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ABSTRACT

The task of Question Answering (QA) has attracted sig-
nificant research interest for a long time. Its relevance to
language understanding and knowledge retrieval tasks, along
with the simple setting, makes the task of QA crucial for
strong AI systems. Recent success on simple QA tasks has
shifted the focus to more complex settings. Among these,
Multi-Hop QA (MHQA) is one of the most researched tasks
over recent years. In broad terms, MHQA is the task of an-
swering natural language questions that involve extracting
and combining multiple pieces of information and doing mul-
tiple steps of reasoning. An example of a multi-hop question
would be “The Argentine PGA Championship record holder
has won how many tournaments worldwide?”. Answering
the question would need two pieces of information: “Who is
the record holder for Argentine PGA Championship tourna-
ments?” and “How many tournaments did [Answer of Sub
Q1] win?”. The ability to answer multi-hop questions and
perform multi step reasoning can significantly improve the
utility of NLP systems. Consequently, the field has seen a
surge of high quality datasets, models and evaluation strate-
gies. The notion of ‘multiple hops’ is somewhat abstract

Vaibhav Mavi, Anubhav Jangra and Adam Jatowt (2024), “Multi-hop Question
Answering”, Foundations and Trends® in Information Retrieval: Vol. 17, No. 5, pp
457–586. DOI: 10.1561/1500000102.
©2024 V. Mavi et al.
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2

which results in a large variety of tasks that require multi-
hop reasoning. This leads to different datasets and models
that differ significantly from each other and make the field
challenging to generalize and survey. We aim to provide a
general and formal definition of the MHQA task, and orga-
nize and summarize existing MHQA frameworks. We also
outline some best practices for building MHQA datasets.
This monograph provides a systematic and thorough intro-
duction as well as the structuring of the existing attempts
to this highly interesting, yet quite challenging task.
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1
Introduction

1.1 Question Answering

An eventual goal of artificial intelligence (AI) is to impart the ability
to reason over natural language to machines. In order to achieve this,
several natural language understanding and generation tasks have been
proposed that require an agent to do some reasoning to get to the goal.
One such example is the task of Question Answering (QA) where given
a question and some relevant context, the goal is to predict the correct
answer. The question answering task provides a quantifiable way to
evaluate a system’s capability of language understanding and reasoning
(Qiu et al., 2019; Rajpurkar et al., 2016a; Hermann et al., 2015). It is a
critical problem in the fields of natural language processing (NLP) and
information retrieval (IR), and a long-standing AI milestone.

Abundance of readily-available, high-quality information on the
internet facilitates the need of automated QA systems that help probe
this rich content based on individual needs. Due to recent advancements
in Deep Learning techniques (Lan et al., 2019), the machines have
become able to successfully beat human performance on datasets like
SQUAD 2.0 (Rajpurkar et al., 2016b). However, we have only scratched
the surface of what these modern systems are capable of achieving.

3
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4 Introduction

Depending on the user requirements, the complexity of QA tasks may
vary. Some questions can be answered in brief (e.g., “Which color do
you get when you mix red and yellow paints?”) - such questions are
called objective questions or factoid questions. On the other hand, there
exist subjective questions that demand detailed explanations to meet
user requirements (e.g., “Why does mixing red, green and blue paints
give black color paint, but projecting red, green, and blue light on a white
surface return white light?”). A question can also be considered complex
if it requires a very niche domain expertise to answer the question (e.g.,
“What symptoms help diagnose chickenpox?”).

1.2 What is Multi-hop Question Answering (MHQA)?

For questions mentioned above, there might exist a single document or
a single passage (formally referred to as a ‘context’) that can provide a
justifiable answer. However, there exist certain questions that cannot be
answered using a single context (e.g., “What is the national bird of the
nation that has a negative carbon footprint?”). The task of answering
such questions is called multi-hop question answering (MHQA). The
goal of MHQA is to predict the correct answer to a question that
requires multiple reasoning ‘hops’ across given contexts (text, table,
knowledge graph etc). We look at a more detailed definition of the task
in Section 2.

