (dopants) [64]. The doped region having
a width w has low resistance RON and the undoped region has high
resistance ROFF. The total memristance is given by:

R(w) = RON
w

D
+ ROFF

(
1 − w

D

)
,

where D is the total thickness. The ionic drift in a uniform electric field
is assumed to follow

dw

dt
= µv

RON
D

i(t),

with µv representing the average ion mobility. This can be seen as a
charge controlled memristor that remembers the device resistance to
the history of charge flow.

This linear drift model provided the foundational theory for using
memristors in non-volatile memory (RRAM). The resistive switching is
explained as continuous change in resistance induced by voltage-driven
dopant drift. Its accuracy to a real device is limited by the unrealistic

16

Full text available at: http://dx.doi.org/10.1561/3500000018

3.2. Joglekar’s Window Function Model 17

assumption of constant dopant drift velocity at the nanoscale and the
absence of built-in mechanisms to prevent the state variable w from
exceeding its physical limits (i.e., 0 or D). These limitations have led
to the development of more advanced models incorporating nonlinear
drift and boundary-locking mechanisms.

3.2 Joglekar’s Window Function Model

The Joglekar model builds on top of the linear drift memristor by
adding a window function that accounts for nonlinear dopant drift near
the device boundaries [32]. The state equation is modified as

dw

dt
= k i(t) f(x),

where x = w
D is the normalized state, k is a constant, and the window

function is defined as

f(x) = 1 − (2x − 1)2p,

with p controlling the nonlinearity which can take positive integer values.
For moderate values of p, the function slows as w approaches 0 or D,
while for 0 < x < 1 it approximates unity. This means that dopant drift
reduces near the boundaries similar to physical devices.

The damping of the drift in the boundary ensures that the state
variable is within physical bounds. While this improves simulations,
once the state variable reaches the extreme boundaries (0 or 1), the
window function becomes zero. This limitation means that state changes
are inhibited, even if the input polarity is reversed. The asymmetric
drift phenomena observed in real devices is not captured in this model.

3.3 Biolek’s Window Function Model

The Biolek model uses the window function to take account of de-
pendence on the direction of current flow to address the issue of “stuck
states”[5, 6]. The window function is defined as:

f(x, i) = 1 − |x − sgn(−i)|2p ,

where sgn(i) distinguishes the polarity of the current.

Full text available at: http://dx.doi.org/10.1561/3500000018

18 Memristor Models

The positive current drives the device toward the ON state, then
the function approaches zero at x = 1 but not at x = 0 and for negative
current, the vice opposite occurs. This makes it possible for state variable
changes even at extreme value as the window function becomes nonzero
upon polarity reversal.

As the Biolek model produces realistic pinched hysteresis loops
during alternating current sweeps, they are useful for circuit simulations.
The challenge is that current direction inclusion in the model leads to
discontinuities in the state derivative at the moment of current reversal
causing numerical issues during simulations.

3.4 Simmons Tunnel Barrier (Pickett) Model

The Simmons tunnel barrier model (often also known as Pickett
model) uses a physics based approach assuming the memristor as a
metal–insulator–metal structure with a tunneling gap whose width
serves as the state variable [70]. This model uses a tunneling resistance
that depends exponentially on the barrier width w, and the tunnelling
current can be expressed as:

i ≈ A sinh(αV) exp(−βw), (3.1)

where A, α, and β are parameters fitted to the material properties. The
state equation will capture how the oxygen vacancy drift (or filament
growth/rupture) modulates the barrier width under applied bias. The
differential equations for SET and RESET processes, incorporating
threshold currents iON and iOFF to reflect rapid state transitions, is
developed based on this. This model provides excellent accuracy in
reproducing the measured I–V characteristics and switching dynamics
of physical memristive devices. However, the model’s complexity, with
many parameters and coupled exponential terms, leads to numerical
instability in circuit simulations. The parameter adjustment is often
needed to tailor to a specific device type, which limits its generality
despite its high fidelity in representing physical behavior.

Full text available at: http://dx.doi.org/10.1561/3500000018

3.5. Yakopcic Model (Threshold Adapted Empirical Model) 19

3.5 Yakopcic Model (Threshold Adapted Empirical Model)

The Yakopcic model incorporates voltage thresholds and asymmetric
switching dynamics to replicate the “hard-switching” behavior observed
in experiments [74]. This is a behavioral model, with the state variable
x normalized between 0 and 1, having the I-V relation as:

I(t) =

a1 x(t) sinh(b V (t)) for V (t) > 0,

a2 x(t) sinh(b V (t)) for V (t) < 0,
(3.2)

where a1 and a2 scale the current amplitudes and b controls the nonlin-
earity. The evolution of the state can be shown as:

dx

dt
= g(V) · f(x), (3.3)

where g(V) introduces voltage thresholds VP (for SET) and −VN (for
RESET), ensuring that g(V) = 0 below these thresholds. The function
f(x) is the window function that modulates the rate of change as x

approaches its limits.
The model is practically useful for simulating digital logic and

memory operations as the asymmetric switching observed in many
devices is accurately captured. The option for specifying thresholds and
dynamics for SET and RESET processes makes it adaptable to multiple
memristor technologies. However, parameter tuning is needed to ensure
a match with the experimental data. The higher-order effects such as
temperature dependence or stochastic variations are usually not fully
captured without additional modifications.

3.6 VTEAM Model (Voltage Threshold Adaptive Memristor)

The Voltage Threshold Adaptive Memristor (VTEAM) model provides
a generalized memristor model based on voltage-controlled thresholds
[36]. VTEAM defines the state evolution in a piecewise manner according
to the applied voltage v(t), where the state variable w remains unchanged
when |v(t)| is below the set (Von) or reset (Voff) thresholds. When v(t)
exceeds thresholds, the state variable changes following the equation:

Full text available at: http://dx.doi.org/10.1561/3500000018

20 Memristor Models

dw

dt
=

kon (v(t) − Von)α , v(t) > Von,

koff (v(t) − Voff)α , v(t) < Voff ,

0, otherwise.

(3.4)

The I-V relation can be adjusted to be either a linear or nonlinear
v = R(w)i depending on the device under consideration. This model is
popular for circuit simulations due to its simplicity and versatility. The
parameters, threshold voltages and switching coefficients make it easy
to calibrate using experimental data, and are useful for large circuit
simulations. Since this is a phenomenological model, it does not capture
the details of analog switching dynamics or gradual state changes below
the nominal thresholds.

3.7 Energy-efficient Computation Using Memristors

Memristor-based circuits, such as crossbar arrangements of the devices,
hold significant potential for energy-efficient computation [29]. It
essentially combines the idea of memory with computation through
such network arrangements, thereby avoiding the need to have separate
computational units and memories.

There are many ways in which the resistive switching memristor
devices could be used for creating energy-efficient computing systems.
Some examples are listed below:

• Non-Volatile Memory:

Most popular memristors are non-volatile, i.e., they can retain
their state without the need for continuous power supply. As
opposed to DRAM or SRAM, as a memory, an idealistic memristor
will need relatively less area on chip and can be used as a discrete
analog memory. This increases the memory density as well as the
number of peripheral circuits needed. In practice, the memristor
is far from ideal, as it has fewer numbers of discrete states and
slower write cycles, making it not yet suitable for replacing DRAM
or SRAM in traditional systems. However, as an analog memory,
memristors in specific applications such as neural architectures
will have advantages over area and power requirements.

Full text available at: http://dx.doi.org/10.1561/3500000018

3.7. Energy-efficient Computation Using Memristors 21

• Analog Computation and Neuromorphic Systems:

Neuromorphic systems are characterized by artificial synapses
that contain analog computations and spiking networks. Much
like the brain, the spike-based networks can be efficiently imple-
mented with memristor networks. The processing and memory are
integrated into the memristor networks; thereby, this in-memory
computing reduces the energy cost associated with data communi-
cations between memory and processing nodes.

• Massive Parallelism:

Being an analog or discrete memory element that can be pro-
grammed to a large number of resistance states, it is possible
to create high-density arrays capable of massively parallel com-
putations. Such a way of computation is suitable for pattern
recognition and machine learning, enabling efficient, low-energy
implementations of algorithms.

Crossbar configurations can be used for implementing multiply
and accumulate operations, which is at the heart of many neural
networks and machine learning techniques. These can be trans-
lated to matrix-vector multiplications when in a crossbar array.
In comparison, digital processing requires the need for digital
arithmetic logic units, and the crossbar performs matrix multipli-
cations with latency and overhead of data transfers. This makes
the memristor-based computation energy-efficient compared to
digital processing.

The dynamic system properties and uses of the memristor place
it as a promising device for developing hardware that can perform
general-purpose AI computation more efficiently, where energy
consumption is a critical issue. Drawing inspiration from the biological
synapses, memristors can provide a foundation for developing newer
neuromorphic systems that are able to learn and generalize information
in a manner similar to human brains but with significantly lower energy
requirements.

Full text available at: http://dx.doi.org/10.1561/3500000018

4
Tutorial on Memristor Crossbar with Open-source

Skywater PDK

The practical implementation of memristor circuits requires the use
of foundry ready models. Since memristors are still an experimental
device in many of the semiconductor foundries today, it is important
to have a sense of how to go about implementing them for building
practical solutions. ReRAMs (Resistive RAMs) form the closest practical
implementations of memristor models. Skywater PDK provides an open,
free-to-use model that is supported for fabrication in a 130nm technology.
A tutorial on how to install the open-source software tools for design is
shown on the Makerchips GitHub website.1 The tutorial provided in this
section is a guide for using open-source tools. Although Skywater PDK is
used as an example, there is a wide effort in the scientific community to
build open-source alternatives with many foundries beyond the Skywater
foundry.

