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ABSTRACT

Recommendation, information retrieval, and other infor-
mation access systems pose unique challenges for investi-
gating and applying the fairness and non-discrimination
concepts that have been developed for studying other ma-
chine learning systems. While fair information access shares
many commonalities with fair classification, there are impor-
tant differences: the multistakeholder nature of information
access applications, the rank-based problem setting, the
centrality of personalization in many cases, and the role
of user response all complicate the problem of identifying
precisely what types and operationalizations of fairness may
be relevant.

In this monograph, we present a taxonomy of the various
dimensions of fair information access and survey the liter-
ature to date on this new and rapidly-growing topic. We

Michael D. Ekstrand, Anubrata Das, Robin Burke and Fernando Diaz (2022), “Fair-
ness in Information Access Systems”, Foundations and Trends® in Information
Retrieval: Vol. 16, No. 1-2, pp 1–177. DOI: 10.1561/1500000079.
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preface this with brief introductions to information access
and algorithmic fairness to facilitate the use of this work by
scholars with experience in one (or neither) of these fields
who wish to study their intersection. We conclude with sev-
eral open problems in fair information access, along with
some suggestions for how to approach research in this space.
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1
Introduction

As long as humans have recorded information in durable form, they have
needed tools to access it: to locate the information they seek, review it,
and consume it. Digitally, tools to facilitate information access take a
variety of forms, including information retrieval and recommendation
systems; these tools have been powered by technologies built on various
paradigms, from heuristic metrics and expert systems to deep neural net-
works with sophisticated rank-based objective functions. Fundamentally,
these technologies take a user’s information need (an explicit and/or
implicit need for information for some purpose (Kuhlthau, 1993), such
as filling in knowledge or selecting a product) and locate documents or
items that are relevant (that is, will meet the user’s need).

Throughout the history of these technologies — which we treat
under the integrated banner of information access systems — both
research and development have been concerned with a range of effects
beyond a system’s ability to locate individual items that are relevant
to a user’s information need. Research has examined the diversity and
novelty of results (Santos et al., 2015; Hurley and Zhang, 2011) and
the coverage of the system, among other concerns. In recent years, this
concern has extended to the fairness of an information access system: are

4
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5

the benefits and resources it provides fairly allocated between different
people or organizations it affects? Does it introduce or reproduce harms,
particularly harms distributed in an unfair or unjust way? This challenge
is connected to the broader set of research on fairness in sociotechnical
systems generally and AI systems more particularly (Mitchell et al.,
2020; Barocas et al., 2019), but information access systems have their
own set of particular challenges and possibilities.

Fairness is not an entirely new concern for information access; various
fairness problems can be connected to topics with long precedent in the
information retrieval and recommender systems literature. In the context
of information retrieval, Friedman and Nissenbaum (1996) and Introna
and Nissenbaum (2000) recognized the potential for search engines to
embed social, political, and moral values in their ranking functions. In
order to assess the impact of such values, Mowshowitz and Kawaguchi
(2002) developed a metric to measure a search engine’s deviation from
an ideal exposure of content. Although conversations often focus on
bias in algorithmic ranking, Vaughan and Zhang (2007) and Vaughan
and Thelwall (2004) note that bias can be introduced because of biased
crawling and indexing; in particular, they describe, writing in the
2000s, how Chinese webpages were under-indexed by search engines.
These observations led to discussion amongst legal scholars about the
regulation of search engines (Goldman, 2005; Pasquale, 2006). Azzopardi
and Vinay (2008) proposed the notion of document retrievability and
investigated the skew in this distribution for different retrieval systems.
Work on popularity bias (Celma and Cano, 2008; Zhao et al., 2013;
Cañamares and Castells, 2018) and rich-get-richer effects (Cho et al.,
2005), along with attempts to ensure quality and equity in long-tail
recommendations (Ferraro, 2019), can be viewed as a type of fairness
problem: the system should not inordinately favor popular, well-known,
and possibly well-funded content creators. In a group recommendation,
one common objective is to ensure that the various members of a group
are treated fairly (Kaya et al., 2020).

