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ABSTRACT
As information retrieval researchers, we not only develop
algorithmic solutions to hard problems, but we also insist
on a proper, multifaceted evaluation of ideas. The literature
on the fundamental topic of retrieval and ranking, for in-
stance, has a rich history of studying the effectiveness of
indexes, retrieval algorithms, and complex machine learning
rankers, while at the same time quantifying their compu-
tational costs, from creation and training to application
and inference. This is evidenced, for example, by more than
a decade of research on efficient training and inference of
large decision forest models in Learning to Rank (LtR). As
we move towards even more complex, deep learning mod-
els in a wide range of applications, questions on efficiency
have once again resurfaced with renewed urgency. Indeed,
efficiency is no longer limited to time and space; instead
it has found new, challenging dimensions that stretch to
resource-, sample- and energy-efficiency with ramifications
for researchers, users, and the environment.
This monograph takes a step towards promoting the study
of efficiency in the era of neural information retrieval by

Sebastian Bruch, Claudio Lucchese and Franco Maria Nardini (2023), “Efficient and
Effective Tree-based and Neural Learning to Rank”, Foundations and Trends® in
Information Retrieval: Vol. 17, No. 1, pp 1–123. DOI: 10.1561/1500000071.
©2023 S. Bruch et al.
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offering a comprehensive survey of the literature on effi-
ciency and effectiveness in ranking, and to a limited extent,
retrieval. This monograph was inspired by the parallels that
exist between the challenges in neural network-based ranking
solutions and their predecessors, decision forest-based LtR
models, as well as the connections between the solutions the
literature to date has to offer. We believe that by under-
standing the fundamentals underpinning these algorithmic
and data structure solutions for containing the contentious
relationship between efficiency and effectiveness, one can
better identify future directions and more efficiently deter-
mine the merits of ideas. We also present what we believe to
be important research directions in the forefront of efficiency
and effectiveness in retrieval and ranking.
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1
Introduction

Search engines are a familiar tool to the reader of this monograph. In
fact, you have likely arrived at this copy by typing a few keywords into
one and perusing the relevant links and page descriptions in its results
page. Indeed, the abundance of data on the web makes search engines
an integral tool, without which it would be nearly impossible to discover
the right information and satisfy an information need.

We similarly rely on a suite of other algorithmic tools to get what
is pertinent to us, such as discovering news articles, movies, or songs
(recommendation systems), getting answers to natural language ques-
tions (question answering and conversational agents), finding images
depicting a given description (image search), and many more. What all
of these tools have in common is that they are different manifestations
of the retrieval and ranking problem, which seeks to discover a set of
relevant items from a large collection and order them according to some
criteria and with respect to some context.

Definition 1.1 (The Document Ranking Problem). Given a query q

(context) and a set of documents D (items), the goal is to order elements
of D such that the resulting ranked list maximizes a user satisfaction
metric Q (criteria).

3
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4 Introduction

Figure 1.1: The Document Ranking Problem in the context of web search—our
running example. The user sends a text query to the search engine (1), which, in
turn, retrieves the most relevant documents from a large collection, and presents
them as a ranked list (2). The user then decides if and to what extent the ranked
list satisfies their information need, which affects metrics of interest (3).

We take web search as the theme of this monograph and delve into
the ranking problem in that context. In document ranking, the query q

is an intent expressed (often briefly) as a set of textual keywords or in
natural language, the documents D are (possibly long) texts written in
natural language, and Q is any utility metric that captures the relevance
of an ordered list to q. We have illustrated this setup in Figure 1.1.

Document ranking presents a number of unique questions that are
the subject of much research in the field of information retrieval: How
do we define Q to quantify the perceived quality of a ranked list and its
utility to a user? How do we capture and interpret implicit, noisy, and
sometimes circular user preferences, which are represented by clicks?
And, more pertinent to this monograph, how do we arrive at a ranked
list given a query, a set of documents, a metric, possibly subject to a
set of other constraints?