This section provides the list of steps to be followed to install the
software tools, followed up with integrating the ReRAM models, and
further an example of how to create a crossbar circuit.

1https://github.com/Makerchips-OSCM

22

Full text available at: http://dx.doi.org/10.1561/3500000018

https://github.com/Makerchips-OSCM

4.1. Installation Instructions 23

4.1 Installation Instructions

Start with a Linux system with version: Ubuntu 22.04.4 LTS (fresh
installation).

4.1.1 Step 1: System Update

It is necessary to update the system. Open a terminal in the desk-
top/home directory and run the command:
1 sudo apt -get update

4.1.2 Step 2: Specific Folder Creation

Create a new folder for installing all the required tools:
1 mkdir -p <Installation_directory_name >
2 cd <Installation_directory_name >

Example:
1 mkdir -p chip_design
2 cd chip_design

4.1.3 Step 3: Pre-requisites

Install all the necessary supporting libraries for the installation of
open-source tools for Ubuntu LTS version:
1 sudo apt install git
2 sudo apt -get install build - essential clang bison flex
3 sudo apt -get install libreadline -dev gawk tcl -dev libffi -

dev
4 sudo apt -get install git graphviz xdot pkg - config python3
5 sudo apt -get install libboost -system -dev libboost -python -

dev
6 sudo apt -get install libboost -filesystem -dev zlib1g -dev

make m4
7 sudo apt -get install tcsh csh libx11 -dev gperf tcl8 .6- dev

tk8 .6
8 sudo apt -get install tk8 .6- dev libxmp4 libxpm -dev libxcb1
9 sudo apt -get install libcairo2 libxrender -dev libx11 -xcb -

dev
10 sudo apt -get install libxaw7 -dev freeglut3 -dev automake

yosys

Full text available at: http://dx.doi.org/10.1561/3500000018

24 Memristor Crossbar with Open-source Skywater PDK

11 sudo apt -get update
12 sudo apt -get -y install libtool

Check whether .local/bin is included in $PATH:
1 echo $PATH | grep ’\. local ’

If it is not there, add it to your path before starting the install by
adding this to your /.bashrc file:
1 export PATH="$HOME /. local/bin:$PATH"

4.1.4 Step 4: Installing Xschem Tool

To install xschem, clone the required repository from GitHub:
1 cd ~/< Installation_directory_name >/
2 git clone https :// github .com/ StefanSchippers / xschem .git

xschem
3 cd xschem
4 ./ configure
5 make
6 sudo make install

To run xschem:
1 xschem

4.1.5 Step 5: Installing Magic Tool

To install magic, run the following commands:
1 cd ~/< Installation_directory_name >/
2 git clone git :// opencircuitdesign .com/magic
3 cd magic
4 ./ configure
5 make
6 sudo make install

4.1.6 Step 6: Installing Ngspice Tool

Before installing ngspice, update the system:
1 sudo apt -get update

Full text available at: http://dx.doi.org/10.1561/3500000018

4.1. Installation Instructions 25

Then run the following commands:
1 wget https :// sourceforge .net/ projects / ngspice /files/ng -

spice - rework /43/ ngspice -43. tar.gz/ download
2 # Extract the downloaded file
3 sudo apt -get install unzip # If unzip is not installed
4 unzip ngspice -43. tar.gz
5 cd ngspice -43
6 ./ configure
7 make
8 sudo make install

Check the version:
1 ngspice --version

4.1.7 Step 7: Installing Open_PDKs

To install open_pdks:
1 sudo apt -get update
2 git clone git :// opencircuitdesign .com/ open_pdks
3 cd open_pdks
4 ./ configure --enable -sky130 -pdk
5 sudo make
6 sudo make install

Copy the .magicrc file:
1 cd ~
2 cd ~/. xschem
3 cp ~/< Installation_directory_name >/ open_pdks / sky130 /

sky130A /libs.tech/xs/ xschemrc
4 cd ~
5 cp ~/< Installation_directory_name >/ open_pdks / sky130 /

sky130A /libs.tech/ma/ sky130A . magicrc ~/. magicrc
6 sudo apt -y install vim -gtk3 xterm

Step 8: Installing LVS and Klayout

To install LVS tool:
1 sudo apt -get install netgen -lvs

To install klayout:
1 sudo apt -get install klayout

Full text available at: http://dx.doi.org/10.1561/3500000018

26 Memristor Crossbar with Open-source Skywater PDK

If not installed properly, download the latest Klayout and install
manually:
1 sudo apt install gcc ruby -full
2 sudo apt -get install libqt5opengl5 libhttp - parser2 .9

libmbedcrypto7 libmbedtls14 libmbedx509 -1 libssh2 -1
libgit2 -1.1

3 sudo dpkg -i klayout_0 .29.5 -1 _amd64 .deb
4 sudo apt --fix - broken install
5 sudo dpkg -i klayout_0 .29.5 -1 _amd64 .deb

4.2 Integrating ReRAM with Xschem

Once the installation of the software tools is completed, we now need
to integrate the ReRAM (Figure 4.1) to Xschem (Figure 4.2). For this,
ensure that you have the latest ngspice version.

Git clone the following repository: https://github.com/barakhoffer/
sky130_ngspice_reram.

Figure 4.1: Symbol of ReRAM cell.

The location mentioned in Figure 4.3 should be the location you
select for the ReRAM cell as shown in Figure 4.4. Figure 4.5 shows the
simulation command for plotting the I-V characteristics of ReRAM and
Figure 4.6 shows the generated plot, indicating the pinched hysteresis
characteristics.

Full text available at: http://dx.doi.org/10.1561/3500000018

https://github.com/barakhoffer/sky130_ngspice_reram
https://github.com/barakhoffer/sky130_ngspice_reram

4.3. Layout of ReRAM 27

Figure 4.2: Circuit diagram for simulating a ReRAM cell in Xschem.

Figure 4.3: Model of ReRAM cell included for simulation in Xschem.

4.3 Layout of ReRAM

The layout of a ReRAM drawn with the help of the open-source tool
magic is shown in Figure 4.8. It should be noted that in Skywater130
PDK ReRAM material lies in between the layers metal1 and metal2.
The top electrode is connected to metal2, and the bottom electrode is
connected to metal1. Figure 4.7 shows the commands and steps involved
in drawing the layout of the ReRAM cell in magic. Figure 4.8 shows
the layout in magic for the commands executed.

Full text available at: http://dx.doi.org/10.1561/3500000018

28 Memristor Crossbar with Open-source Skywater PDK

Figure 4.4: Location of ReRAM cell.

Figure 4.5: Simulation command for plotting I-V characteristics of ReRAM.

Full text available at: http://dx.doi.org/10.1561/3500000018

4.4. Crossbar Array 29

Figure 4.6: I-V characteristics of ReRAM.

Figure 4.7: Steps of drawing layout of a ReRAM cell in magic.

4.4 Crossbar Array

When it comes to placing memristors (or ReRAMs) in the crossbar
configuration, to avoid the sneak path currents and to ensure better
control of programming each memristor cell, a selector or transistor
switch is connected in series to the memristor (1T-1R cell).

The schematic of the single 1T-1R cell drawn is shown in Figure 4.9.
The layout of the same is shown in Figure 4.10. Using these basic cells,
they can be placed in a crossbar configuration as shown in Figure 4.11,
with the layout of the crossbar shown in Figure 4.12.

Full text available at: http://dx.doi.org/10.1561/3500000018

30 Memristor Crossbar with Open-source Skywater PDK

Figure 4.8: Layout of a ReRAM cell.

Figure 4.9: Schematic of a 1T1R unit cell.

4.5 Beyond Crossbar

Once the crossbar array is constructed, to make this a functional array
for multiply and accumulate operations, there are several other circuit
blocks to be built. We call these blocks peripheral blocks, such as that is
needed to program the memristors, sense amplifiers to read the column
currents, and the necessary activation function blocks for converting
each of the columns to a neuron. In addition, one needs to also consider
the data path logic circuits for input and outputs from the crossbars,

Full text available at: http://dx.doi.org/10.1561/3500000018

4.5. Beyond Crossbar 31

Figure 4.10: Layout of a 1T1R unit cell.

Figure 4.11: Schematic of an 8 × 8 crossbar array.

especially when implementing the neural networks, such considerations
becomes critical.

The discussion on this topic is incomplete without hinting on ex-
tending this discussion to the manufacturing aspects, where these PDKs

Full text available at: http://dx.doi.org/10.1561/3500000018

32 Memristor Crossbar with Open-source Skywater PDK

Figure 4.12: Layout of an 8 × 8 crossbar array magic.

translate to the SkyWater’s CMOS fabrication facility. The foundry
in this case supports integrating memristor devices onto silicon wafers.
Precise process optimisation is needed to integrate memristors beyond
typical CMOS processes. This includes uniform memristor device char-
acteristics across the wafer showing reliability in the manufacturing
process, minimizing variability in resistance states, and ensuring stable
switching behavior across several operating cycles.

Atomic layer deposition (ALD) or sputtering that are controlled
deposition techniques are needed to form reliable memristive oxide layers
and electrode interfaces. Precise patterning, accuracy of lithography and
optimal etching techniques are essential for ensuring uniformity and to
help reduce the parasitic resistances. Backend-of-line (BEOL) processing
steps to include memristor layers need considerations of thermal budget
management for avoiding damage or alteration of underlying CMOS
layers.

