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Abstract

Relevance is the most important factor to assure users’ satisfaction
in search and the success of a search engine heavily depends on its
performance on relevance. It has been observed that most of the
dissatisfaction cases in relevance are due to term mismatch between
queries and documents (e.g., query “ny times” does not match well
with a document only containing “New York Times”), because term
matching, i.e., the bag-of-words approach, still functions as the main
mechanism of modern search engines. It is not exaggerated to say,
therefore, that mismatch between query and document poses the
most critical challenge in search. Ideally, one would like to see query
and document match with each other, if they are topically relevant.
Recently, researchers have expended significant effort to address the
problem. The major approach is to conduct semantic matching, i.e.,
to perform more query and document understanding to represent the
meanings of them, and perform better matching between the enriched
query and document representations. With the availability of large
amounts of log data and advanced machine learning techniques, this
becomes more feasible and significant progress has been made recently.
This survey gives a systematic and detailed introduction to newly
developed machine learning technologies for query document matching
(semantic matching) in search, particularly web search. It focuses on
the fundamental problems, as well as the state-of-the-art solutions of
query document matching on form aspect, phrase aspect, word sense
aspect, topic aspect, and structure aspect. The ideas and solutions
explained may motivate industrial practitioners to turn the research
results into products. The methods introduced and the discussions
made may also stimulate academic researchers to find new research
directions and approaches. Matching between query and document is
not limited to search and similar problems can be found in question
answering, online advertising, cross-language information retrieval,
machine translation, recommender systems, link prediction, image
annotation, drug design, and other applications, as the general task of
matching between objects from two different spaces. The technologies
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introduced can be generalized into more general machine learning
techniques, which is referred to as learning to match in this survey.

H. Li and J. Xu. Semantic Matching in Search. Foundations and Trends R⃝ in
Information Retrieval, vol. 7, no. 5, pp. 343–469, 2013.
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1
Introduction

1.1 Query Document Mismatch

A successful search engine must be good at relevance, coverage, fresh-
ness, response time, and user interface. Among them, relevance [156,
171, 157] is the most important factor, which is also the focus of this
survey.

This survey mainly takes general web search as example. The issues
discussed are not limited to web search, however; they exist in all the
other searches such as enterprise search, desktop search, as well as
question answering.

Search still heavily relies on the bag-of-words approach or term
based approach. That is, queries and documents are represented as bags
of words (terms), documents are indexed based on document terms,
‘relevant’ documents are retrieved based on query terms, the relevance
scores between queries and retrieved documents are calculated on the
basis of matching degrees between query terms and document terms,
and finally the retrieved documents are ranked based on the relevance
scores. This simple approach works quite well in practice and it still
forms the foundation of modern search systems [131, 52, 6].

3
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4 Introduction

Table 1.1: Examples of query document mismatch.

query document term
match

semantic
match

seattle best hotel seattle best hotels partial yes
pool schedule swimming pool schedule partial yes
natural logarithm trans-
form

logarithm transform partial yes

china kong china hong kong partial no
why are windows so ex-
pensive

why are macs so expen-
sive

partial no

The bag-of-words approach also has limitations, however. It some-
times suffers from the query document mismatch drawback. For the
majority of the cases of dissatisfaction reported at a commercial web
search engine, in which users complain they cannot find information
while the information does exist in the system, the reasons are due to
mismatch between queries and documents. Similar trends are observed
in other studies (cf., [206, 207])

A high matching degree at term level does not necessarily mean
high relevance, and vice versa. For example, if the query is “ny times”
and the document only contains “New York Times”, then the matching
degree of the query and the document at term level is low, although
they are relevant. More examples of query document mismatch are
given in Table 1.1.1

Query document mismatch occurs, when the searcher and author
use different terms (representations) to describe the same concept, and
this phenomenon is prevalent due to the nature of human language, i.e.,
the same meaning can be represented by different expressions and the
same expression can represent different meanings. According to Furnas
et al., on average 80-90% of the times, two people will name the same
concept with different representations [67].