The success in simple QA systems (also referred to as single hop
QA) does not necessarily entail success of MHQA systems. Min et al.
(2018) and Qiu et al. (2019) observe that most questions in existing
single-hop QA datasets are answerable without much reasoning, by
retrieving a small set of sentences. Moreover, multi-step reasoning is
required by the models to answer complex questions (refer to Table
1.1). Humans can easily perform these multi-step reasoning in their
everyday tasks, yet this is still a difficult task for machines. An agent
can be said to perform multi-step reasoning if it reaches one or more
intermediate conclusions before deriving the final answer and each of
the intermediate conclusions serves as a necessary premise for some
other conclusion. This sequence of intermediate conclusions, including
the final answer, is called a reasoning chain and each step from one
conclusion to the next can be referred to as a hop.

Full text available at: http://dx.doi.org/10.1561/1500000102



1.3. Applications of MHQA 5

Table 1.1: Examples of various types of multi-hop questions.

Type of question Question Answer

Bridge Entity-based
(temporal entity)

Who was the president of United States
in the year in which Mike Tyson
declared his retirement?

George W. Bush

Bridge Entity-based
(geographical entity)

What is the national bird of the nation
that has a negative carbon footprint? The Raven

Bridge Entity-based
(named entity)

What is the birth place of the tennis
player who has won the most grand slams? Belgrade, Serbia

Intersection Who is the only person to win
an olympic medal and a Nobel prize? Philip John Noel-

Baker

Comparison Which country has won more
soccer world cups - Argentina or Brazil? Brazil

Commonsense Rea-
soning

If A prefers fruits over meat,
when given an option of apple and
chicken sandwich, what will A prefer?

Apple

It is important to note that the inability of AI systems to perform
multiple steps of reasoning can be severely limiting, significantly re-
ducing their usability. One such instance can be as shown in Figure
1.1. Say a user is interested in knowing more about ‘the daughter of
A’ and the only relevant information available in this context is ‘B’s
father is C and her mother is A’. In this case, the AI system has to
first infer that B is female and her mother is A. The system will then
have to use common sense reasoning to conclude that B is the entity
of interest and then retrieve the required information (refer to Figure
1.1 for visual aid). Something like this seems trivial to humans but it
may fatally confuse many existing AI systems. Therefore, we argue that
multi-step reasoning is a crucial challenge and solving it can be a giant
leap towards the goals of AI.

1.3 Applications of MHQA

As discussed above, MHQA serves as an appropriate benchmark task
for evaluating an agent’s ability to perform multi-step reasoning. Along
with this scientific significance, the task of MHQA has various prac-
tical applications. Queries given to current web search systems can
often require multi-hop reasoning to reach the relevant documents.
User satisfaction when using such systems can be greatly improved
by utilizing multi-hop reasoning models. Furthermore, conversations
between humans and agents can be smoother and more informative if

Full text available at: http://dx.doi.org/10.1561/1500000102



6 Introduction

♂

Available Context - B's father is C and her mother is A

C

♀
A

B

is father of is mother of

?

Deduction - B is the daughter of A.

Question - Who is the daughter of A?

Figure 1.1: An example of multi-hop reasoning

the latter can handle complex questions. Answering a multi-hop ques-
tion requires systems to aggregate information over multiple contexts.
Therefore, techniques that are successful for MHQA can inspire progress
in tasks such as sentence fusion (Weiss et al., 2021; Geva et al., 2019b)
and abstractive summarization (Nayeem et al., 2018; Lebanoff et al.,
2019), event occurrence time prediction (Wang et al., 2021c), as well as
multi-document summarization (Ma et al., 2020; Goldstein et al., 2000;
Haghighi and Vanderwende, 2009; Barzilay et al., 1999) or timeline
summarization (Yan et al., 2011; Ghalandari and Ifrim, 2020; Steen and
Markert, 2019; Yu et al., 2021) that require information aggregation
over multiple documents. Additionally, most applications of QA such as
information extraction (IE) and entailment, can be immensely benefited
by multi-hop reasoning abilities (Boros et al., 2021).