Full text available at: http://dx.doi.org/10.1561/3500000018

4.5. Beyond Crossbar 33

A multidisciplinary effort that combines device-level engineering,
material optimization, and precise process control is required to de-
velop reproducible memristor crossbar arrays. Translating the neural
networks to high density, low power consumption, and intrinsic analog
computation capabilities in hardware requires practical considerations
in both design and manufacturing.

Full text available at: http://dx.doi.org/10.1561/3500000018

Part III

Applications

Full text available at: http://dx.doi.org/10.1561/3500000018

7
Making Use of Memristive Variability with

Energy-Efficient Echo State Networks

Artificial Neural Networks (ANNs) emerged as computational models
inspired by biological neural systems, initially appearing as feedforward
networks where information flows unidirectionally from input to output
layers. The fundamental building block, the artificial neuron, processes
inputs through a weighted sum followed by a nonlinear activation func-
tion: y = f(

∑n
i=1 wixi + b), where wi represents synaptic weights, xi

represents inputs, b is the bias term, and f is the activation function.
While feedforward networks proved effective for static pattern recogni-
tion, they lacked the ability to process temporal sequences effectively.
This limitation led to the development of Recurrent Neural Networks
(RNNs), which introduce feedback connections, allowing the network
to maintain an internal state. The basic RNN computation can be
expressed as: ht = f(Wxt + Uht−1 + b), where ht represents the hidden
state at time t, W is the input weight matrix, U is the recurrent weight
matrix, and b is the bias vector.

However, traditional RNNs suffered from vanishing and explod-
ing gradient problems during training, making it difficult to capture
long-term dependencies. Long Short-Term Memory (LSTM) networks
addressed these issues by introducing a more complex memory cell

79

Full text available at: http://dx.doi.org/10.1561/3500000018

80 Making Use of Memristive Variability

structure with gating mechanisms. The LSTM updates are governed
by:

ft = σ(Wf xt + Uf ht−1 + bf) (forget gate), (7.1)
it = σ(Wixt + Uiht−1 + bi) (input gate), (7.2)

ot = σ(Woxt + Uoht−1 + bo) (output gate), (7.3)
ct = ft ⊙ ct−1 + it ⊙ tanh(Wcxt + Ucht−1 + bc) (cell state), (7.4)

ht = ot ⊙ tanh(ct) (hidden state). (7.5)
where σ represents the sigmoid function and ⊙ denotes element-wise
multiplication.

7.1 Reservoir Computing and Echo State Networks

Reservoir Computing (RC) uses an interesting concept of reservoir
that is a fixed, high-dimensional dynamical system that transforms
an input sequence into a feature space that can be linearly read out.
Because of this, they are useful for time-series prediction tasks. To
explore this machine learning framework, the model consists of three
main components: an input layer, a reservoir, and an output layer.

7.1.1 Reservoir State Update

Considering this as a dynamical system, the reservoir state can be
represented as a vector x(t) ∈ RN that can be updated based on current
input u(t) ∈ RM and the previous reservoir state x(t), which can be
mathematically summarized as:

x(t + 1) = f(Winu(t) + Wx(t)), (7.6)

where:

• Win ∈ RN×M is the input weight matrix that projects the input
into the reservoir.

• W ∈ RN×N is the internal weight matrix that are the recurrent
connections within the reservoir.

• f(·) is any nonlinear activation function, for example tanh or
ReLU.

Full text available at: http://dx.doi.org/10.1561/3500000018

7.2. Example: Predicting a Sine Wave 81

7.1.2 Output Computation

After the reservoir state x(t) is updated, the output y(t) ∈ RK need
to be computed using a linear combination of the reservoir states,
representing a dense neural network layer:

y(t) = Woutx(t), (7.7)

where, Wout ∈ RK×N is the output weight matrix that undergoes
training.

7.1.3 Training Process

During training, only the output weight matrix Wout is updated using
linear regression to minimize the mean squared error between the target
output ytarget(t) and the predicted output y(t):

min
Wout

∑
t

∥ytarget(t) − Woutx(t)∥2 . (7.8)

The internal reservoir weights W and the input weights Win are not
updated or trained, making it computationally less expensive compared
to a traditional neural network.

7.2 Example: Predicting a Sine Wave

As an example, let us consider the problem of predicting a sine wave.
For the input sequence sin(t) the challenge is to predict the next value
sin(t + 1). The following are the steps for solving this using the reservoir
computing:

1. Define Input and Target Data: The input is u(t) = sin(t),
and the target is ytarget(t) = sin(t + 1).

2. Initialize Reservoir: Take an example of reservoir with N = 100
neurons, input weights Win and recurrent weights W that are
initialized randomly.

3. State Update: The reservoir state can be updated as:

x(t + 1) = tanh(Winu(t) + Wx(t)). (7.9)

Full text available at: http://dx.doi.org/10.1561/3500000018

82 Making Use of Memristive Variability

4. Train Output Weights: In the next stage, train Wout using
linear regression to predict sin(t + 1).

5. Testing: Testing involves using the trained model to predict
future values of the sine wave.

7.3 Echo State Networks (ESNs)

Echo State Networks (ESNs) is an extended model of Reservoir Com-
puting. ESN combines the idea of Reservoir Computing with the idea of
feedback, which forms the echo state property. The addition of feedback
can help model temporal dependencies in the input data, reducing the
influence of the initial conditions on the reservoir state.

7.3.1 Mathematical Framework of Echo State Networks

Similar to the Reservoir Computing model, for ESNs the reservoir state
is updated as:

x(t + 1) = tanh(Winu(t) + Wx(t) + Wfby(t)), (7.10)

where:

• Win ∈ RN×M is the input weight matrix.

• W ∈ RN×N is the recurrent weight matrix of the reservoir.

• Wfb ∈ RN×K is the feedback weight matrix that incorporates
feedback from the output into the reservoir state.

• tanh(·) is the nonlinear activation function.

The addition of the feedback weight matrix Wfb is the primary
difference between ESNs and general RC models.

7.3.2 Training in Echo State Networks

The training in ESNs involves adjusting only the output weight matrix
Wout:

y(t) = Woutx(t). (7.11)

Full text available at: http://dx.doi.org/10.1561/3500000018

7.3. Echo State Networks (ESNs) 83

The training aims to minimize the error between the observed output
y(t) and the target output ytarget(t), which can be summarized as:

min
Wout

∑
t

∥ytarget(t) − Woutx(t)∥2 . (7.12)

The internal weights W, Win, and Wfb are not trained similar to
Reservoir Computing models.

7.3.3 Summary of Echo State Networks

The concept of reservoir computing emerged as an alternative approach
to traditional RNN training, introducing the idea of a fixed, randomly
connected recurrent layer (the reservoir) coupled with a trainable read-
out layer. Echo State Networks (ESNs) represent a prominent implemen-
tation of this paradigm, characterized by their simple training procedure
and powerful temporal processing capabilities. The architecture of an
ESN is comprised as an input layer, a reservoir, and an output layer, as
depicted in Figure 7.1

Figure 7.1: Echo state network architecture.

In an ESN, the reservoir state update is governed by:

x(t + 1) = f(Winu(t + 1) + Wresx(t) + Wfby(t)), (7.13)

where:

• x(t) is the reservoir state at time t

• u(t) is the input signal

Full text available at: http://dx.doi.org/10.1561/3500000018

84 Making Use of Memristive Variability

• y(t) is the output signal

• Win is the input weight matrix

• Wres is the reservoir weight matrix

• Wfb is the feedback weight matrix

• f is typically a hyperbolic tangent activation function.

In tasks where no output feedback is required, Wfb is nulled. The
output is computed through a linear combination of reservoir states:

y(t) = Wout[1; u(t); x(t)], (7.14)

where Wout represents the output weights, and [1; u(t); x(t)] denotes
the concatenation of a bias term, input signal, and reservoir states.
The key property of ESNs is the echo state property, which requires
the reservoir’s dynamics to asymptotically depend on the input history
rather than initial conditions. This is typically ensured by scaling
the reservoir weight matrix W to have a spectral radius less than 1:
ρ(W) < 1, where ρ denotes the largest absolute eigenvalue. Training
an ESN primarily involves optimizing the output weights Wout while
keeping the reservoir weights fixed. This can be accomplished through
linear regression methods such as:

Wout = Y XT (XXT + βI)−1, (7.15)

where Y is the target output matrix, X is the collected state matrix, β is
a regularization parameter, and I is the identity matrix. The simplicity
of training, combined with the rich dynamics of the reservoir, makes
ESNs particularly suitable for temporal processing tasks while avoiding
the computational complexity associated with training traditional RNNs
or LSTMs.

7.4 Memristive ESN implementation

The reservoir weights can be randomly assigned without the need for
any training. The memristor crossbar can be used to implement the
reservoir, as it is a weight summation operation. This means that there

Full text available at: http://dx.doi.org/10.1561/3500000018

7.4. Memristive ESN implementation 85

is no need for programming the memristors and devices, even with
variability they will be suitable to be used for the reservoir weights.
The crossbar networks can be used to build both the reservoir and
the output network. Many different applications can be developed for
practical use, even under the issues of parasitics and variability.

7.4.1 Application 1: Sampling ESN implementation

The internal reservoir weights are sampled from a given probability
distribution at each time, and/or during the initialization phase, for
Synaptic Sampling ESNs. This introduces variability in the reservoir.
The state equation for Synaptic Sampling ESNs can be written as:

x(t + 1) = f(Winu(t) + Wsynx(t) + Wfby(t)), (7.16)

where:

• Wsyn ∈ RN×N is the synaptic weight matrix, with each element
in it sampled from a probability distribution (e.g., Gaussian or
Bernoulli).