The work on fair information access that we present here goes be-
yond these problems to examine how various forms of unfairness —
particularly those that arise from social biases (Olteanu et al., 2019) —
can make their way in to the data, algorithms, and outputs of informa-
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6 Introduction

tion access systems. These biases can affect many different stakeholders
of an information access system; Burke (2017) distinguishes between
provider- and consumer-side fairness, and other individuals or orga-
nizations affected by an information access system may have further
fairness concerns.

In this monograph, we provide an introduction to fairness in infor-
mation access, aiming to give students, researchers, and practitioners
a starting point for understanding the problem space, the research to
date, and a foundation for their further study. Fairness in information
access draws heavily from the fair machine learning literature, which we
summarize in Section 3; researchers and practitioners looking to study or
improve the fairness of information access will do well to pay attention
to a broad set of research results. For reasons of scope, we are primarily
concerned here with the fairness of the information access transaction
itself: providing results in response to a request encoding an information
need. Fairness concerns can also arise in other aspects of the system,
such as the representation and presentation of documents themselves,
or in support facilities such as query suggestions (Noble, 2018). We
provide brief pointers on these topics, but a detailed treatment is left
for future synthesis, noting that they have not yet received as much
attention in the research literature. We are also specifically concerned
with fairness-related harms, and not the broader set of harms that may
arise in information access such as the amplification of disinformation.

Throughout this work, we use the term system to describe an
algorithmic system that performs some task: retrieving information,
recommending items, classifying or scoring people based on their data.
These systems are embedded in social contexts, operating on human-
provided inputs and producing results acted upon by humans. The
technical system forms one part of a broader socio-technical system.

1.1 Abstracting Information Access

Our choice to title this monograph “Fairness in Information Access” is
quite deliberate. While there is significant technical and social overlap
between information retrieval, recommender systems, and related fields,
they are distinct communities with differences in terminology, problem
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1.2. A Brief History of Fairness 7

definitions, and evaluation practices. However, there are fundamental
commonalities, and they present many of the same problems that
complicate notions of fairness, including ranked outputs, personalized
relevance, repeated decision-making, and multistakeholder structure.
We therefore refer to them together as information access systems —
algorithmic systems that mediate the interaction between a repository
of documents or items and a user’s information need.

This information access umbrella includes information retrieval,
recommender systems, information filtering, and some applications of
natural language processing. In Section 2, we present a fuller treatment
of this integration and reviews the fundamentals of information access,
both to introduce the concepts to readers who come to this paper from
a general fairness background and to lay out consistent terminology
for our readers from information retrieval or recommender systems
backgrounds.

1.2 A Brief History of Fairness

In the pursuit of fairness in algorithmic systems and the society more
generally, the authority of Aristotle’s citation of Plato “treat like cases
alike” is a key touchstone: a normative requirement that those who
are equal before the law should receive equal treatment (Gosepath,
2011). In more recent scholarship, the study of distributive welfare
extends these concepts considerably, recognizing four distinct concepts of
fairness: “exogenous rights, compensation, reward, and fitness.” (Moulin,
2004). Exogenous rights, as the term suggests, relate to external claims
that a system must satisfy: equal shares in property as defined by
contract, for example, or equality of political rights in democratic
societies. Compensation recognizes that fairness may require extra
consideration for parties where costs are unequal — affirmative action
in hiring and college admissions are well-known examples. Reward
justifies inequality on the basis of differing contributions: for example,
increased bonuses to employees with greater contribution to the bottom
line. Finally, we have fitness, the most nebulous category, and the one
that many information access systems inhabit. The fitness principle
holds that goods be distributed to those most fit to use, appreciate, or

Full text available at: http://dx.doi.org/10.1561/1500000079



8 Introduction

derive benefit from them. It is an efficiency principle, where the fairest
use is the one that allocates goods where the distribution achieves
the maximum utility. Fitness has a natural application to information
access, as we seek to locate documents and make them visible based on
their utility to the user’s information need.