Kumar et al. (2019) argue that MHQA is a challenging task to an
extent that they quantify the difficulty of a question as the number of
inference steps (or hops) required to answer the question. This illustrates
the direct utility of MHQA for the task of Difficulty controllable Question
Generation (DQG) (Gao et al., 2018) that has various applications
including curriculum-learning based methods for QA systems (Kurdi et
al., 2019) and designing school exams of certain difficulty levels (Sachan
and Xing, 2016).

Full text available at: http://dx.doi.org/10.1561/1500000102



1.4. Overview 7

Another problem closely related to MHQA consists of generating
clarifying questions for conversational QA (chatbots) (Sun et al., 2021;
Zaib et al., 2021). In this setting, the original question/query can be
ambiguous and hence more information is needed to disambiguate it.
The model is supposed to generate a clarifying question in natural
language, asking the user for the missing information. This can be
considered as another task involving multi-step reasoning and can be
greatly helped by improvements in MHQA.

1.4 Overview

Recently, a variety of datasets and techniques have been proposed for
MHQA, including ones designed for MHQA over Knowledge Bases and
Knowledge Graphs as well as those designed for QA over tables and
text. A substantial number of recent works have focused on the task
of MHQA and contributed to significant advancements. High quality
datasets (Yang et al., 2018; Welbl et al., 2018; Kočiskỳ et al., 2018;
Mihaylov et al., 2018; Khashabi et al., 2018; Chen et al., 2020b; Khot
et al., 2020) have encouraged better models to be proposed which in
turn have achieved impressive accuracy on these benchmarks. There
has been a significant research in the recent years to solve the task. A
variety of methods model the task as performing inference over static
or dynamic graphs to find the reasoning paths (Ding et al., 2019; Fang
et al., 2020; Zhang et al., 2021; Cao et al., 2019; Thayaparan et al., 2019;
De Cao et al., 2019; Zhang et al., 2020; Qiu et al., 2019; Huang and
Yang, 2021; Shao et al., 2020; Cao and Liu, 2021). A number of works
have also attempted to decompose the multi-hop questions into single
hop questions or generate follow-up questions based on the retrieved
information (Min et al., 2019b; Cao and Liu, 2021; Sun et al., 2021;
Zhang et al., 2021; Malon and Bai, 2020). The recent success of large
language models (LLMs) has significantly influenced MHQA as well,
with multiple attempts of using LLMs’ strong natural understanding
and emergent abilities for answering complex multi-hop questions (Zhao
et al., 2023b; Patel et al., 2022; Balepur et al., 2023; Wang et al., 2023;
Rahgouy et al., 2023; Xu et al., 2021). We discuss all these methods in
a detailed and organized manner in Sections 4, 5 and 6.

Full text available at: http://dx.doi.org/10.1561/1500000102



8 Introduction

Due to the surge in the attention received by the task over the
last decade, we believe that the community would benefit from an
extensive survey encompassing recent advancements in MHQA. In
this work, we closely cover ∼75 works from top venues including but
not limited to EMNLP, ACL, NAACL, TACL, AAAI, EACL, SIGIR,
ICLR, COLING, CoRR etc. published from 2016 to 2024. The research
community has already several surveys in the field of question-answering,
such as for single-hop QA (Allam and Haggag, 2012; Bouziane et al.,
2015; Mishra and Jain, 2016; Höffner et al., 2017; Soares and Parreiras,
2020; Dimitrakis et al., 2020), open-domain QA (Roy and Anand, 2021;
Etezadi and Shamsfard, 2023; Zhu et al., 2021), medical QA (Lin et
al., 2021; Jin et al., 2022), visual QA (Srivastava et al., 2020; Wu et
al., 2017), etc. The surveys that are most relevant to MHQA are the
ones focused on QA over knowledge bases (Fu et al., 2020; Lan et al.,
2021; Diefenbach et al., 2018; Roy and Anand, 2021) and visual QA
(Srivastava et al., 2020; Lin et al., 2021; Wu et al., 2017). However,
these can be considered as sub-domains of the more general formulation
of the MHQA field that this monograph aims to survey. Since the
existing works go a long way in summarizing their intended domains,
we choose to exclude Visual MHQA and MHQA over Knowledge Bases
and Knowledge Graphs from the scope of this work.