• Win, Wfb is the input and feedback weight matrices as defined
in traditional ESNs.

• f(·) is the typical nonlinear activation function such as tanh or
ReLU.

The Wsyn having the stochastic nature allows the Synaptic Sampling
ESNs to have a wider range of dynamical behaviors. This can lead
to better generalization and helps increase the expressiveness of the
reservoir to a wider range of problems.

An ESN extensively uses the concept of randomness in its reser-
voir networks. In biological neural networks, synaptic stochasticity is
something that is observed to play an important role for learning and
adaptation. Embracing stochasticity, the memristive devices can be
used for building an Extended Synaptic Sampling Machine (ESSM) [47].
The random number generation can be implemented by Circular Shift
Registers (CSRs) that follow the Bernoulli distribution. This results in
reduced memory requirements while maintaining processing capabilities.

Full text available at: http://dx.doi.org/10.1561/3500000018

86 Making Use of Memristive Variability

Figure 7.2 shows the crossbar-based architecture that can be used to
implement the sampling ESN. While Winu(t) + Wsynx(t) is shown
in the crossbar, a similar crossbar is used for Wfby(t)) to complete
the implementation. The columns of the network need to be further
connected to the activation function circuitry to complete the circuit.

x2(t)

x1(t)

u1(t)

u2(t)

(b)(a)

Figure 7.2: The circuit illustration in (a) shows the crossbar structure of imple-
menting the ESN. The vectors u(t) and x(t) can be computed in the same crossbar.
The red color indicates nodes that are OFF and blue indicates nodes that are ON as
an example. The selector and sampling circuit for each node is shown in (b).

Mimicking biological neural plasticity, the synaptic sampling cells
are designed to be adaptively reprogrammable. The memristive imple-
mentation of the ESN can be used for ECG analysis to complex image
classification tasks like MNIST, Fashion MNIST, and CIFAR10. Noise
sensitivity analysis of ESSM-ESN using different sampling rates on
multiple datasets is as represented in Table 7.1. Given the high density
of memristive arrays with CSR implementation, it offers advantages over

Full text available at: http://dx.doi.org/10.1561/3500000018

7.4. Memristive ESN implementation 87

Table 7.1: Evaluating ESSM-ESN’s robustness to noise at different sampling levels
across four datasets: ECG, MNIST, Fashion MNIST, and CIFAR10 as reported by
Nair et al. [47].

Dataset
Recognition accuracy

σ2=0.01 σ2=0.1
s=0% s=20% s=50% s=0% s=20% s=50%

ECG 98.05 96.3 95.6 92.2 91.2 87.8
MNIST 96.42 93.87 84.9 84.54 83.0 80.62
Fashion MNIST 95.73 92.8 82.62 83.13 80.9 77.54
CIFAR10 92.45 85.4 74.62 79.0 75.68 68.71

traditional CMOS approaches, particularly in terms of power efficiency
and integration density.

Given that the weight of the neural network is initiated randomly,
factors such as resistance variations, noise, and quantization effects
of memristive networks have very little impact on the overall perfor-
mance of ESNs. The ESSM-ESN architecture demonstrates robustness
in handling these variations while maintaining competitive performance
metrics. In comparison with traditional neural networks, higher sparsity
can be introduced in the network along with random weights that can
reduce the power consumption with computational capability. Since
the computations can be analog, the crossbars without the need for
large compensation circuits form a realistic way to include biological
plausibility with these networks. Since there is a better control over en-
ergy efficiency and variability, the circuit design challenges are reduced
and they can be used in edge systems that need power efficiency and
adaptive learning.

This architectural approach suggests new directions for neuromor-
phic computing, where stochastic elements are not just tolerated but
leveraged to enhance system performance and efficiency. The success of
this implementation strategy across diverse applications indicates its
potential as a foundational approach for future neuromorphic systems.

Full text available at: http://dx.doi.org/10.1561/3500000018

88 Making Use of Memristive Variability

7.4.2 Application 2: Novel Approach to Brain Tumor Detection:
Integration of RF Sensing and Memristive Echo State Net-
works

One of the edge applications of ESN is to integrate classification and
predictive analysis in wearable devices. Creating solutions that are low
cost, easy to use and easily replaceable are important in continuous
medical monitoring. The possibility of RF sensing for brain tumor
detection and monitoring offers an inexpensive solution compared with
traditional imaging methods like X-ray and MRI.

This work combines the radio frequency (RF) sensing technology
with ESN implementations, as shown in Figure 7.3, to create an inex-
pensive and accurate solution for tumor detection. The concept utilizes
a simple yet effective setup of dual antennas positioned around the
head to monitor transmission coefficient variations. The changes in RF
signal characteristics offer unique signatures on the state of tissue for-
mations, including tumors, which allow for non-invasive and continuous
monitoring.

Figure 7.3: Tumor detection framework.

The RF sensors or antenna outputs are fed to memristive crossbar
networks that implement Echo State Networks (ESNs) [46]. To simulate
and analyse the classification performance memristor (VTEAM) models
for the crossbar, realistic data is collected from the fabricated antenna on
phantom setup of chicken meat with and without tumors. The dynamic
nature of an ESN to be responsive to time-series problems, along with

Full text available at: http://dx.doi.org/10.1561/3500000018

7.4. Memristive ESN implementation 89

efficient hardware implementation offered by memristive devices, offers a
practical solution for building continuous monitoring wearable systems.
We observe that even with the variability of memristive hardware, the
system is able to detect brain abnormalities with the accuracy needed
in real-time settings.

A low-cost alternative for fast diagnosis, the fact that the proposed
solution can operate continuously and with minimal infrastructure
requirements suggests potential applications in remote healthcare moni-
toring and early warning systems.

This approach opens new possibilities for developing more accessible
and continuous health monitoring solutions, particularly valuable in
regions with limited access to advanced medical facilities.

7.4.3 Application 3: Intelligent Power Transformer Monitoring: Ad-
vanced Applications of Echo State Networks

High voltage transformers are critical infrastructure to ensure the energy
security of a country. These transformers are prone to several kinds of
attack, including environmental and malicious human actors. In remote
locations, one major problem is transformer oil thefts that cause damage
to the transformers and major losses to the electricity companies. The
economic loss around this is also high as businesses have to pause or
put a hold on production during these power outage scenarios. Timely
detection of the conditions of transformers can help the electricity
companies take necessary actions to rectify the issues and restore power
on time.

The real-time condition monitoring of the transformer requires
sensory information on various transformer conditions including oil
level, current levels, temperature, and humidity. These sensor data are
fed to an ESN-based hardware attached to the transformer to perform
classification and detection at the edge [48], as depicted in Figure 7.4.

Similar to the application in biomedical tumor monitoring discussed
in the previous section, the memristive implementations of ESNs are
energy-efficient, have small form factors, and in this case can be useful
for the real-time monitoring and predictive maintenance of transformers.

Full text available at: http://dx.doi.org/10.1561/3500000018

90 Making Use of Memristive Variability

Figure 7.4: Transformer ESN integration architecture.

The architectural flexibility of ESNs (i.e., the control over sparsity
and topology, the need for less intensive training, and high generality)
offers reduced computational overhead, thereby making them suitable
for stand-alone applications. The ability to control the computational
load implies better control over energy efficiency and long battery life,
which is critical for edge applications. Since the memristive ESN can
handle analog sensory data directly to the network, there is no need to
have additional data converters, and the prediction could be performed
in a continuous manner. This makes the detection real-time within
the hardware and avoids the need to have complex pre-processing or
filtering modules.

At an application level, the solution can prove useful for electricity
companies for ensuring the reliability of power distribution networks.
The patterns of changes in the sensory data could be further analyzed
to uncover anomalies and predict the occurrence of critical failures
ahead of time. This example shows how memristive crossbars, even with
variability and signal integrity challenges, could be used for a practical
use-case and as a general energy-efficient solution to implement in
hardware.

Full text available at: http://dx.doi.org/10.1561/3500000018

8
Crossbars for Real-Time EM Applications

The use of memristive crossbars as a classifier for wearables to be used
with sensors is an emerging topic of interest. This interest is triggered
by the fact that small crossbars in neural networks will be sufficient to
perform most classification tasks if the number of sensors is less, and if
the sensory data is discriminatory.

We explore the use of RF sensors and antennas in many different use-
cases along with crossbar-based classifiers in wearables or edge devices,
where lower power and smaller form factors are critical. Given that the
memristors with super-resolution or modular arrays can largely deal with
accuracy issues and reliability of analog computing, the crossbar-based
solutions become promising for these applications.

8.1 Position Monitoring of Human Hand Movements

Figure 8.1 shows the cylinder body model for tracking movements,
emulating a human motion. Cross-slot antennas are placed along the
hand, and when the person moves, there are radiation pattern changes
that occur. The hand motion tracking has several use cases such as to
monitor walking, running, climbing, sleeping, and dancing. With the
movements, the coordinate or position of the antenna changes, which

91

Full text available at: http://dx.doi.org/10.1561/3500000018

92 Crossbars for Real-Time EM Applications

Figure 8.1: 12 cylinder body model with antenna A2 fixed on the front side of the
body: (a) Antenna A1 fixed on right hand and position P1 and, (b) Antenna A1
fixed on right hand and position P2.

can be captured from the transmission characteristics of the antenna as
outlined in works by George et al. [22] and Pavithran et al. [54].

