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Abstract

The most significant progress in recent years in online display adver-
tising is what is known as the Real-Time Bidding (RTB) mechanism
to buy and sell ads. RTB essentially facilitates buying an individual ad
impression in real time while it is still being generated from a user’s
visit. RTB not only scales up the buying process by aggregating a
large amount of available inventories across publishers but, most im-
portantly, enables direct targeting of individual users. As such, RTB
has fundamentally changed the landscape of digital marketing. Scien-
tifically, the demand for automation, integration and optimisation in
RTB also brings new research opportunities in information retrieval,
data mining, machine learning and other related fields. In this mono-
graph, an overview is given of the fundamental infrastructure, algo-
rithms, and technical solutions of this new frontier of computational
advertising. The covered topics include user response prediction, bid
landscape forecasting, bidding algorithms, revenue optimisation, sta-
tistical arbitrage, dynamic pricing, and ad fraud detection.

J. Wang, W. Zhang and S. Yuan. Display Advertising with Real-Time Bidding
(RTB) and Behavioural Targeting. Foundations and TrendsR© in Information
Retrieval, vol. 11, no. 4-5, pp. 297–435, 2017.
DOI: 10.1561/1500000049.
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1
Introduction

An advertisement is a marketing message intended to encourage po-
tential customers to purchase a product or to subscribe to a service.
Advertising is also a way to establish a brand image through the re-
peated presence of an advertisement (ad) associated with the brand in
the media. Television, radio, newspaper, magazines, and billboards are
among the major channels that traditionally place ads, however, the
advancement of the Internet enables users to seek information online.
Using the Internet, users are able to express their information requests,
navigate specific websites and perform e-commerce transactions. Major
search engines have continued to improve their retrieval services and
users’ browsing experience by providing relevant results. Since many
more businesses and services are transitioning into the online space,
the Internet is a natural choice for advertisers to widen their strategy,
reaching potential customers among Web users [Yuan et al., 2012].

As a result, online advertising is now one of the fastest advanc-
ing areas in the IT industry. In display and mobile advertising, the
most significant technical development in recent years is the growth
of Real-Time Bidding (RTB), which facilitates a real-time auction for
a display opportunity. Real-time means the auction is per impression

2

Full text available at: http://dx.doi.org/10.1561/1500000049



3

and the process usually occurs less than 100 milliseconds before the ad
is placed. RTB has fundamentally changed the landscape of the digital
media market by scaling the buying process across a large number of
available inventories among publishers in an automatic fashion. It also
encourages user behaviour targeting, a significant shift towards buying
focused on user data rather than contextual data [Yuan et al., 2013].

Scientifically, the further demand for automation, integration and
optimisation in RTB opens new research opportunities in the fields such
as Information Retrieval (IR), Data Mining (DM), Machine Learning
(ML), and Economics. IR researchers, for example, are facing the chal-
lenge of defining the relevancy of underlying audiences given a cam-
paign goal, and consequently, developing techniques to find and filter
them out in the real-time bid request data stream [Zhang et al., 2016a,
Perlich et al., 2012]. For data miners, a fundamental task is identifying
repeated patterns over the large-scale streaming data of bid requests,
winning bids and ad impressions [Cui et al., 2011]. For machine learn-
ers, an emerging problem is telling a machine to react to a data stream,
i.e., learning to bid cleverly on behalf of advertisers and brands to max-
imise conversions while keeping costs to a minimum [Xu et al., 2016,
Kan et al., 2016, Cai et al., 2017].

It is also of great interest to study learning over multi-agent sys-
tems and consider the incentives and interactions of each individual
learner (bidding agent). For economics researchers, RTB provides a
new playground for micro impression-level auctions with various bid-
ding strategies and macro multiple marketplace competitions with dif-
ferent pricing schemes, auction types and floor price settings, etc.

More interestingly, per impression optimisation allows advertisers
and agencies to maximise effectiveness based on their own, or the 3rd
party, user data across multiple sources. Advertisers buy impressions
from multiple publishers to maximise certain Key Performance Indica-
tors (KPIs) such as clicks or conversions, while publishers sell their im-
pressions through multiple advertisers to optimise their revenue [Yuan
and Wang, 2012]. This brings the online advertising market a step
closer to the financial markets, where marketplace unity is strongly
promoted. A common objective, such as optimising clicks or conver-
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4 Introduction

sions across webpages, advertisers, and users, calls for significant multi-
disciplinary research that combines statistical Machine Learning, Data
Mining, Information Retrieval, and behavioural targeting with game
theory, economics and optimisation.

Despite its rapid growth and huge potential, many aspects of RTB
remain unknown to the research community for a variety of reasons.
In this monograph, we aim to offer insightful knowledge of real-world
systems, to bridge the gaps between industry and academia, and to
provide an overview of the fundamental infrastructure, algorithms, and
technical and research challenges of the new frontier of computational
advertising.

1.1 A short history of online advertising

The first online ad appeared in 1994 when there were only around 30
million people on the Web. The Web version of the Oct. 27, 1994 issue
of HotWired was the first to run a true banner ad for AT&T.