1China Kong is an American actor.
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1.2. Semantic Matching in Search 5

Table 1.2: Queries about “distance between sun and earth”.

“how far” earth sun average distance from the earth to the sun
“how far” sun how far away is the sun from earth
average distance earth sun average distance from earth to sun
how far from earth to sun distance from earth to the sun
distance from sun to earth distance between earth and the sun
distance between earth & sun distance between earth and sun
how far earth is from the sun distance from the earth to the sun
distance between earth sun distance from the sun to the earth
distance of earth from sun distance from the sun to earth
“how far” sun earth how far away is the sun from the earth
how far earth from sun distance between sun and earth
how far from earth is the sun how far from the earth to the sun
distance from sun to the earth

Table 1.2 shows example queries representing the same search need
“distance between sun and earth” and Table 1.3 shows example queries
representing the same search need “Youtube”, collected from the search
log of a commercial search engine [117]. Ideally, we would like to see
the search system return the same results for the different variants of
the queries. Web search engines, however, still cannot effectively satisfy
the requirement. This is another side of the mismatch problem.

In web search, query document mismatch more easily occurs on
tail pages and tail queries. This is because for head pages and head
queries, usually there is more information attached to them. A head
page may have a large number of anchor texts and associated queries
in search log and they provide with the page different representations.
The matching degree will be high, if the query matches with any
of the representations. This seldom happens to a tail page, however.
Mismatch, thus, is a typical example of the long tail challenge in search.

1.2 Semantic Matching in Search

The fundamental reason for mismatch is that no language analysis is
conducted in search. Language understanding by computer is hard,

Full text available at: http://dx.doi.org/10.1561/1500000035



6 Introduction

Table 1.3: Queries about “Youtube”.

yutube yuotube yuo tube
ytube youtubr yu tube
youtubo youtuber youtubecom
youtube om youtube music videos youtube videos
youtube youtube com youtube co
youtub com you tube music videos yout tube
youtub you tube com yourtube your tube
you tube you tub you tube video clips
you tube videos www you tube com wwww youtube com
www youtube www youtube com www youtube co
yotube www you tube www utube com
ww youtube com www utube www u tube
utube videos utube com utube
u tube com utub u tube videos
u tube my tube toutube
outube our tube toutube

however, if not impossible. A more realistic approach beyond bag-of-
words, referred to as semantic matching in this survey, would be to
conduct more query analysis and document analysis to represent the
meanings of the query and the document with richer representations
and then perform query document matching with the representations.
The analysis may include term normalization, phrase analysis, word
sense analysis, topic analysis, and structure analysis, and the matching
may be performed on form aspect, phrase aspect, word sense aspect,
topic aspect, and structure aspect, as shown in Figure 1.1. Intuitively,
if the meanings of the query and the document represented by the
aspects are the same, then they should match each other well and
thus be regarded relevant. In practice, the more aspects of the query
and document can match, the more likely the query and document
are relevant. With semantic matching, we can expect that the query
document mismatch challenge can be successfully conquered.

Full text available at: http://dx.doi.org/10.1561/1500000035



1.2. Semantic Matching in Search 7

Term normalization, including word segmentation for Asian lan-
guages, compounding for European languages, spelling error correction
for European languages, should usually be carried out before query
document matching. We refer to term normalization as matching on
the form aspect. Query document matching on the phrase aspect means
that the two should match at phrase level, not word level. For example,
if the query is “hot dog”, then it should be recognized as a phrase
and match the exactly same phrase in the document, but should not
separately match words “hot” and “dog” in the document. Matching on
the word sense aspect is to have phrases in the query and the document
having the same sense match each other. For example, “ny” should
match “New York”. If the query and the document have the same
topics, then they should match on the topic aspect. For example, if the
query is “microsoft office” and the document is about Microsoft Word,
PowerPoint, and Excel, then the two should match in terms of topic.
Query and document can also match on the structure aspect, where
structure means linguistic structure. For example, the query “distance
between sun and earth” matches with the document title “how far
is sun from earth” (note that the two expressions have very different
linguistic structures).