U.S. legal theory has developed a rich tradition of anti-discrimina-
tion law, aimed at ensuring that people are not denied certain benefits
(housing, work, education, financial services, etc.) on the basis of pro-
tected characteristics (race, color, religion, gender, disability, age, and
in many jurisdictions, sexual orientation). It has given rise to several
important concepts, such as the disparate impact standard (the idea
that an allegedly discriminatory practice can be legally challenged on
the grounds that it has disproportionate adverse impact on a protected
group, without needing to show intent to discriminate1). Crenshaw
(1989) points out some of the limitations of this legal framework; in
particular, it has often focused on discrimination on the basis of indi-
vidual protected characteristics, and people who have suffered harm as
a result of combinations of protected characteristics (e.g. Black women
being denied promotions given to both Black men and White women)
have difficulty proving their case and obtaining relief. This theory of
particular harms deriving from combinations of characteristics is called
intersectionality.

Questions of fairness and discrimination have been the subject of
significant discussion in many other communities as well. Educational
testing, for example, has several decades of research on the fairness
of various testing and assessment instruments; this history is sum-
marized for computer scientists by Hutchinson and Mitchell (2019).
Friedman and Nissenbaum (1996) provide one of the earlier examples of
addressing questions of bias in computer science, pointing out how even
seemingly-innocuous technical decisions may result in biased effects
when a computing system is used in its social context. The last ten years
have seen significant new activity on fairness in machine learning that

1Disparate impact is not sufficient basis to win a discrimination lawsuit; rather,
it is the first step in a multi-stage burden-shifting framework used to decide discrimi-
nation cases under the standard. Barocas and Selbst (2016) provide an overview of
the process.
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1.3. Fairness and Bias 9

forms the primary stream of algorithmic fairness research; in Section 3
we provide an introduction to this literature.

1.3 Fairness and Bias

There are many overlapping terms used to discuss issues of fairness, bias,
and discrimination. While we give a fuller treatment of the vocabulary
in Section 3, we will here introduce how we use these terms in this
monograph. Work we cite may use them differently.

When we refer to fairness, we are talking about the ways a system
treats people, or groups of people, in a way that is considered “unfair” by
some moral, legal, or ethical standard. This is typically through effects or
impacts that are not experienced in an equitable way, but can sometimes
arise through the system’s internal operation or representations. This
definition is similar to how Friedman and Nissenbaum (1996) use the
term “bias”. There is not one particular definition of what constitutes
fairness, as Selbst et al. (2019) and many others have noted; for the
purpose of terminology, the important point is that we use the term to
refer to normative ideas of what it means to treat people “fairly”, no
matter their source.

When we talk about bias, we are using the term in something
closer to its statistical sense: we mean properties of estimators, models,
measurements, and data that systematically deviate from their intended
ideal target. As detailed in Section 3.1, we share an expansive view of
bias with Mitchell et al. (2020, Section 2.2.1), noting that these biases
can be the kinds of statistical biases familiar to science (systematic
discrepancies between data or outputs and the underlying observable
world), but they can also be societal biases in the form of systematic
discrepancies between the observable world and the arguable ideal
world that would arise if society eliminated all forms of illegitimate
discrimination.

The key distinction in our work is that we use the term “bias” to
refer to a fact of the system without making any inherently normative
judgment, and “fairness” to discuss the normative aspects of the system
and its effects. Some biases are themselves fairness problems; some
biases cause fairness problems; some have no effect with regards to
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the concerns of fairness; and some may be intentionally introduced to
address a fairness problem, often by correcting for another bias. Most
fairness problems arise from biases somewhere in the system, its data, or
its evaluation, but we find it useful to distinguish between the technical
fact and the moral, ethical, or legal concern.

1.4 Fairness and Other Responsibility Concerns

Fairness is commonly grouped together with other concerns under the
banner of responsibility in computing systems. These concerns include:

Accountability Research on accountability examines the legal, social,
and technical mechanisms by which computing systems and their
operators, developers, and providers may be held accountable,
usually for the human effects of their systems. This can connect
directly to fairness when considering how to hold organizations
accountable for ensuring their systems uphold societal goals to
be fair. Such accountability can be through formal structures,
such as applying anti-discrimination law to computing systems,
or through informal structures such as applying pressure through
publicizing the results of third-party audits.

Transparency Transparency (and its close cousin explainability) seeks
to make the operation and results of algorithmic systems scrutable
to users, developers, auditors, and other stakeholders so that it
can be understood, reviewed, and contested. This relates to long-
standing concern in information access on explanation (Tintarev
and Masthoff, 2007), as well as ideas such as scrutable user models
(Kay et al., 2002).