1.1.1 The birth of sponsored search and contextual advertising

Online advertising has been around for over a decade. The sponsored
search paradigm was created in 1998 by Bill Gross of Idealab with
the founding of Goto.com, which became Overture in October 2001,
was acquired by Yahoo! in 2003 and is now Yahoo! Search Marketing
[Jansen, 2007]. Meanwhile, Google started its own service AdWords us-
ing Generalized Second Price Auction (GSP) in February 2002, adding
quality-based bidding in May 2002 [Karp, 2008]. In 2007, Yahoo! Search
Marketing followed, added quality-based bidding as well [Dreller, 2010].
It is worth mentioning that Google paid 2.7 million shares to Yahoo! to
solve the patent dispute, as reported by The Washington Post [2004],
for the technology that matches ads with search results in sponsored
search. Web search has now become an integral part of daily life, vastly
reducing the difficulty and time once associated with satisfying an in-
formation necessity. Sponsored search allows advertisers to buy certain
keywords to promote their business when users use such a search engine
and greatly contributes to its continuing a free service.

Full text available at: http://dx.doi.org/10.1561/1500000049
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1.1. A short history of online advertising 5

On the other hand, in 1998, display advertising began as a con-
cept contextual advertising [Anagnostopoulos et al., 2007, Broder et al.,
2007]. Oingo, started by Gilad Elbaz and Adam Weissman, developed
a proprietary search algorithm based on word meanings and built upon
an underlying lexicon called WordNet. Google acquired Oingo in April
2003 and renamed the system AdSense [Karp, 2008]. Later, Yahoo!
Publish Network, Microsoft adCenter and Advertising.com Sponsored
Listings amongst others were created to offer similar services [Kenny
and Marshall, 2001]. The contextual advertising platforms evolved to
adapt to a richer media environment, including video, audio and mo-
bile networks with geographical information. These platforms allowed
publishers to sell blocks of space on their webpages, video clips and
applications to make money. Usually such services are called an ad-
vertising network or a display network and are not necessarily run by
search engines, as they can consist of huge numbers of individual pub-
lishers and advertisers. Sponsored search ads can also be considered a
form of contextual ad that matches with simple context: query key-
words; but it has been emphasised due to its early development, large
market volume and research attention.

1.1.2 The arrival of ad exchange and real-time bidding

Around 2005, new platforms focusing on real-time bidding (RTB) based
buying and selling impressions were created. Examples include ADS-
DAQ, AdECN, DoubleClick Advertising Exchange, adBrite, and Right
Media Exchange, which are now known as ad exchanges. Unlike tradi-
tional ad networks, these ad exchanges aggregate multiple ad networks
together to balance the demand and supply in marketplaces and use
auctions to sell an ad impression in real time when it is generated by a
user visit [Yuan et al., 2013]. Individual publishers and advertising net-
works can both benefit from participating in such businesses. Publish-
ers sell impressions to advertisers who are interested in associated user
profiles and context while advertisers, on the other hand, can contact
more publishers for better matching and buy impressions in real-time
together with their user data. At the same time, other similar plat-
forms with different functions emerged [Graham, 2010] including (i)
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6 Introduction

demand side platform (DSP), which serves advertisers managing their
campaigns and submits real-time bidding responses for each bid request
to the ad exchange via algorithms, and (ii) supply side platform (SSP),
created to serve publishers managing website ad inventory. However,
real-time bidding (RTB) and multiple ad networks aggregation do not
change the nature of such marketplaces (where buying and selling im-
pressions happen), but only make the transactions in real-time via an
auction mechanism. For simplicity, we may use the term “ad exchange”
in this monograph to better represent the wider platforms where trad-
ing happens.

1.2 The major technical challenges and issues

Real-time advertising generates large amounts of data over time. Glob-
ally, DSP Fikisu claims to process 32 billion ad impressions daily [Zhang
et al., 2017] and DSP Turn reports to handle 2.5 million per second
at peak time [Shen et al., 2015]. The New York Stock Exchange, to
better envision the scale, trades around 12 billion shares daily.1 It is
fair to say the volume of transactions from display advertising has
already surpassed that of the financial market. Perhaps even more im-
portantly, the display advertising industry provides computer scientists
and economists a unique opportunity to study and understand the In-
ternet traffic, user behaviour and incentives, and online transactions.
Only this industry aggregates nearly all the Web traffic, in the form of
ads transactions, across websites and users globally.