In the past, most human monitoring of human activity relied on
cameras. However, cameras are often expensive and unreliable as they
can be impacted by line-of-sight issues. They are also not practical for
use in real-world settings as injuries may occur.

Alternatively, the use of antenna-based position classification is
a safer, more accurate and cheaper alternative. Since the antennas
along with the crossbar integrate as a wearable, the detections and
classification can happen within the device without the need to have
an additional computational unit. The neural networks such as GAN
can be used for generating transmission characteristics from antennas
(particularly hand swing activity) for training the networks. The analysis
showed that ANN models showed superior accuracy over other ML
algorithms such as Random Forest, DT and SVM, which makes them
promising for use in crossbar architectures.

Full text available at: http://dx.doi.org/10.1561/3500000018

8.2. Parasitic Effects Prediction in On-Chip-Antennas 93

8.2 Parasitic Effects Prediction in On-Chip-Antennas

With the advent of wireless communication systems and the requirement
for compact, efficient, and wearable devices, a huge demand exists
for On-Chip-Antennas (OCA). OCAs are highly essential in various
applications including security or safety, sports, medical, and space
applications where miniaturization of devices is important. In contrast
with the conventional antennas that exist off-chip, the OCAs are directly
integrated into the silicon substrate, reducing the overall size of the
entire system. However, the performance of OCAs is often compromised
by the parasitic effects that arise with the interaction of the antenna
with the packaging.

Packaging is essential as it protects against electromagnetic inter-
ference (EMI) and the external environment, ensuring the integrity of
electrical connections and providing heat management. The packaging
materials and structure play a significant role in introducing parasitic
effects which vary the antenna performance factors like operating fre-
quency, bandwidth, radiation efficiency, and gain. Understanding the
effects of parasitics that arise with the packaging of OCAs helps in
performance optimization by providing proper compensation.

The parasitic effects of OCAs increase as the operating frequency
approaches the sub-terahertz range. In this context, machine learning
(ML) techniques, and in particular neural networks, can be utilized as a
promising solution for minimizing the parasitic effects due to packaging
in OCAs.

The proposed work demonstrates the potential of artificial neural
networks (ANNs) in the performance optimization of OCAs, providing
an efficient solution for predicting the parasitic effects that arise with
packaging. This is done by training the ANN with datasets of square
spiral antenna operating in a sub-terahertz frequency range wrapped
in a QFN package using Ansys HFSS. This allows the model to learn
the correlation between the antenna design parameters and the key
performance metrics [52].

Full text available at: http://dx.doi.org/10.1561/3500000018

94 Crossbars for Real-Time EM Applications

8.3 Prediction of 3D Printed Substrate’s Dielectric Constant Using
Artificial Neural Network

The characterization of materials is of great significance in the field of
avionics, aerospace, consumer wearables and biomedical applications.
Techniques like time-domain spectroscopy, probes, and network ana-
lyzers are used for analyzing material characteristics. The Keysight
N1501A high-temperature dielectric probe kit and SPEAG’s dielectric
assessment kits are some examples of dielectric measurement equipment
available in the market.

In this work, the transmission line is designed on FR4, PLA, TPU,
and cardboard material. The S-parameters are analyzed using a vector
network analyzer and are applied to Kramer’s Kronig algorithm to
obtain the dielectric constant. The S-parameter data and the dielectric
constant value obtained from Kramer’s Kronig algorithm for four sub-
strates, namely FR4, TPU, PLA, and cardboard material, are trained
on an ANN to predict the dielectric constant of an unknown material
by effectively modeling the relationship between S-parameters and the
material’s electromagnetic properties. The predictions from the ANN
model are crucial for designing and optimizing the 3D-printed patch
antennas since the antenna’s performance is highly dependent on the
material parameters. Furthermore, this prediction capability reduces
the trial and error needed when designing antennas based on new or
non-traditional 3D-printed substrates. The ANN, once trained, can offer
a fast and reliable means for the estimation of dielectric characteristics,
which can further automate the selection of substrate material. In the
validation stage, a patch antenna is designed using the design equations
to operate at 2.4 GHz with the dielectric constant predicted by ANN
for the PLA substrate. This is modelled in Ansys HFSS and then fabri-
cated on a PLA substrate which is 3D printed [53]. The block diagram
shown in Figure 8.2 depicts the workflow for designing antenna from a
predicted dielectric constant with ANN.

Full text available at: http://dx.doi.org/10.1561/3500000018

8.4. Cloth Size Prediction using Memristive Crossbar Array 95

Figure 8.2: Block diagram showing the workflow of designing antenna from predicted
dielectric constant from artificial neural networks.

Figure 8.3: Block diagram showing cloth size prediction using transmission charac-
teristics from #Ant1 and #Ant2 and 3D memristive crossbar array.

8.4 Cloth Size Prediction using Memristive Crossbar Array

The prediction of cloth size using the transmission values from antennas
and memristive crossbar array is discussed in George et al. [21]. Figure
8.3 shows the block diagram detailing the prediction of cloth size from
the transmission characteristics of the antenna and its classification

Full text available at: http://dx.doi.org/10.1561/3500000018

96 Crossbars for Real-Time EM Applications

using 3D memristive crossbar array. George et al. [21] analyzes the
creeping waves around the human torso by conducting experiments
on a human volunteer. The transmitter #Ant1 is fixed on the front
side of the volunteer and #Ant2 is moved around the body to study
the creeping characteristics of EM waves. It is noted that EM waves
decay as they propagate away from the transmitter antenna. A peak is
observed when transmitter and receiver antennas are directly opposite
to each other due to the constructive interference of the EM waves. The
transmission data is given as input to the 3D memristive crossbar array
for the classification of size as Large L, Medium M and Small S.

8.5 Imaging Techniques for Antenna Radiation Pattern

The works reported so far discuss the prediction of the radiation patterns
of the antenna from the designed structure of the antenna. In this work,
we take images of 3D radiation patterns of different types of antennas
available in the literature and extract features from these images. We
use pixel sampling, where different window shapes are employed to
extract information from the 3D radiation pattern of the antenna. With
these extracted features, we predict the type of antenna corresponding
to the radiation pattern.

8.5.1 General Purpose Image Processing

Memristive crossbars perform weighted summation operations similar
to convolution operations when images are used as inputs. Here, each
column of a crossbar can be used for representing the weights of a filter.
The image pixels can be considered as voltages applied to the rows of
the crossbar, and the output current represents the filtered value.

Let us start with a image vector segment represented by a 3 × 3
matrix X:

X =

x11 x12 x13
x21 x22 x23
x31 x32 x33

Full text available at: http://dx.doi.org/10.1561/3500000018

8.5. Imaging Techniques for Antenna Radiation Pattern 97

This can be vectorized as column vector v:

v =

x11
x12
x13
x21
x22
x23
x31
x32
x33

Here, v is the pixel values of the image segment that are applied as

voltages across the crossbar rows.
Now, consider a filter kernel K:

K =

k11 k12 k13
k21 k22 k23
k31 k32 k33

That can be vectorized as w:

w =

k11
k12
k13
k21
k22
k23
k31
k32
k33

This represents the conductance values G of a memristor column in

the crossbar. Then we calculate the output current Iout as:

Iout =
9∑

i=1
GiVi

Full text available at: http://dx.doi.org/10.1561/3500000018

98 Crossbars for Real-Time EM Applications

where Gi is the i-th memristor in the column, representing the filter
weights and Vi is the applied voltage in the i-th row for the pixel value
vi.

In the vector form, this is:

Iout = G · v =
9∑

i=1
Givi

This is nothing but a generalized convolution operation between the
filter kernel and the image patch. So every crossbar can be considered
as a pack of filters, that can all be processed in parallel. Hence, the
crossbar can be considered as a parallel processor for image filtering
operations, thereby providing an energy-efficient way to perform analog
image processing on chip.

8.5.2 Advanced Pixel Sampling Techniques Using Memristive Cross-
bars

The use of crossbars has been largely for image classification [38], show-
casing the efficiency of memristor crossbars in performing convolutional
operations. It is also shown to be useful for edge detection in images
[79]. Usually, the filter window shape is limited to square or rectangular.
The filter size is also fixed during the operations. In fact, due to this
rigid structure, preserving the edge structure often becomes difficult.

Exploring different shaped windows in convolution operations with
various types of kernels, such as rectangular, circular, elliptical, and
cross-shaped windows, extends the idea of extracting and identifying
features that are usually not observed by square or rectangular windows.
The general convolution operation on a 2D image array I and a filter
kernel K for a convolution at pixel location (i, j) can be written as:

Ifiltered(i, j) =
a∑

m=−a

b∑
n=−b

K(m, n) · I(i + m, j + n), (8.1)

where: I(i + m, j + n) is the neighboring pixel values centered at (i, j),
K(m, n) are the kernel weights, and a and b represent half the height
and width of the kernel, respectively.

Full text available at: http://dx.doi.org/10.1561/3500000018

8.5. Imaging Techniques for Antenna Radiation Pattern 99

A rectangular filter share is the most common with h × w sized
rectangular filter K:

K =

k11 k12 · · · k1w

k21 k22 · · · k2w
...