Safety Information access systems can be harmful. They can distri-
bute false information, promote fake or dangerous products, and
provide support for illegal or malicious activities. These problems
have received attention in the research literature, often under the
general heading of adversarial information retrieval. See related
workshops AIRWeb (Fetterly and Gyöngyi, 2009) and WebQuality
(Nielek et al., 2016).
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Privacy Aspects of users’ profiles including queries, interaction history,
and usage patterns may be highly revealing of sensitive personal
information: consider queries about medical symptoms or clicks
on web pages for addiction counseling. It follows that information
access systems have a duty to protect such information from harm-
ful disclosure. Research on privacy-preserving recommendation
seeks technical solutions to this challenge. Friedman et al. (2015)
provide a survey of this area.

Ethics Computing ethics is concerned broadly with ensuring that the
practice and products of computing adhere to appropriate ethical
principles. The ACM Code of Ethics (ACM Council, 2018) specifi-
cally calls out non-discrimination, along with attention to potential
harms, as an ethical obligation for computing professionals.

The report on the FACTS-IR Workshop on Fairness, Accountabil-
ity, Confidentiality, Transparency, and Safety in Information Retrieval
(Roegiest et al., 2019) discusses how many of these concepts play out in
information retrieval. In this work we are concerned with fairness, but
bring in other concerns as well when they relate to fairness.

1.5 Running Examples

Throughout this monograph, we will use several examples to motivate
and explain the various concepts we discuss.

Job and Candidate Search Many online platforms attempt to connect
job-seekers and employment opportunities in some way. Some of these
are dedicated employment-seeking platforms, while others, such as
LinkedIn and Xing, are more general-purpose professional networking
platforms for which job-seeking is one important component.

Job-seeking is a multisided problem — people need good employment
and employers need good candidates — and also has significant fairness
requirements that are often subject to regulation in various jurisdictions.
Some of the specific fairness concerns for this application include:

• Do users receive a fair set of job opportunities in the recommen-
dations or ads in their feed?

Full text available at: http://dx.doi.org/10.1561/1500000079



12 Introduction

• If the system assesses a match or fit score for a candidate and a
job, is this score fair, or does it under- or over-estimate scores for
particular candidates or groups of candidates?

• Do users have a fair opportunity to appear in search lists when
recruiters are looking for candidates for a job opening (Geyik and
Kenthapadi, 2018)?

• Do employers in protected groups (minority-owned businesses, for
example) have their jobs fairly promoted to qualified candidates?

• What fairness concerns come from regulatory requirements?

Music Discovery The search and recommendation systems in music
platforms, such as Spotify, Pandora, and BandCamp, connect listeners
with artists. These discovery tools have a significant impact not only on
a user’s listening experience and musical enjoyment, but also on artists’
financial and career prospects, due both to direct revenue from listening
and the commercial and reputational effects of visibility. Some specific
fairness concerns include:

• Do artists receive fair exposure in the system’s search results,
recommendation lists, or streamed programming?

• Does the system systematically over- or under-promote particular
groups of artists or songwriters through recommendations, search
results, and other discovery surfaces (Epps-Darling et al., 2020)?

• Do users receive fair quality of service, or does the system sys-
tematically do a better job of modeling some users’ tastes and
preferences than others?

• Do recommendations reflect well a user’s preferences and if not,
are there systematic errors due to stereotypes of gender, ethnicity,
location, or other attributes?

News News search and recommendation influences user exposure
to news articles on social media, news aggregation applications, and
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search engines. Such influence extends to social and political choices
users might make (Kulshrestha et al., 2017; Epstein and Robertson,
2015). Additionally, the filter bubble effect (Pariser, 2011; Alstyne and
Brynjolfsson, 2005) may cause users to be exposed primarily to news
items that reinforce their beliefs and increase polarization. Depending
on the journalistic policy of the provider, news platforms may want to
facilitate balanced exposure to news from across the social, political,
and cultural spectrum, but this may need to be balanced with the need
to de-rank malicious and low-credibility sources.

Specific fairness concerns in news discovery include:

• Does the system provide fair exposure to news on different topics
or affected groups?