With real-time per-impression buying established together with the
cookie-based user tracking and syncing (the technical details will be ex-
plained in Chapter 2), the RTB ecosystem provides the opportunity and
infrastructure to fully unleash the power of user behavioural targeting
and personalisation [Zhang et al., 2016a, Wang et al., 2006, Zhao et al.,
2013] for that objective. It allows machine driven algorithms to auto-
mate and optimise the relevance match between ads and users [Raeder
et al., 2012, Zhang et al., 2014a, Zhang and Wang, 2015, Kan et al.,

1According to Daily NYSE group volume, http://goo.gl/2EflkC, accessed:
2016-02.
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1.2. The major technical challenges and issues 7

2016].
RTB advertising has become a significant battlefield for Data Sci-

ence research, acting as a test bed and application for many research
topics, including user response (e.g. click-through rate, CTR) esti-
mation [Chapelle et al., 2014, Chapelle, 2015, He et al., 2014, Kan
et al., 2016], behavioural targeting [Ahmed et al., 2011, Perlich et al.,
2012, Zhang et al., 2016a], knowledge extraction [Ahmed et al., 2011,
Yan et al., 2009], relevance feedback [Chapelle, 2014], fraud detection
[Stone-Gross et al., 2011, Alrwais et al., 2012, Crussell et al., 2014,
Stitelman et al., 2013], incentives and economics [Balseiro et al., 2015,
Balseiro and Candogan, 2015], and recommender systems and person-
alisation [Juan et al., 2016, Zhang et al., 2016a].

1.2.1 Towards information general retrieval (IGR)

A fundamental technical goal in online advertising is to automatically
deliver the right ads to the right users at the right time with the right
price agreed by the advertisers and publishers. As such, RTB based
online advertising is strongly correlated with the field of Information
Retrieval (IR), which traditionally focuses on building relevance cor-
respondence between information needs and documents [Baeza-Yates
et al., 1999]. The IR research typically deals with textual data but
has been extended to multimedia data including images, video and
audio signals [Smeulders et al., 2000]. It also covers categorical and
rating data, including Collaborative Filtering and Recommender Sys-
tems [Wang et al., 2008]. In all these cases, the key research question
of IR is to study and model the relevance between the queries and doc-
uments in the following two distinctive tasks: retrieval and filtering.
The retrieval tasks are those in which information needs (queries) are
ad hoc, while the document collection stays relatively static. By con-
trast, information filtering tasks are defined when information needs
stay static, whereas documents keep entering the system. A rich liter-
ature can be found from the probability ranking principle [Robertson,
1977], the RSJ and BM25 model [Jones et al., 2000], language models
of IR [Ponte and Croft, 1998], to the latest development of learning
to rank [Joachims, 2002, Liu, 2009], results diversity [Wang and Zhu,
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8 Introduction

2009, Agrawal et al., 2009, Zhu et al., 2009a] and novelty [Clarke et al.,
2008], and deep learning of information retrieval [Li and Lu, 2016, Deng
et al., 2013].

We, however, argue that IR can broaden its research scope by going
beyond the applications of Web search and enterprise search, turning
towards general retrieval problems derived from many other applica-
tions. Essentially, as long as there is concern with building a correspon-
dence between two information objects, under various objectives and
criteria [Gorla et al., 2013], we would consider it a general retrieval
problem. Online advertising is one of the application domains, and we
hope this monograph will shed some light on new information general
retrieval (IGR) problems. For instance, the techniques presented on real
time advertising are built upon the rich literature of IR, data mining,
machine learning and other relevant fields, to answer various questions
related to the relevance matching between ads and users. But the dif-
ference and difficulty, compared to a typical IR problem, lies in its
consideration of various economic constraints. Some of the constraints
are related to incentives inherited from the auction mechanism, while
others relate to disparate objectives from the participants (advertisers
and publishers). In addition, RTB also provides a useful case for rele-
vance matching that is bi-directional and unified between two matched
information objects [Robertson et al., 1982, Gorla, 2016, Gorla et al.,
2013]. In RTB, there is an inner connection between ads, users and
publishers [Yuan et al., 2012]: advertisers would want the matching
between the underlying users and their ads to eventually lead to con-
versions, whereas publishers hope the matching between the ads and
their webpage would result in a high ad payoff. Both objectives, among
others, require fulfilment when the relevancy is calculated.

1.3 The organisation of this monograph

The targeted audience of this monograph is academic researchers and
industry practitioners in the field. The intention is to help the audience
acquire domain knowledge and to promote research activities in RTB
and computational advertising in general.
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1.3. The organisation of this monograph 9

The content of the monograph is organised in four folds. Firstly,
chapters 2 and 3 provide a general overview of the RTB advertising and
its mechanism. Specifically, in Chapter 2, we explain how RTB works,
as well as the mainstream user tracking and synchronising techniques
that have been popular in the industry; In Chapter 3 we introduce the
RTB auction mechanism and the resulting forecasting techniques in the
auction market. Next, we cover the problems from the view of advertis-
ers: in Chapter 4, we explain various user response models proposed in
the past to target users and make ads more fit to the underlying user’s
patterns, while in Chapter 5, we present bid optimisation from advertis-
ers’ viewpoints with various market settings. After that, in Chapter 6,
we focus on the publisher’s side and explain dynamic pricing of reserve
price, programmatic direct, and new type of advertising contracts. The
monograph then concludes with attribution models in Chapter 7 and
ad fraud detection in Chapter 8, two additional important subjects in
RTB.

There are several read paths depending on reader’s technical back-
grounds and interests. For academic researchers, chapters 2 and 3 shall
help them understand the real-time online advertising systems cur-
rently deployed in the industry. The later chapters shall help industry
practitioners grasp the research challenges, the state of the art algo-
rithms and potential future systems in this field. As these later chapters
are on specialised topics, they can be read in independently at a deeper
level.
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