...
kh1 kh2 · · · khw

Then the image convolution at (i, j):

Ifiltered(i, j) =
a∑

m=−a

b∑
n=−b

K(m + a, n + b) · I(i + m, j + n), (8.2)

where a = ⌊h/2⌋ and b = ⌊w/2⌋.
Now, changing the shape to a circular filter, of radius R, the convo-

lution of neighboring pixels (m, n) that fall within the circle centered
at (i, j) is considered:

(m − i)2 + (n − j)2 ≤ R2. (8.3)

Therefore, the convolution becomes:

Ifiltered(i, j) =
R∑

m=−R

R∑
n=−R

K(m, n)·I(i+m, j+n) if (m2+n2) ≤ R2.

(8.4)
This leads to isotropic smoothing and, in comparison to a square

or rectangular window, will have reduced boundary artifacts caused by
squared edges.

An elliptical filter is another filter shape that has a major axis a

and a minor axis b, and is centered at (i, j):

(m − i)2

a2 + (n − j)2

b2 ≤ 1. (8.5)

The elliptical filter kernel is then:

Ifiltered(i, j) =
a∑

m=−a

b∑
n=−b

K(m, n) · I(i + m, j + n) if m2

a2 + n2

b2 ≤ 1.

(8.6)

Full text available at: http://dx.doi.org/10.1561/3500000018

100 Crossbars for Real-Time EM Applications

This shape is also anisotropic filtering, however, it is more dominant
along a particular axis.

Yet another possibility is a cross-shaped filter that can give focus to
junctions or edges. Lets consider a cross kernel K:

K =

0 1 0
1 1 1
0 1 0

In this case, the convolution operation only needs to consider the

non-zero weights as:

Ifiltered(i, j) =
∑
m,n

K(m,n)̸=0

K(m, n) · I(i + m, j + n). (8.7)

Hence, this is more useful for detecting intersections or enhancing
both vertical and horizontal edges.

Some of the traditional ways of implementing filters in memristors
include a framework for noise reduction in images using memristor-
based median filtering, highlighting the potential of memristor crossbars
in implementing traditional filtering algorithms [31]. Wang et al. [68]
demonstrated the effectiveness of memristor crossbar arrays in imple-
menting Laplacian and Gaussian filters for image enhancement tasks.

It can be observed that changing the shape of the filter has a strong
influence on the way image features are obtained. It can reveal new
information that is usually not available with traditional rectangular
shaped filters. Memristive crossbars can accommodate flexible filter
shapes by switching ON or OFF the desired or undesired nodes. In fact,
a more generalised approach would be to have a random dropout in the
weight/filter values, which can give irregular filter structures as well.

8.5.3 Predicting Antenna Type from 3D Radiation Patterns

The most common types of radiation patterns of antennas include: a)
the broadside radiation pattern generated by patch antennas, (b) the
omnidirectional radiation pattern given by dipole antennas, and (c) the
omnidirectional radiation pattern without vertical symmetry produced
by monopole antennas. Patch antennas give a broadside radiation due

Full text available at: http://dx.doi.org/10.1561/3500000018

8.5. Imaging Techniques for Antenna Radiation Pattern 101

to the presence of a metallic ground plane on the bottom side of the
substrate. The maximum gain will be directed along the broadside
direction. In the case of the dipole antenna, it has two nulls along the
vertical direction of the antennas and the monopole antenna depicts
two nulls along its direction like dipole but the radiation pattern is not
vertically symmetrical.

Figure 8.4 shows the requirement of predicting antenna types. The
prediction of antenna patterns from encapsulated devices helps engineers
to analyze the design even if the device cannot be opened, as depicted
in Figure 8.4a. The design of the antenna based on the area it has to
cover can be easily implemented if the neural network is trained with
various types of radiation patterns as represented in Figure 8.4b. The
EM (electromagnetic) scanner can also be used as a tool for school
students to learn about antenna types. Figure 8.4 shows the device
envisioned to predict antenna types from the radiation pattern, and the
pixel circuit with three transistors is depicted in Figure 8.4e.

In this section, the simulation results of predicting antenna type
based on 3D radiation pattern using a) CNN, b) YOLO, c) Decision Tree,
d) VG-19, e) Random Forest, f) KNN, and g) Naive Bayes are discussed.
These algorithms are trained and tested using Dipole, Monopole and
Patch antenna patterns and their precision, and recall that F1 scores
for both with and without noise are recorded. In addition, the accuracy
of each system is tested. Table 8.1 [24] represents the testing accuracy
of antenna pattern recognition systems without noise impact. Table 8.2
[24] represents the testing accuracy results of Gaussian noise.

Table 8.1: Testing accuracy results using various algorithms in antenna patterns.

SlNo. Algorithms used Without adding noise in Antenna patterns
Precision Recall F1 Score Accuracy

1. CNN 0.98 1 0.98 0.99
2. YOLO-V8 1 1 1 1
3. Decision Tree 0.98 0.95 0.95 0.98
4. VGG-19 1 1 1 1
5. Random Forest 1 1 1 1
6. KNN 1 1 1 1
7. Naive Bayes 0.77 0.93 0.63 0.70

Full text available at: http://dx.doi.org/10.1561/3500000018

102 Crossbars for Real-Time EM Applications

Figure 8.4: Image depicting applications of predicting antenna type: (a) Prediction
of radiation pattern from encapsulated device, (b) Design of antenna based on
required radiation pattern, (c) Learning device for school students to learn antenna
types. EM Scanner: (d) Device to visualize radiation pattern and predict antenna
type and (e) Pixel circuit with three transistors.

Table 8.2: Accuracy results of Gaussian noise testing on various algorithms.

SlNo. Algorithms used Impact of Gaussian Noise
Precision Recall F1 Score Accuracy

1. CNN 1.00 1.00 0.99 1.00
2. YOLO-V8 1 1 1 1
3. Decision Tree 0.99 0.98 0.97 0.97
4. VGG-19 1 1 1 1
5. Random Forest 1 1 1 1
6. KNN 1 1 1 1
7. Naive Bayes 0.87 0.93 0.77 0.88

Full text available at: http://dx.doi.org/10.1561/3500000018

9
Summary

The crossbar configuration using memristors can simplify the MAC oper-
ation implementation. This enables analog-based energy-efficient neural
networks on chip. The memristor switching exhibits properties similar to
biological synapses which enables neuromorphic applications. However,
these implementations face practical challenges such as variability and
aging effects, making integration with CMOS challenging.

The fabrication complexities and scalability constraints can pose
significant challenges to make the on-chip implementations feasible.
Minimizing fabrication defects, 3D configurations of crossbar, and scaling
are critical issues. The adoption of open-source PDKs and collaborative
frameworks can help to standardize the process, democratize the designs,
improve device consistency, and ultimately lower costs.

The compatibility and integration challenges with CMOS technolo-
gies and emerging beyond-CMOS are critical. The integration with
emerging technologies such as quantum computing could unlock novel
computing paradigms capable of overcoming current system-level limi-
tations. Adaptive learning algorithms and training can overcome mem-
ristor variability-induced inaccuracies. The use of pruning, dropout, and
reinforcement learning could improve the reliability and robustness.

103

Full text available at: http://dx.doi.org/10.1561/3500000018

104 Summary

In summary, while there are several challenges, mitigating device
variability, fabrication and scalability challenges, and refining integration
and training methods can lead to reliable implementations. Once these
challenges are overcome, the memristor crossbars can build efficient and
adaptable AI hardware that can drive advancements in real-time and
neuromorphic applications.

Full text available at: http://dx.doi.org/10.1561/3500000018

Acknowledgements

The author is grateful to the graduate students Aswani AR, Vineeta Nair,
Sruthi P, Aleena Kabeer, Anitha Gopi, Shilpa P, and the postdoctoral
fellow Elizabeth George for their reviews and feedback.

105

Full text available at: http://dx.doi.org/10.1561/3500000018

References

[1] S. Afshari, M. Musisi-Nkambwe, and I. S. Esqueda, “Analyzing
the impact of memristor variability on crossbar implementation
of regression algorithms with smart weight update pulsing tech-
niques,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 69, no. 5, 2022, pp. 2025–2034.

[2] F. Aguirre, A. Sebastian, M. Le Gallo, W. Song, T. Wang, J. J.
Yang, W. Lu, M.-F. Chang, D. Ielmini, Y. Yang, et al., “Hardware
implementation of memristor-based artificial neural networks,”
Nature communications, vol. 15, no. 1, 2024, p. 1974.

[3] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, “Memristor
model comparison,” IEEE Circuits and Systems Magazine, vol. 13,
no. 2, 2013, pp. 89–105.

[4] J. Ballmaier, S. Walfort, and M. Salinga, “Resistance drift of phase
change materials beyond the power law,” Advanced Electronic
Materials, 2025, p. 2 400 905.

[5] D. Biolek and Z. Biolek, “Predictive models of nanodevices,” IEEE
Transactions on Nanotechnology, vol. 17, no. 5, 2018, pp. 906–913.

[6] D. Biolek, Z. Kolka, V. Biolková, Z. Biolek, M. Potrebić, and D.
Tošić, “Modeling and simulation of large memristive networks,”
International Journal of Circuit Theory and Applications, vol. 46,
no. 1, 2018, pp. 50–65.

106

Full text available at: http://dx.doi.org/10.1561/3500000018

References 107

[7] I. Boybat, M. Le Gallo, S. Nandakumar, T. Moraitis, T. Par-
nell, T. Tuma, B. Rajendran, Y. Leblebici, A. Sebastian, and
E. Eleftheriou, “Neuromorphic computing with multi-memristive
synapses,” Nature communications, vol. 9, no. 1, 2018, pp. 1–12.