We can also consider query document matching on other aspects,
for example, semantic class and named entity. We will discuss this in
Section 9 on conclusion and open problems.

Semantic matching is also a term used in other fields in computer
science, which represents a notion different from this survey. Given two
graph-like structures, e.g., two database schemas, semantic matching
is defined as an operator that identifies the nodes in the two structures
which semantically correspond to each other [73].

Semantic matching also differs from the so-called semantic search,
which has different definitions by different researchers. One of them
is aimed at enriching search results of a conventional search system,
by using information from semantic web (e.g., [77]). For example,
the search result of query “yo-yo ma” is augmented by the cellist’s
image, concert schedule, music albums, etc. in the semantic search.
The semantic search by Bast et al. asks the user to formulate a

Full text available at: http://dx.doi.org/10.1561/1500000035



8 Introduction

Semantic Matching

Form Phrase Sense Topic Structure

Term Matching

Figure 1.1: Semantic matching: if the meanings of the query and document
represented in the aspects of form, phrase, sense, topic, and structure are the same,
then they should match each other and be regarded relevant.

query with operators describing relations between entities, combines
the information found from both documents and ontology, and returns
to the user. Special search needs such as “finding plants with edible
leaves and native to Europe” are supported [11]. In contrast, the
semantic matching which we are concerned with here is carried out
inside the search engine and users do not need to do anything different
from conventional search.

Figure 1.2 illustrates the difference between semantic matching
and semantic search. Semantic matching is concerned with search of
documents by query, where both documents and query are unstructured
data. Semantic search is usually concerned with search of documents
and knowledge base by query, where documents and query are
unstructured data, but knowledge base is structured data.

Query document mismatch has been studied in the long history of
information retrieval (IR). In traditional IR, methods such as query
expansion, pseudo-relevance feedback, and latent semantic indexing
(LSI) have been intensively investigated and widely utilized. Nowadays
large amounts of log data have been collected in web search and
advanced machine learning techniques have been developed. We can
really leverage big data and machine learning to more effectively

Full text available at: http://dx.doi.org/10.1561/1500000035



1.3. Matching and Ranking 9

Query: unstructured data

Knowledge base:

structured data

Semantic Search

Documents:

unstructured data

Semantic Matching

Query: unstructured data Documents:

unstructured data

Figure 1.2: Semantic matching versus semantic search.

address the challenge of query document mismatch, as explained in
this survey.

1.3 Matching and Ranking

In traditional IR, the distinction between ranking and matching in
search is not made clear. Given a query, documents are retrieved from
the index and matching between the query and each of the documents
is carried out. The relevance of the document with respect to the query
is represented as the matching degree between the two, calculated using
an IR model (matching model) such as BM25 or language models for
information retrieval (LM4IR). After that, the documents are ranked
(sorted) based on their matching scores. In such a framework, matching
scores and ranking scores are equivalent. 2

Things have changed in web search. Importance of documents (web
pages) is found useful for relevance ranking, and importance scores of

2We note that in modern web search not only relevance but also freshness,
diversity, and other factors are considered. We restrict ourselves to relevance in
this survey.
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10 Introduction

web pages calculated by models such as PageRank need to be incor-
porated into the ranking mechanism. Besides, many signals indicating
the relevance (matching) degrees between queries and documents are
also available and matching scores representing the signals can be
calculated. How to combine the matching scores and importance scores
then becomes a critical question. A simple approach is to linearly
combine the scores and manually tune the weights. More sophisticated
machine learning techniques for automatically constructing the ranking
model using training data can also be considered. In fact, machine
learning techniques for the purpose, referred to as learning to rank, have
been intensively studied and widely applied in web search [128, 115].
Thus, in web search, the processes of matching and ranking are logically
separated (first matching and then ranking).

