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Abstract

Online evaluation is one of the most common approaches to measure the
effectiveness of an information retrieval system. It involves fielding the
information retrieval system to real users, and observing these users’ in-
teractions in-situ while they engage with the system. This allows actual
users with real world information needs to play an important part in
assessing retrieval quality. As such, online evaluation complements the
common alternative offline evaluation approaches which may provide
more easily interpretable outcomes, yet are often less realistic when
measuring of quality and actual user experience.

In this survey, we provide an overview of online evaluation tech-
niques for information retrieval. We show how online evaluation is used
for controlled experiments, segmenting them into experiment designs
that allow absolute or relative quality assessments. Our presentation
of different metrics further partitions online evaluation based on dif-
ferent sized experimental units commonly of interest: documents, lists
and sessions. Additionally, we include an extensive discussion of recent
work on data re-use, and experiment estimation based on historical
data.

A substantial part of this work focuses on practical issues: How
to run evaluations in practice, how to select experimental parameters,
how to take into account ethical considerations inherent in online eval-
uations, and limitations. While most published work on online experi-
mentation today is at large scale in systems with millions of users, we
also emphasize that the same techniques can be applied at small scale.
To this end, we emphasize recent work that makes it easier to use at
smaller scales and encourage studying real-world information seeking
in a wide range of scenarios. Finally, we present a summary of the
most recent work in the area, and describe open problems, as well as
postulating future directions.

K. Hofmann, L. Li, and F. Radlinski. Online Evaluation for Information Retrieval.
Foundations and Trends® in Information Retrieval, vol. 10, no. 1, pp. 1-117, 2016.
DOI: 10.1561/1500000051.
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Introduction

Information retrieval (IR) has a long and fruitful tradition of empir-
ical research. Since early experiments on indexing schemes, and the
development of the Cranfield paradigm, researchers have been striv-
ing to establish methodology for empirical research that best supports
their research goals — to understand human information seeking, and
to develop the most effective technology to support it.

In the past decade, IR systems, from large-scale commercial Web
search engines to specialized analysis software, have become ubiqui-
tous. They have transformed the way in which we access information,
and are for many an integral part of their daily lives. This shift towards
everyday, ubiquitous IR systems is posing new challenges for empiri-
cal research. While it was previously possible to substantially improve
IR systems by measuring and optimizing reasonably objective criteria,
such as topical relevance, this is no longer sufficient. IR systems are be-
coming increasingly contextual and personal. They take into account
information about their users’ current situation as well as previous in-
teractions, and aim to predict their users’ requirements and preferences
given new contexts. No longer can users or experts be asked to provide
objective assessments of retrieval quality for such complex scenarios.
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Online evaluation for IR addresses the challenges that require as-
sessment of systems in terms of their utility for the user. The current
state of the art provides a set of methods and tools, firmly grounded
in and informed by the tradition of controlled experimentation. Giving
an overview of these methods and their conceptual foundations, as well
as guiding the reader on how to run their own online evaluations are
the purposes of this survey.

In the next section, we define key concepts and terminology used
throughout this survey. Then, we closely examine the motivations for
online evaluation, and provide example use cases. Finally, we outline
the scope and organization of the remainder of this survey.

1.1 Terminology

For the purpose of this survey, we adopt the following definition of
online evaluation.

Definition 1.1. Online evaluation is evaluation of a fully functioning
system based on implicit measurement of real users’ experiences of the
system in a matural usage environment.

The first key to the definition is implicit measurement, which we take
to include any measurements that can be derived from observable user
activity that is part of users’ natural or normal interaction with the
system [Kelly and Teevan 2003]. Implicit measurements can range from
low-level and potentially noisy signals, such as clicks or dwell-times, to
more robust signals, such as purchase decisions. The key distinction
we make between implicit and explicit measurements is that implicit
measurements are a by-product of users’ natural interaction, while ez-
plicit ones are specifically collected for feedback purposes. Both types
of measures can also be combined into composite metrics capturing
higher-level concepts, such as user satisfaction. These considerations
give rise to a wide range of metrics, as discussed in Chapter

We specifically include methods for offline estimation, i.e., the esti-
mation of online evaluation metrics based on past observations of users’
behavior, in Chapter[4] Such estimation substantially increases the flex-
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ibility of online evaluation and facilitates theoretically well-founded
end-to-end evaluation of system components.

1.2 Motivation and Uses

Online evaluation is often seen as a set of methods that are particularly
applicable in industry and industrial research. In these settings, a fully
functioning IR system is typically available and in need of constant
innovation. These factors have significantly contributed to the rapid
adoption of online evaluation techniques in these settings. In indus-
try, online evaluation approaches such as AB tests (c.f., Section
and interleaved comparisons (Section are now the state of the art
for evaluating system effectiveness [Kohavi et al. 2009, Radlinski and
Craswell, 2010} Li et al, 2011, Bendersky et al., [2014].