[8] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Sneak-path constraints
in memristor crossbar arrays,” in 2013 IEEE International Sym-
posium on Information Theory, IEEE, pp. 156–160, 2013.

[9] I. Chakraborty, M. Ali, A. Ankit, S. Jain, S. Roy, S. Sridharan,
A. Agrawal, A. Raghunathan, and K. Roy, “Resistive crossbars
as approximate hardware building blocks for machine learning:
Opportunities and challenges,” Proceedings of the IEEE, vol. 108,
no. 12, 2020, pp. 2276–2310.

[10] Y.-F. Chang, Memristors-The Fourth Fundamental Circuit
Element-Theory, Device, and Applications. IntechOpen, 2024.

[11] J. Chen, J. Li, Y. Li, and X. Miao, “Multiply accumulate opera-
tions in memristor crossbar arrays for analog computing,” Journal
of Semiconductors, vol. 42, no. 1, 2021.

[12] F. Chollet et al. (2015). “Keras,” url: https ://github .com/
fchollet/keras.

[13] L. Chua, “Memristor-the missing circuit element,” IEEE Trans-
actions on circuit theory, vol. 18, no. 5, 1971, pp. 507–519.

[14] L. Chua, “Memristor, hodgkin–huxley, and edge of chaos,” Nan-
otechnology, vol. 24, no. 38, 2013.

[15] L. O. Chua, “Memristors on ‘edge of chaos’,” Nature Reviews
Electrical Engineering, vol. 1, no. 9, 2024, pp. 614–627.

[16] F. Corinto, “Memristor computing systems: At the crossroad
between circuit theory and artificial intelligence,” in Intelligence
in Chip: Integrated Sensors and Memristive Computing, River
Publishers, 2024, pp. 176–194.

[17] F. Corinto, P. P. Civalleri, and L. O. Chua, “A theoretical approach
to memristor devices,” IEEE Journal on Emerging and Selected
Topics in Circuits and Systems, vol. 5, no. 2, 2015, pp. 123–132.

[18] S. Duan, X. Hu, Z. Dong, L. Wang, and P. Mazumder, “Memristor-
based cellular nonlinear/neural network: Design, analysis, and
applications,” IEEE transactions on neural networks and learning
systems, vol. 26, no. 6, 2014, pp. 1202–1213.

Full text available at: http://dx.doi.org/10.1561/3500000018

https://github.com/fchollet/keras
https://github.com/fchollet/keras

108 References

[19] J. K. Eshraghian, X. Wang, and W. D. Lu, “Memristor-based
binarized spiking neural networks: Challenges and applications,”
IEEE Nanotechnology Magazine, vol. 16, no. 2, 2022, pp. 14–23.

[20] Y. Fang, Z. Yu, Z. Wang, T. Zhang, Y. Yang, Y. Cai, and R. Huang,
“Improvement of hfox-based rram device variation by inserting
ald tin buffer layer,” IEEE Electron Device Letters, vol. 39, no. 6,
2018, pp. 819–822. doi: 10.1109/LED.2018.2831698.

[21] E. George, S. Pallathuvalappil, and A. James, “Smart clothing
using antenna and memristive ann,” in 2024 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2024. doi:
10.1109/ISCAS58744.2024.10558107.

[22] E. George, A. Radhakrishnan, and A. James, “Antenna based
classification of posture positions using 1t1m crossbar arrays,” in
2023 18th International Workshop on Cellular Nanoscale Networks
and their Applications (CNNA), pp. 1–4, 2023. doi: 10.1109/
CNNA60945.2023.10652784.

[23] A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney, and
K. Keutzer, “Ai and memory wall,” IEEE Micro, 2024.

[24] A. Gopi, E. George, R. Rahul, and A. James, “Ai for antenna
design re-engineering: Yes, radiation patterns predict antenna
structures!” In 2024 IEEE 6th International Conference on AI
Circuits and Systems (AICAS), IEEE, pp. 66–70, 2024.

[25] W. Ham, Y.-W. Song, J. H. Yoon, S. Lee, J.-M. Park, J. Lee,
and J.-Y. Kwon, “Surface roughness engineering for improvement
of cycle-to-cycle variability of rram,” Applied Surface Science,
vol. 670, 2024.

[26] T. Hennen, L. Brackmann, T. Ziegler, S. Siegel, S. Menzel, R.
Waser, D. J. Wouters, and D. Bedau, “Synaptogen: A cross-
domain generative device model for large-scale neuromorphic
circuit design,” IEEE Transactions on Electron Devices, 2024.

[27] M. Itoh and L. Chua, “Memristor cellular automata and memristor
discrete-time cellular neural networks,” Handbook of Memristor
Networks, 2019, pp. 1289–1361.

Full text available at: http://dx.doi.org/10.1561/3500000018

https://doi.org/10.1109/LED.2018.2831698
https://doi.org/10.1109/ISCAS58744.2024.10558107
https://doi.org/10.1109/CNNA60945.2023.10652784
https://doi.org/10.1109/CNNA60945.2023.10652784

References 109

[28] A. P. James and L. O. Chua, “Variability-aware memristive cross-
bars—a tutorial,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 69, no. 6, 2022, pp. 2570–2574. doi: 10.1109/
TCSII.2022.3169416.

[29] A. James, “Energy efficiency and design challenges in analogue
memristive chips,” Nature Reviews Electrical Engineering, vol. 1,
no. 1, 2024, pp. 6–7.

[30] A. P. James and L. O. Chua, “Analog neural computing with
super-resolution memristor crossbars,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 68, no. 11, 2021,
pp. 4470–4481. doi: 10.1109/TCSI.2021.3079980.

[31] X. Ji, Z. Dong, G. Zhou, C. S. Lai, Y. Yan, and D. Qi, “Mem-
ristive system based image processing technology: A review and
perspective,” Electronics, vol. 10, no. 24, 2021.

[32] Y. N. Joglekar and S. J. Wolf, “The elusive memristor: Properties
of basic electrical circuits,” European Journal of physics, vol. 30,
no. 4, 2009.

[33] T. Kamsma, R. van Roij, and C. Spitoni, “A simple mathematical
theory for simple volatile memristors and their spiking circuits,”
Chaos, Solitons & Fractals, vol. 186, 2024, pp. 115–320.

[34] O. Krestinskaya, A. Irmanova, and A. P. James, “Memristive
non-idealities: Is there any practical implications for designing
neural network chips?” In 2019 IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1–5, 2019. doi: 10.1109/
ISCAS.2019.8702245.

[35] R. Kumar, A. Chordia, A. Aswani, A. James, and J. N. Tripathi,
“Uncertainty quantification of memristor crossbar array for vector
matrix multiplication,” in 2021 IEEE 25th Workshop on Signal
and Power Integrity (SPI), pp. 1–4, 2021. doi: 10.1109/SPI52361.
2021.9505193.

[36] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser,
“Team: Threshold adaptive memristor model,” IEEE transactions
on circuits and systems I: regular papers, vol. 60, no. 1, 2012,
pp. 211–221.

Full text available at: http://dx.doi.org/10.1561/3500000018

https://doi.org/10.1109/TCSII.2022.3169416
https://doi.org/10.1109/TCSII.2022.3169416
https://doi.org/10.1109/TCSI.2021.3079980
https://doi.org/10.1109/ISCAS.2019.8702245
https://doi.org/10.1109/ISCAS.2019.8702245
https://doi.org/10.1109/SPI52361.2021.9505193
https://doi.org/10.1109/SPI52361.2021.9505193

110 References

[37] J. Laydevant, L. G. Wright, T. Wang, and P. L. McMahon, “The
hardware is the software,” Neuron, vol. 112, no. 2, 2024, pp. 180–
183.

[38] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W.
Song, N. Dávila, C. E. Graves, et al., “Analogue signal and image
processing with large memristor crossbars,” Nature electronics,
vol. 1, no. 1, 2018, pp. 52–59.

[39] Y. Li and K.-W. Ang, “Hardware implementation of neuromorphic
computing using large-scale memristor crossbar arrays,” Advanced
Intelligent Systems, vol. 3, no. 1, 2021.

[40] X. Liu and Z. Zeng, “Memristor crossbar architectures for imple-
menting deep neural networks,” Complex & Intelligent Systems,
vol. 8, no. 2, 2022, pp. 787–802.

[41] X. Liu, Z. Zeng, and S. Wen, “Implementation of memristive
neural network with full-function pavlov associative memory,”
IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 63, no. 9, 2016, pp. 1454–1463.

[42] A. Mazady, M. T. Rahman, D. Forte, and M. Anwar, “Memristor
puf—a security primitive: Theory and experiment,” IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, vol. 5,
no. 2, 2015, pp. 222–229.

[43] I. Messaris, A. Ascoli, A. S. Demirkol, V. Ntinas, D. Prousalis,
and R. Tetzlaff, “High frequency response of volatile memristors,”
Advanced Electronic Materials, vol. 10, no. 12, 2024, p. 2 400 172.

[44] D. Mikhailenko, C. Liyanagedera, A. P. James, and K. Roy, “M2ca:
Modular memristive crossbar arrays,” in 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2018. doi:
10.1109/ISCAS.2018.8351112.

[45] D. J. Mountain, M. R. McLean, and C. D. Krieger, “Memristor
crossbar tiles in a flexible, general purpose neural processor,”
IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, vol. 8, no. 1, 2017, pp. 137–145.

[46] V. V. Nair, E. George, and A. James, “Real-time tumor detec-
tion using electromagnetic signals with memristive echo state
networks,” IEEE Internet of Things Journal, vol. 11, no. 20, 2024,
pp. 33 712–33 721. doi: 10.1109/JIOT.2024.3432763.