• Do journalists from different perspectives receive fair visibility or
exposure for their content?

• Does the system reward original investigators or primarily direct
readers to tertiary sources?

• Do users receive a balanced set of news content?

• Are users in different demographics or locations equally well-served
by their news recommendations?

Philanthropic Giving Online platforms are increasingly a site for phil-
anthropic giving (Goecks et al., 2008), and therefore recommendation
is expected to be an increasing driver of donations. Sites may take an
explicitly “peer-to-peer” approach to such giving, as in the educational
charity site DonorsChoose.org; this results in many possible donation
opportunities for donors to select from, requiring recommendation or
sophisticated search to help match donors and opportunities. As many
philanthropic organizations have a social justice focus, fairness concerns
are essential in developing and evaluating their information access solu-
tions, in particular to avoid potential positive feedback loops in which
a subset of causes comes to dominate results and rankings.

In philanthropic settings, we would expect fairness issues to include:
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• Does the system provide fair opportunities for the various recipi-
ents / causes to have their needs supported?

• Are specific groups of recipients under- or over-represented in the
recommendation results?

1.6 How to Use This Monograph

We have written this monograph with two audiences in mind:

• Researchers, engineers, and students in information retrieval, rec-
ommender systems, and related fields who are looking to under-
stand the literature on fairness, bias, and discrimination, and how
it applies to their work.

• Researchers in algorithmic fairness who are looking to understand
information access systems, how existing fairness concepts do
or do not apply to this set of applications, and the things that
information access brings to the research space that may differ
from the application settings in which fairness is usually studied.

Due to our interest in serving both of these audiences, we do not
expect our readers to have significant familiarity with either information
retrieval or algorithmic fairness, although some background in machine
learning will be helpful. We have organized the material as follows:

• Section 2 rehearses the fundamentals of information access sys-
tems. This will be a review for most information retrieval and
recommender systems researchers; such readers should read it for
the terminology we use to integrate the fields, but may wish to
focus their study energy elsewhere.

• Section 3 provides an overview of research on fairness in ma-
chine learning generally, particularly in classification. Algorithmic
fairness researchers will likely find this section to be a review.

• Section 4 lays out the problem space of fair information access,
providing a multi-faceted taxonomy of the problems in evaluating
and removing discrimination and related harms in such systems.
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• Sections 5 and 6 survey key literature to date (as of 2021) on
fairness in information access, with pointers to research working
on many of the problems identified in Section 4, focused on the two
most commonly-studied stakeholders: consumers and providers
(with discussion of subjects in Section 6.4).

• Section 7 discusses the need to go beyond point-in-time views
of fairness to understand fairness over time how the temporal
dynamics of an information access system affect fairness.

• Section 8 looks to future work and provides tips for research and
engineering on fair information access.

Section 4 is the keystone of this work that ties the rest together;
subsequent sections work out details in the form of a literature survey
of several of the problems discussed in Section 4, and the preceding
sections set up the background needed to understand it. For readers
looking to budget their time, we recommend they ensure they have the
necessary background from Sections 2 and 3, read Sections 4 and 8, and
read the later sections that are relevant to their work.

1.7 Our Perspective

While we have written this monograph to be useful for researchers
approaching the topic of fairness from a variety of perspectives, we think
it is helpful to explicitly describe our own perspectives and motivations,
as well as the position from which we approach this work and some
limitations it may bring.

Information access systems need to meet a variety of objectives
from multiple stakeholders. They need to deliver relevant results to
their users, business value for their operators, and visibility to the
creators of the documents they present; they often also need to meet a
variety of other goals and constraints, such as diversity across subtopics,
regulatory compliance, and reducing avoidable harm to users or society.
Fairness, as we conceive of it and present it in this monograph, is not a
be-all end goal, but rather another family of objectives to be considered
in the design and evaluation of information access systems, and a
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collection of techniques for enabling those objectives. It also does not
encompass the totality of social or ethical objectives guiding a system’s
design. Researchers and developers need to work with experts in ethics,
policy, sociology, and other relevant fields to identify relevant harms
and appropriate objectives for any particular application; the concepts
we discuss will be relevant to some of those harms and objectives.