Over a decade ago, machine learning transformed how we approach
the document ranking problem and answer the questions above. That
wave resulted in a paradigm shift from early statistical methods, heuris-
tics, and hand-crafted rules to determine the relevance of documents to a
query, to what would later be called Learning to Rank (LtR) (Liu, 2009),
where the relevance of a document to a query is estimated by a learnt

Full text available at: http://dx.doi.org/10.1561/1500000071
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Figure 1.2: Retrieval and ranking algorithms in a modern search system. The
retrieval algorithm often solves one form of the maximum inner product search
(MIPS) problem using, for example, an approximate nearest neighbor (ANN) search
or an inverted index-based top-k retrieval algorithm where closeness is determined
by lexical matching scores. The ranking algorithm may be as simple as an identity
function (e.g., in deep learning-based “dense retrieval”) or a complex learnt function
such as decision forests or deep learning models.

function, hence “learning” to rank. This leap was perhaps best exempli-
fied by LambdaMART (Burges, 2010) in the Yahoo! Learning-to-Rank
Challenge (Chapelle and Chang, 2011).

This transformation of the document ranking problem culminated
in a framework that comprises of two distinct algorithms, depicted in
Figure 1.2: top-k retrieval, which finds a subset of k documents that
are more relevant to a query, followed by ranking which orders the
documents in the top-k set. In LtR, the ranking stage uses an often
expensive function that was trained using supervised or online learning
methods, while the retrieval algorithm solves a form of the maximum
inner product search (MIPS) problem. As we will describe later, in
“dense retrieval,” retrieval is often (but not always) an approximate
nearest neighbor search while ranking is the identity function.

Full text available at: http://dx.doi.org/10.1561/1500000071



6 Introduction

1.1 The Importance of Efficiency

Any solution that addresses the ranking problem, including LtR, by
definition seeks to maximize a user satisfaction metric, Q. But in many
real-world applications achieving the highest effectiveness is only one
of many requirements. We may indeed desire to impose additional
constraints on the ranked list, such as a requirement that ranked lists
fairly represent underrepresented categories; that they guarantee privacy
when the set D consists of documents private to a user; or that they
counter biases and ensure trust. Each of these additional constraints is
an important objective to optimize in its own right.

An objective that is equally as important as effectiveness in many
applications is the efficiency of the retrieval and ranking systems. For
example, it is often imperative to find the right documents and finalize
a ranked list within a small time budget to meet demand and ensure a
timely delivery of information. In fact, a perfectly-ordered ranked list
may be of little value or have a low perceived quality if delivered too
late or with substantial delay.1

The question of efficiency gained increasing significance with the
rise of LtR whose training and serving require large amounts of compu-
tational power. Indeed, the success of LambdaMART and subsequent
decision forest-based descendents (Ganjisaffar et al., 2011; Dato et al.,
2016; Bruch, 2021; Lucchese et al., 2018b) in improving the quality of
rankings came at the expense of the efficiency of training and inference.
The training of such models is expensive because we must often (and
repeatedly) learn ensembles of hundreds to thousands of deep decision
trees sequentially with gradient boosting (Friedman, 2001), with each
node in every tree requiring a search in the feature space (Breiman et al.,
1984). To become accurate, these large models need to be trained on vast
amounts of data, often represented as complex features that are in turn
costly to compute. Inference, too, is computationally intensive because
estimating the relevance of a single document to a query requires the
traversal of paths, from roots to leaves, of every decision tree in the
model.

1Kohavi et al. (2013), reporting on an experiment conducted at Bing, a web
search engine, estimated that “every 100msec improves revenue by 0.6%.”
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1.2. Efficiency Considerations Beyond Latency 7

1.2 Efficiency Considerations Beyond Latency

A decade later, deep neural networks, and in particular, Transformer-
based (Vaswani et al., 2017) pre-trained language models advanced
the state-of-the-art in ranking dramatically (Lin et al., 2021; Nogueira
and Cho, 2020; Nogueira et al., 2019a; Nogueira et al., 2020). Learnt
representations of queries and documents by deep networks, too, offer a
range of opportunities including the development of a new generation of
“dense” retrieval methods (Karpukhin et al., 2020; Xiong et al., 2021),
document expansion techniques (Nogueira et al., 2019b), and others.
These recent developments mark the beginning of a new era known as
Neural Information Retrieval (NIR).