As explained below, machine learning techniques for learning
matching degrees between queries and documents (in general, heteroge-
neous objects), which are referred to as learning to match in this paper,
have been developed. Learning to match is in fact feature learning for
learning to rank, from the viewpoint of machine learning.

1.4 Semantic Matching in Other Tasks

Other tasks in information retrieval and natural language processing
also rely on semantic matching, such as paraphrasing & textual
entailment [62, 54], question answering [21], cross-language information
retrieval (CLIR) [141, 140], online advertising [31], similar document
detection [32, 33], and short text conversation [176, 130]. Table 1.4
summarizes the characteristics of the tasks.

For instance, CLIR is a subfield of information retrieval concerning
with the problem of receiving queries in one language while retrieving
documents in another language. Translation of either query or docu-
ment from one language to another is naturally required in the task.
Mismatch between query and document in two languages poses an even
greater challenge to CLIR and matching on form aspect (compounding,
word segmentation, spelling error correction), sense aspect (selection

Full text available at: http://dx.doi.org/10.1561/1500000035



1.5. Machine Learning for Semantic Matching in Search 11

of translation), and topic aspect has also been tried and verified to be
helpful [141, 140].

For another instance, online advertising makes use of web to deliver
marketing messages and attract consumers. It usually involves publish-
ers, who display advertisements at their web sites, and advertisers, who
provide advertisements. Given some advertisements, it is necessary to
find appropriate web sites for displaying them, i.e. conduct effective
matching between publishers’ content and advertisers’ advertisements.
Mismatch is also inevitable here. Methods have been proposed for
addressing the mismatch challenge at form aspect, sense aspect, and
topic aspect [31].

Short text conversation is a research problem proposed re-
cently [176, 130]. It consists of one round of conversation between
human and computer, with the former being a message from human and
the latter being a comment on the message from the computer. Short
text conversation constitutes one step of natural language conversation,
and it also subsumes question answering as special case. Semantic
matching between messages and comments needs also be considered, in
a retrieval based approach in which a large collection of message and
comment pairs is indexed, and given a message the most appropriate
comment is retrieved, selected, and returned. Methods have been
proposed to address the mismatch problem in the task as well [176, 130].

1.5 Machine Learning for Semantic Matching in Search

A natural question arises whether it is possible to use machine learning
techniques to automatically learn the models for semantic matching in
search. This is exactly the problem we address in this survey.

The task can be formalized as learning of matching model f(q, d)
or conditional probability model P (r|q, d) using supervised learning
techniques or learning of conditional probability model P (q|d) using
unsupervised learning techniques, where q denotes query, d denotes
document, and r denotes relevance level. Note that here query and
document are regarded as different (heterogeneous) objects.

Full text available at: http://dx.doi.org/10.1561/1500000035



12 Introduction

Table 1.4: Characteristics of tasks that need semantic matching. Two natural
language texts (A and B) are involved in the tasks.

task types of texts relation between
texts

search A=query,
B=document

relevance

question answering A=question,
B=answer

answer to ques-
tion

cross-language IR A=query,
B=document

relevance

(in diff. lang.)
short text conversation A=text, B=text message and com-

ment
similar document detection A=text, B=text similarity
online advertising A=query, B=ads. relevance as ads.
paraphrasing A=sentence,

B=sentence
equivalence

textual entailment A=sentence,
B=sentence

entailment

Different models can be defined, explicitly or implicitly representing
semantic matching, i.e., matching on different aspects such as form
aspect, phrase aspect, sense aspect, topic aspect, and structure aspect.
Since query document mismatch is a long tail phenomenon, it is
necessary to assume that no single signal is enough and construct
matching models on different aspects and combine the uses of them
in relevance ranking.

The following are some well-studied approaches, including matching
by query reformulation, matching with term dependency model,
matching with translation model, matching with topic model, and
matching with latent space model. This survey will explain the
approaches in detail.