We also emphasize the importance of starting with a robust problem
framing: Section 4 is intended to help readers think about the fairness
problem they are trying to solve, and position it in a landscape of
information access; we have then organized our survey in Sections 5-7
around aspects of problem definition, instead of underlying techniques.
Metrics and mitigations are best developed and assessed in the context
of a specific, well-defined problem.

Finally, all four authors work in North America and approach the
topic primarily in that legal and moral context. A Western focus, and
particularly concepts of bias and discrimination rooted in United States
legal theory, currently dominates thinking and research on algorithmic
fairness in general. This is a limitation of the field that others have noted
and critiqued (Sambasivan et al., 2020); our present work acknowledges
but does not correct this imbalance. While we attempt to engage with
definitions and fairness objectives beyond the U.S., this work admittedly
has a Western and especially U.S. focus in its treatment of the material.
We look forward to seeing other scholars survey this topic from other
perspectives.

1.8 Some Cautions

We hope that this monograph will help scholars from a variety of back-
grounds to understand the emerging literature on fairness in information
access and to advance the field in useful directions. In addition to the
general concerns of careful, thoughtful science, work on fairness often
engages with data and constructs that touch on fundamental aspects
of human identity and experience. This work must also be done with
great care and compassion to ensure that users, creators, and other
stakeholders are treated with respect and dignity and to avoid various
traps that result in overbroad or ungeneralizable claims.
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We argue that there is nothing particularly new about this, but that
thinking about the fairness of information access brings to the surface
issues that should be considered in all research and development on
information systems.

1.8.1 Beware Abstraction Traps

Our first caution is to beware of the allure of abstraction. Selbst et al.
(2019) describe several specific problems that arise from excessive or
inappropriate abstraction in fairness research in general. Their core
argument is that the tendency in computer science to seek general,
abstract forms of problems, while useful for developing tools and results
that can be applied to a wide range of tasks, can cause important social
aspects of technology and its impacts to be obscured.

One reason for this is that social problems that appear to be struc-
turally similar arise from distinct (though possibly intertwined) causes
and mechanisms, and may require different solutions. Sexism and anti-
Black racism, for example, are both types of discrimination and fall
into the “group fairness” category of algorithmic fairness, but they are
not the same problem and have not been reinforced by the same sets
of legal and social processes. Discrimination also varies by culture and
jurisdiction, and oppression of what appears to be same group may
arise from different causes and through different mechanisms in the dif-
ferent places in which it appears. Kohler-Hausmann (2019) argues that
social constructivist frameworks for understanding group identities and
experiences imply that even understanding what constitutes a group,
let alone the discrimination it experiences, is inextricably linked with
understanding how that group is constructed and treated in a particular
society — an understanding that is inherently bound to the society in
question, although there may be similarities in group construction in
different contexts.

The result is that unfairness needs to be measured and addressed
in each specific way in which it may appear. While general solutions
for detecting and mitigating fairness-related harms may arise and be
very useful, their effectiveness needs to be re-validated in context for
the harms they are meant to address, a point reiterated by Dwork and
Ilvento (2018).
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Hoffmann (2019) similarly provides several warnings against overly
simple ideas of the harms that can arise from discrimination and bias.
Computational fairness inherits some of these limitations from its ref-
erence material, such as limitations of anti-discrimination law; others
arise from what Hoffmann, Selbst et al. (2019), and others argue are
reductionistic operationalizations of rich concepts. Hoffmann (2019)
notes in particular—and we agree—that treating categories of personal
identity as objective features in a multi-dimensional space (a natural
move for computer scientists) obfuscates the role of technical and social
systems in enacting and producing such categories. This move also has
the effect of reducing intersectionality concerns to what can be captured
by a subspace projection or similar formal operation, whether or not
that corresponds to individual’s lived experience.

We believe computing systems in general, and information access
systems in particular, have the opportunity to advance the discussion
of emancipation and justice, not just bring existing constructs into
a new domain. Information professionals have long been concerned
about issues of ethics and justice. Just as two examples, we note that
Edmund Berkeley, one of the founders of the Association for Computing
Machinery, was an outspoken advocate for the ethical responsibilities
of computer scientists as far back as the 1960s (Longo, 2015), and
the creation of Computer Professionals for Social Responsibility in the
mid-1980s (Finn and DuPont, 2020). The call here is to realize that
vision fully and for all people affected by information access systems.