NIR is a leap forward, reaching new highs in quality. Whatever the
reason behind its success may be, NIR achieves a greater effectiveness
than the previous wave of machine learning models like decision forests
on many information retrieval tasks, but with orders of magnitude
more learnable parameters and much greater amounts of data. The
new scale drastically increases the computational and economic costs of
model training and inference. GPT-3 (Brown et al., 2020), for example,
required 285,000 CPU cores and 10,000 GPUs to train, with an estimated
economic cost of $4.6M.2 Although it may be argued that the high cost
of training deep models is amortized because large language models can,
through a process known as “fine-tuning,” be recycled and reused for
a variety of applications with a substantially smaller effort, it is still a
significant price to pay upfront. Furthermore, not all large neural models
can be easily recycled—in fact, that is one of the properties Scells et al.
(2022) call out in their article. What is more, once trained, the use of
such large models in production similarly requires a nontrivial amount
of tensor multiplications and other complex operations.

Due to their alarming computational requirements, NIR models
underline several dimensions of efficiency that have thus far been less
obvious. Crucially, “efficiency” is no longer characterized by low latency,
but is instead a concept that amalgamates space-, sample-, and energy-
efficiency, among other emerging factors, as summarized in Table 1.1.

2https://lambdalabs.com/blog/demystifying-gpt-3/.
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8 Introduction

Table 1.1: Taxonomy of a multi-faceted view of ranking efficiency and the stages in
which they manifest.

Dimension Definition Scope

Query Time elapsed between the arrival of a
query and the presentation of ranked
list of documents

Inference

Sample Number of training examples required
to learn a ranking function

Training

Space Total storage used to serve a ranking
model

Training;
Inference

Training Time required to train a ranking model Training
Energy Amount of energy required to train a

model or evaluate a learnt model on a
query-document pair

Training;
Inference

In other words, the inefficiency of an algorithm cannot and should not
be understood solely in terms of negative user experience due to greater
latencies, but instead, we must acknowledge that ineffciency has adverse
implications for resource-constrained researchers and practitioners, and
more importantly, for the environment (in the form of emissions and
carbon footprint) (Scells et al., 2022; Strubell et al., 2019; Xu et al.,
2021). We must therefore acknowledge that, due to environmental
factors, attempting to address the efficiency problem by relying on
advances in hardware systems or by utilizing more resources is not a
sustainable long-term solution. Instead, combating this multi-faceted
issue of efficiency necessitates a careful study and design of efficient
algorithms and data structures, as highlighted by deliberations at recent
academic workshops (e.g., the Workshop on Reaching Efficiency in
Neural Information Retrieval (Bruch et al., 2022b; Bruch et al., 2023)).

1.3 Efficient and Effective Ranking

Accuracy by way of ever-increasing complexity presents a challenge:
how do we then optimize for both effectiveness and efficiency? Must

Full text available at: http://dx.doi.org/10.1561/1500000071



1.3. Efficient and Effective Ranking 9

we lose accuracy to find a more efficient solution, inevitably trading
off effectiveness for efficiency and vice versa? These and other similar
questions give rise to a research topic that extends the document ranking
problem as follows:

Definition 1.2 (The Efficient Document Ranking Problem). Given a
query q and a set of documents D, the goal is to order elements of D ef-
ficiently such that the resulting ranked list maximizes a user satisfaction
metric Q.