Full text available at: http://dx.doi.org/10.1561/3500000018

https://doi.org/10.1109/ISCAS.2018.8351112
https://doi.org/10.1109/JIOT.2024.3432763

References 111

[47] V. V. Nair, C. Reghuvaran, D. John, B. Choubey, and A. James,
“Essm: Extended synaptic sampling machine with stochastic echo
state neuro-memristive circuits,” IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 13, no. 4, 2023,
pp. 965–974. doi: 10.1109/JETCAS.2023.3328875.

[48] V. V. Nair, A. P, and A. James, “High voltage transformer condi-
tion monitoring using memristive echo state networks,” in 2024
IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–5, 2024. doi: 10.1109/ISCAS58744.2024.10558533.

[49] M. Nelson and J. Rinzel, “The hodgkin-huxley model,” The book
of genesis, vol. 2, 1995.

[50] S. Pallathuvalappil, R. Kottappuzhackal, and A. James, “Explain-
able model prediction of memristor,” IEEE Open Journal of the
Industrial Electronics Society, 2024.

[51] G. Papandroulidakis, A. Serb, A. Khiat, G. V. Merrett, and
T. Prodromakis, “Practical implementation of memristor-based
threshold logic gates,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 66, no. 8, 2019, pp. 3041–3051.

[52] S. Pavithran, E. George, and A. P. James, “Parasitic effects
prediction in on-chip-antennas,” Banglore, India, 2024.

[53] S. Pavithran, A. Pramod, E. George, and A. P. James, “Prediction
of 3d printed substrate’s dielectric constant using artificial neural
network,” in Proceedings of the IEEE MAPCON 2024, Hyderabad,
India: IEEE, 2024.

[54] S. Pavithran, A. S, V. V. Nair, E. George, and A. P. James,
“Position monitoring of human hands using cross-slot antennas
and ai integration for hand swing activity analysis,” 2024.

[55] R. Pelke, F. Staudigl, N. Thomas, M. Hossein, N. Bosbach, J.
Cubero-Cascante, R. Leupers, and J. M. Joseph, “The show must
go on: A reliability assessment platform for resistive random
access memory crossbars,” Philosophical Transactions A, vol. 383,
no. 2288, 2025.

[56] PyMem Team, “PyMem python memristor,” 2023. url: https:
//github.com/ajiiit/PyMem.git (accessed on 06/15/2023).

Full text available at: http://dx.doi.org/10.1561/3500000018

https://doi.org/10.1109/JETCAS.2023.3328875
https://doi.org/10.1109/ISCAS58744.2024.10558533
https://github.com/ajiiit/PyMem.git
https://github.com/ajiiit/PyMem.git

112 References

[57] PyMem Team, Website User Manual, PyMem, 2023.
url: https : / / docs . google . com / document / d /
1kg93byTul19aAtU9jqySZc8rUovmX - GWpzAHIyPBp1c /
edit?usp=sharing.

[58] A. Radhakrishnan, S. Pallathuvalappil, B. Choubey, and A. James,
“Bridge memristor super-resolution crossbars,” IEEE Journal on
Emerging and Selected Topics in Circuits and Systems, vol. 12,
no. 4, 2022, pp. 944–951.

[59] A. Radhakrishnan, J. Palliyalil, S. Babu, A. Dorzhigulov, and
A. James, “Pymem: A graphical user interface tool for neuromem-
ristive hardware–software co-design,” IEEE Open Journal of the
Industrial Electronics Society, vol. 5, 2024, pp. 81–90. doi: 10.
1109/OJIES.2024.3363093.

[60] E. Salvador, M. Gonzalez, F. Campabadal, R. Rodriguez, and
E. Miranda, “Modeling and simulation of correlated cycle-to-cycle
variability in the current-voltage hysteresis loops of rram devices,”
IEEE Transactions on Nanotechnology, 2024.

[61] L. Shi, G. Zheng, B. Tian, B. Dkhil, and C. Duan, “Research
progress on solutions to the sneak path issue in memristor crossbar
arrays,” Nanoscale Advances, vol. 2, no. 5, 2020, pp. 1811–1827.

[62] D. Soudry, D. Di Castro, A. Gal, A. Kolodny, and S. Kvatinsky,
“Memristor-based multilayer neural networks with online gradient
descent training,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 26, no. 10, 2015, pp. 2408–2421.

[63] J. A. Starzyk et al., “Memristor crossbar architecture for syn-
chronous neural networks,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 61, no. 8, 2014, pp. 2390–2401.

[64] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams,
“The missing memristor found,” Nature, vol. 453, no. 7191, 2008,
pp. 80–83.

[65] T. Tanikawa, K. Ohnishi, M. Kanoh, T. Mukai, and T. Mat-
suoka, “Three-dimensional imaging of threading dislocations in
gan crystals using two-photon excitation photoluminescence,”
Applied Physics Express, vol. 11, no. 3, 2018. doi: 10.7567/APEX.
11.031004.

Full text available at: http://dx.doi.org/10.1561/3500000018

https://docs.google.com/document/d/1kg93byTul19aAtU9jqySZc8rUovmX-GWpzAHIyPBp1c/edit?usp=sharing
https://docs.google.com/document/d/1kg93byTul19aAtU9jqySZc8rUovmX-GWpzAHIyPBp1c/edit?usp=sharing
https://docs.google.com/document/d/1kg93byTul19aAtU9jqySZc8rUovmX-GWpzAHIyPBp1c/edit?usp=sharing
https://doi.org/10.1109/OJIES.2024.3363093
https://doi.org/10.1109/OJIES.2024.3363093
https://doi.org/10.7567/APEX.11.031004
https://doi.org/10.7567/APEX.11.031004

References 113

[66] A. Thomas, “Memristor-based neural networks,” Journal of
Physics D: Applied Physics, vol. 46, no. 9, 2013, p. 093 001.

[67] I. Vourkas, D. Stathis, G. C. Sirakoulis, and S. Hamdioui, “Alterna-
tive architectures toward reliable memristive crossbar memories,”
IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 24, no. 1, 2016, pp. 206–217. doi: 10.1109/TVLSI.2015.
2388587.

[68] L. Wang, Q. Meng, H. Wang, J. Jiang, X. Wan, X. Liu, X. Lian,
and Z. Cai, “Digital image processing realized by memristor-based
technologies,” Discover Nano, vol. 18, no. 1, 2023.

[69] Z. Wang, X. Wang, Z. Lu, W. Wu, and Z. Zeng, “The design of
memristive circuit for affective multi-associative learning,” IEEE
transactions on biomedical circuits and systems, vol. 14, no. 2,
2020, pp. 173–185.

[70] R. S. Williams and M. D. Pickett, “The art and science of con-
structing a memristor model,” in Memristors and Memristive
Systems, Springer, 2013, pp. 93–104.

[71] Q. Xia and J. J. Yang, “Memristive crossbar arrays for brain-
inspired computing,” Nature materials, vol. 18, no. 4, 2019,
pp. 309–323.

[72] L. Xie, H. A. Du Nguyen, M. Taouil, S. Hamdioui, and K. Bertels,
“Interconnect networks for memristor crossbar,” in Proceedings
of the 2015 IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH’15), IEEE, pp. 124–129, 2015.

[73] C. Yakopcic, M. Z. Alom, and T. M. Taha, “Extremely parallel
memristor crossbar architecture for convolutional neural network
implementation,” in 2017 International Joint Conference on Neu-
ral Networks (IJCNN), IEEE, pp. 1696–1703, 2017.

[74] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino,
“Memristor spice model and crossbar simulation based on devices
with nanosecond switching time,” in The 2013 International Joint
Conference on Neural Networks (IJCNN), IEEE, pp. 1–7, 2013.

[75] X. Yang, B. Taylor, A. Wu, Y. Chen, and L. O. Chua, “Research
progress on memristor: From synapses to computing systems,”
IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 69, no. 5, 2022, pp. 1845–1857.

Full text available at: http://dx.doi.org/10.1561/3500000018

https://doi.org/10.1109/TVLSI.2015.2388587
https://doi.org/10.1109/TVLSI.2015.2388587

114 References

[76] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang,
and H. Qian, “Fully hardware-implemented memristor convolu-
tional neural network,” Nature, vol. 577, no. 7792, 2020, pp. 641–
646.

[77] S. Zhang, G. L. Zhang, B. Li, H. H. Li, and U. Schlichtmann,
“Aging-aware lifetime enhancement for memristor-based neuro-
morphic computing,” in 2019 Design, Automation Test in Eu-
rope Conference Exhibition (DATE), pp. 1751–1756, 2019. doi:
10.23919/DATE.2019.8714954.

[78] Y. Zhang, X. Wang, and E. G. Friedman, “Memristor-based
circuit design for multilayer neural networks,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 65, no. 2, 2018,
pp. 677–686.

[79] S. Zhu, L. Wang, Z. Dong, and S. Duan, “Convolution kernel
operations on a two-dimensional spin memristor cross array,”
Sensors, vol. 20, no. 21, 2020.

[80] M. A. Zidan, Y. Jeong, J. Lee, B. Chen, S. Huang, M. J. Kushner,
and W. D. Lu, “A general memristor-based partial differential
equation solver,” Nature Electronics, vol. 1, no. 7, 2018, pp. 411–
420.

Full text available at: http://dx.doi.org/10.1561/3500000018

https://doi.org/10.23919/DATE.2019.8714954