1.8.2 Beware Limits

It is crucial to be clear about the limitations of particular fairness studies
and methods. Any work will be limited, if for no other reason than
the impossibility of completely solving the problem of discrimination.
Those limitations should not paralyze the research community or keep
researchers from doing the most they can to advance equity and justice
with the resources available to them; rather, work in this space needs to
be forthright and thorough about the limitations of its approach, data,
and findings. Some limitations common to this space include:
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• Single-dimensional attributes for which fairness is considered,
when in reality people experience discrimination and oppression
along multiple simultaneous dimensions.

• Binary definitions of attributes, when in reality many social di-
mensions have more than two categories or exist on a continuum.

• Taking attributes as fixed and exogenous, when social categories
are complex and socially constructed (Hanna et al., 2020).

• Incomplete, erroneous, and/or biased data (Olteanu et al., 2019;
Ekstrand and Kluver, 2021).

This is not to say that work on single binary attributes is not useful;
research must start somewhere. But it should not stop there, and authors
need to be clear about the relationship their work in its broader context
and provide a careful accounting of its known limitations.

Some methods are so limited that we advise against their use. For
example, some work on fair information access has used statistical
gender recognition based on names or computer vision techniques for
gender recognition based on profile pictures.2 This source of data is
error-prone, subject to systemic biases (Buolamwini and Gebru, 2018),
reductionistic (Hamidi et al., 2018), and fundamentally denies subjects
control over their identities, so we do not consider it good practice.

1.8.3 Beware Convenience

Researchers working in this problem space also need to be careful to do
the best research possible with available resources, and work to expand
those resources to increase the quality and social fidelity of their work,
and not take the path of least resistance.

One particular application pertains to this monograph itself and
to its proper use and citation. It is convenient and common practice
to cite survey papers to quickly summarize a topic or substantiate its

2We do not provide citations to support the claim that this is in use because our
purpose in this paragraph is to critique a general trend, not to focus on any specific
paper. Elsewhere in this monograph, we cite work making use of these techniques
where it makes a relevant contribution.
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relevance. While we naturally welcome citations of our work, we would
prefer to be cited specifically for our contributions to the organization
and synthesis of fair information access research. The purpose of much
of this monograph is to point our readers to the work that others have
done, and we specifically ask that you cite those papers, instead of —
or in addition to — this one when that work is relevant to your writing
and research.
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A
Resources for Fair Information Access

In this appendix, we collect pointers to several resources for studying
and working on fair information access. We have made every effort to
ensure these links are current as of the time of publication, but they may
degrade more quickly than the references in the rest of the publication.

A.1 Data Sets

• The TREC Fair Ranking track (launched in 2019) provides data
sets for provider fairness in search rankings, both in academic
search (2019–2020) and Wikipedia article search (2021). The data
is available in TREC (https://trec.nist.gov/results.html), with
the track web site at https://fair-trec.github.io.

• The PIReT Book Data Tools at https://bookdata.piret.info pro-
vide tools to integrate book recommendation data sets (including
from BookCrossing, Amazon, and GoodReads) with publicly-
available book and author metadata to study provider fairness in
book recommendation, as used by Ekstrand and Kluver (2021).

• Ghosh et al. (2021) develop a number of data sets for fair ranking,
using various methods and studying the errors of demographic
inference for data augmentation.
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A.2 Software

There are not yet widely-distributed open-source software for fair rec-
ommendation and retrieval; the available code is mostly embedded in
published experiment scripts, or general-purpose systems repurposed
for fair information access.

• Terrier (http://terrierteam.dcs.gla.ac.uk/research.html) provides
xQuAD, a diversification technique that has been successfully
applied for fair search ranking (Mcdonald and Ounis, 2020).

• Experimental scripts are available for the fair recommendation
studies of Ekstrand and Kluver (2021) (https://md.ekstrandom.
net/pubs/bag-extended) and Ekstrand et al. (2018b) (https://md.
ekstrandom.net/pubs/cool-kids).

• librec-auto (https://librec-auto.readthedocs.io/en/latest/) pro-
vides automated support for running recommender systems ex-
periments, including fairness metrics.
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