The problem above spawned a line of research in the information
retrieval community to systematically investigate questions of efficiency
and explore the trade-offs between efficiency and effectiveness in ranking
models, leading to several innovations. The community widely adopted
multi-stage, cascade rankers, separating light-weight ranking on large
sets of documents from costly re-ranking of top candidates to speed up
inference at the expense of quality (Wang et al., 2011; Asadi and Lin,
2013a; Dang et al., 2013; Culpepper et al., 2016; Mackenzie et al., 2018;
Liu et al., 2017; Asadi, 2013). From probabilistic data structures (Asadi
and Lin, 2012; Asadi and Lin, 2013b), to cost-aware training and post hoc
pruning of decision forests (Asadi and Lin, 2013c; Lucchese et al., 2017b;
Lucchese et al., 2016a; Dato et al., 2016), to early-exit strategies and
fast inference algorithms (Cambazoglu et al., 2010; Asadi et al., 2014;
Lucchese et al., 2016b; Lucchese et al., 2015b), the information retrieval
community thoroughly considered the practicality and scalability of
complex ranking algorithms.

In addition to volumes of publications, the output of this research
effort included standardized algorithms and reusable software pack-
ages (Ke et al., 2017; Lucchese et al., 2015b). Perhaps more crucially,
the community developed an understanding that quality is not the be-all
and end-all of information retrieval research and that model complexity
must be managed (through more efficient training and inference) and
justified (e.g., by contextualizing quality gains in terms of the amount
of computational resources required).

As complex neural network-based models come to dominate the
research on document ranking, it is unsurprising that there is renewed
interest in the question above, not just in the information retrieval com-
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10 Introduction

munity but also in related branches such as natural language processing.
Interestingly, many of the proposals put forward to date to contain effi-
ciency are reincarnations of past ideas, such as stage-wise ranking with
BERT-based models (Nogueira et al., 2019a; Matsubara et al., 2020),
early-exit strategies in Transformers (Soldaini and Moschitti, 2020; Xin
et al., 2020; Xin et al., 2021), neural connection pruning (Gordon et al.,
2020; McCarley et al., 2021; Lin et al., 2020b; Liu et al., 2021), precom-
putation of representations (MacAvaney et al., 2020b), and enhancing
indexes (Zhuang and Zuccon, 2022; Nogueira et al., 2019b; Mallia et al.,
2022; Lassance and Clinchant, 2022). Other novel but general ideas such
as knowledge distillation (Jiao et al., 2020; Sanh et al., 2020; Gao et al.,
2020) have also proved effective in reducing the size of deep models.
Yet other innovative ideas developed specifically for ranking include
efforts to reinvent Transformers from the ground-up (Mitra et al., 2021;
Hofstätter et al., 2020).

1.4 About this Monograph

Given the resurgence of the question of efficiency and the trade-offs
between efficiency and effectiveness in ranking, and the apparent overlap
between the neural and pre-neural ideas to address this question, we
believe it is necessary to present a comprehensive review of this literature
with a particular focus on the document ranking problem. We have thus
prepared this monograph in four parts in the hope that it serves as one
such resource.

The first part introduces the document ranking problem and reviews
a machine learning formulation of it in the context of web search in
depth. We also describe the architecture of a modern search engine to
illustrate an application of ranking that is of primary interest to this
work. As we explain the ingredients of a search engine and all that is
involved in the training and serving of a ranking model within this
framework, we highlight the costs to efficiency and call out the levers
that trade off effectiveness for efficiency.

While the first part of this monograph concerns an abstract, general
setup, the two subsequent parts get more specific and examine two
popular families of ranking algorithms through the lens of efficiency.

Full text available at: http://dx.doi.org/10.1561/1500000071



1.4. About this Monograph 11

One presents a treatment of a branch of LtR that is based on forests of
decision trees, while another turns to neural networks and deep learning
methods for retrieval and ranking. Each family presents its own unique
challenges and requires its own set of solutions to explore the Pareto
front on the efficiency-effectiveness optimization landscape.

As the reader will notice, the approaches developed for the two
families of ranking algorithms appear to be—and in many ways, are—
independent. But the ideas behind them overlap too. We attempt, in
the last part of the monograph, to identify the common threads that
can help translate ideas from one space to another. We also discuss
emerging research directions, made urgent by the rise of deep neural
networks in information retrieval, and explore open challenges within
this space.
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