However, it is important to recall that much of the initial work on
online evaluation originated in academic settings. Important motiva-
tions here were the need for reliable measurement of search quality of
specialized search services |[Radlinski et al., 2008c]. This line of work
originated in the tradition of interactive IR. The fruitful exchange of
ideas between applications and research continues today. On the one
hand, practical challenges from IR applications motivate the develop-
ment of online evaluation methodology; Chapter[2|gives a few examples.
On the other hand, lessons learned in practical applications make their
way into the state-of-the-art methodological tool set of IR researchers.

In the context of both practical applications and basic research, a
key aspect of online evaluation is its reliance on controlled experiments.
This allows the researcher to answer explanatory questions, which can
explain causal relations in observed phenomena. In practical settings,
this is crucial for correctly attributing observed changes in user be-
havior to system behavior. In research, this allows the development of
theory in terms of causal concepts. More details on controlled experi-
ments for online evaluation are provided in Chapter

Finally, in Chapter |5 we discuss pros and cons of online evaluation,
compared with more traditional offline evaluation methodology. This
will help guide the reader to understand when an online evaluation is
suitable, and when it is not.
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1.3 This Survey

Online evaluation comprises a specific set of tools and methods that we
see as complementary to other evaluation approaches in IR. In particu-
lar, online evaluation addresses questions about users’ experience with
an IR system that are quite distinct from those answered by offline
evaluation using a test-collection-based approach, surveyed by [Sander-
son| [2010]. Test-collection-based evaluation models users at varying
levels of abstractions, and uses explicit assessments and offline met-
rics to assess system performance under these abstractions. Questions
that are more appropriate for offline evaluation are those for which
reliable and unbiased judgments can be collected from assessors (be
they trained experts or crowdsourced representative users), but would
be hard to infer from user interactions; an example being the quality
of a document. Vice versa, online evaluation is more appropriate when
the opposite is the case: for example, which of two topically relevant
documents users find more interesting.

This survey does not discuss test-collection-based approaches in
any detail, but points out conceptual differences when deemed appro-
priate. Furthermore, Chapter [5| focuses on online evaluation and test-
collection-based approaches along a few dimensions.

Closely related to online evaluation is the long tradition of inter-
active IR (IIR) and the experimental framework developed for it, as
surveyed by Kelly and Gyllstrom| [2011]. We see online evaluation as
a continuation of the IIR tradition, with considerable overlap. How-
ever, online evaluation extends to the specific requirements, limitations,
and opportunities afforded by the scale, natural settings, and levels of
control that are available in online settings. Generally speaking, TR
approaches, such as lab studies, are more appropriate for answering
questions that require a high level of experimental control: for example,
which tasks or queries a study participant is asked to solve. Conversely,
online evaluation is preferred when researchers aim to study natural in-
teractions at scale. This survey necessarily overlaps with some of the
material that is relevant in the IIR setting, and we endeavor to point
out connections as much as feasible. Our main focus will be on method-
ological questions that are specific to online evaluation settings.
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Throughout this survey, we consider IR in a broad sense, including
for instance recommender systems and advertisement placement. Many
aspects of online evaluation are shared across these areas. For exam-
ple, early work on using historical information for estimating online
performance focused on ad placement [Langford et al., 2008] and news
recommendation [Li et al., 2011]. We cover work in all these areas, and
emphasize work that is specific to IR, such as search result ranking
evaluation, as appropriate.

We have also highlighted particular places in the text with tips (such
as the one below) that may be particularly useful for experimenters
performing online evaluation without having access to very large user
bases. While at first glance online evaluation may appear to be best
suited to settings such as commercial search engines, in fact it has been
widely used in academic settings as well.

/Tip for small-scale experiments #1

Online evaluation can also be used with just tens of users, or hun-
dreds of queries. Particular tips for experiments with few users are
highlighted in the text with a box like this one.

1.4 Organization

We start in Chapter [2] by motivating the need for controlled experi-
ments and detailing common experiment designs used in online eval-
uation, with a focus on experimentation methodologies that are par-
ticularly useful for IR. Following this, Chapter [3| gives an extensive
overview of the variety of metrics that have been proposed for different
tasks and research questions. Considering how to re-use online mea-
surement data, Chapter [d] details offline estimation of online metrics
from historical data. Turning to more practical issues, Chapter [5] dis-
cusses advantages and limitations of online evaluation, while Chapter 6]
discusses practical issues around running online experiments. Finally,
Chapter [7] concludes this survey with an outlook on emerging trends
and open challenges.
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