Matching by query reformulation aims at reformulating the query
so that it can have a better match with the semantically equivalent
expressions in the documents. Reformulation of query includes spelling

Full text available at: http://dx.doi.org/10.1561/1500000035



1.5. Machine Learning for Semantic Matching in Search 13

error correction, word splitting, word merging, and so on. The major
issues with regard to query reformulation include re-writing of the
original query, blending of the search results by the original query
and reformulated queries, mining of similar queries, as well as query
expansion.

A straightforward extension of the bag-of-words approach would
be to perform matching based on multiple words in the query and
document. This is exactly the process depicted in the term dependency
models. One can represent different matching relations between the
query terms and the document terms with the models, for example,
co-occurrence of terms in both the query and document. Intuitively, if
several terms co-occur within both the query and document, then they
may represent the same concept and indicate stronger relevance.

Matching between the query and a part of the document, for
example, the title, can be modeled as paraphrasing or translation
in which a language expression is transformed into another language
expression. Taking matching as a statistical translation task has been
proposed previously and the approach has made significant progress in
web search recently, in part because a large amount of click-through
data becomes available and can be utilized as training data.

Given a collection of documents, topic modeling techniques can help
find the topics of the documents, in which each topic is represented by
a number of words. Probabilistic and non-probabilistic models have
been proposed. In search, the topics of the query and the topics of
the documents can be detected, and matching between the query and
documents can be carried out with the topics.

We can represent queries and documents in two different vector
spaces, map them into a hidden semantic space with lower dimension-
ality on the basis of query document associations in click-through data,
and conduct matching between queries and documents in the latent
semantic space. This is the basic idea of the approach of matching
with latent space models. Many traditional IR models such as vector
space model (VSM), BM25, and LM4IR can be interpreted as special
cases of the latent space models, and thus the latent space models are
quite fundamental for IR.

Full text available at: http://dx.doi.org/10.1561/1500000035



14 Introduction

Matching between two heterogenous objects is not limited to
search. It exists in many other applications, including paraphrasing
& textual entailment, question answering, online advertising, cross-
language information retrieval, similar document detection, short text
conversation, machine translation, recommender systems (collaborative
filtering), link prediction, image annotation, and drug design. It is
necessary and important to generalize the techniques developed in
different applications to a more general machine learning methodology
in order to study the techniques more deeply and broadly. We refer to
it as learning to match in this survey.

1.6 About This Survey

This survey focuses on the fundamental problems, as well as the state-
of-the-art solutions of query document matching in search. The ideas
and solutions explained may motivate industrial practitioners to turn
the research results into products. The methods introduced and the
discussions made may also stimulate academic researchers to find new
research directions and approaches.

Section 2 gives a formulation of machine learning for query
document matching in search and shows an implementation of it
in web search. Sections 3-7 describe the five groups of learning
techniques for query document matching, namely matching by query
reformulation, matching with term dependency model, matching with
translation model, matching with topic model, and matching with
latent space model. Section 8 describes generalization of the techniques,
learning to match, and introduce methods for collaborative filtering and
paraphrasing & textual entailment. Section 9 summarizes the survey
and discusses open problems. Sections 2-8 are self-contained, and thus
the reader can choose sections to read on the basis of their interest and
need.

This survey focuses more on machine learning and semantic
matching. Several survey papers or books cover some related topics,
such as LM4IR [204], query expansion [40], search and browse log
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mining [163, 94], and feature centric view on IR [135]. The reader is
also encouraged to refer to the materials.

We assume that the reader has certain knowledge on machine
learning and information retrieval. Those who want to know more about
the fundamentals of the areas should refer to related books and papers.
The machine learning techniques concerned with in this survey include
statistical language model [204], statistical machine translation [99],
learning to rank [128, 115, 116], graphical model [24], topic model [25],
matrix factorization [103], kernel methods [158], sparse methods 3, and
deep learning 4. Explanations on the basic techniques in information
retrieval can be found in the text books on IR [131, 52, 6].

3A tutorial on sparse methods by Bach can be found at www.di.ens.fr/̃fbach/.
4Tutorials on deep learning can be found at www.deeplearning.net/tutorial/.
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