We observe that despite the impressive accuracy of recent models
on MHQA benchmarks, significant concerns have been raised regarding
whether the models are actually able to perform multi-step reasoning in
order to answer the multi-hop questions. Several works (Jansen, 2018;
Wang et al., 2019; Chen and Durrett, 2019; Min et al., 2019a; Trivedi
et al., 2020; Jhamtani and Clark, 2020; Inoue et al., 2020; Tang et al.,
2021; Tu et al., 2020) conduct experiments and demonstrate that a
significant portion of the accuracy can be ascribed to pattern matching
and single step reasoning (also termed as shortcut reasoning). This
points to new challenges and future directions for research in MHQA.
Above all, it is fair to say that despite the inspiring progress made so
far, the task of MHQA is still a long way from being solved.

A promising direction for solving some of these challenges is the task
of explainable MHQA, a particular setting of MHQA that requires the
model to output the correct reasoning chain (or equivalently, some kind
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1.4. Overview 9

of representation of the reasoning chain) along with the correct answer.
This increases the model’s accountability and interpretability to the end
user since the model now has to also explain how it reached the answer.
Interpretability of the AI systems is crucial for their wide adoption for
most high-stake applications such as finance, law and healthcare (Samek
et al., 2017; Alvarez-Melis and Jaakkola, 2017; Arras et al., 2016; Biran
and Cotton, 2017; Gilpin et al., 2018). Consequently, more recent works
(Feng et al., 2020; Chen et al., 2019; Yang et al., 2018; Inoue et al., 2020;
Jhamtani and Clark, 2020) have focused on this setting. Yang et al.
(2018) have also argued that training the model to output reasoning
chain can further help in training to predict the correct answer as it
serves as a useful auxiliary task. Tu et al. (2020) also find that using
the reasoning chain as a supervision signal during training improves the
performance on adversarial examples as well.

The remainder of this monograph is structured as follows: Section
2 aims to formalize the task of MHQA in a way that encompasses
most existing variants. Section 3 describes existing MHQA datasets,
their creation techniques, critiques and challenges.1 Section 4 discusses
traditional pre-LLM models in-depth in a structured way that leads to
a taxonomy for existing methods in Section 6. Section 5 is dedicated
to recent LLM based methods for MHQA, challenges of incorporating
LLMs and their proposed solutions. Section 7 discusses the standard
evaluation metrics along with evaluation methods specifically designed
for evaluating multi-step reasoning/retrieval. Section 8 touches upon
the multi-hop question generation problem. Section 9 then summarizes
the insights of the monograph and critiques of the existing methods and
datasets, to propose promising directions for future research in MHQA.

1We discuss the datasets before methods as doing so provides on overview of the
existing variants of the tasks which would be helpful to understand the intuition
behind the proposed architectures.
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A
Background

A.1 BM25

BM25 is a ranking function used to retrieve documents given a search
query. BM25 stands stands for Best Match 25.1 It uses a bag-of-words
mechanism to score proximity between the search query and the docu-
ments. Given a query Q = q1, q2, ..., qn, where qi denotes a keyword in
the query Q, the BM25 score of the document D is defined as follows -

BM25(D, Q) =
n∑

i=1
IDF (qi).

freq(qi, D).(k1 + 1)
freq(qi, D) + k1.(1 − b + b. |D|

avg.doc.len.)
(A.1)

where freq(qi, D) is the number of times qi occurs in D, |.| denotes
the number of words in D, avg.doc.len. denotes the average number of
words in the document, k1 and b are free parameters,2 and IDF (qi)
denotes the inverse document frequency weight of query term usually
computed as follows -

1BM25 is also known as Okapi BM25, which was used first by the Okapi
information retrieval system implemented by London’s City University (https://en.
wikipedia.org/wiki/Okapi_BM25).

2Typically k1 ∈ [1.2, 2.0] and b = 0.75.

93
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94 Background

IDF (qi) = ln(N − n(qi) + 0.5
n(qi) + 0.5 ) + 1 (A.2)

where N is the total number of documents in the collection, and n(qi)
is the number of documents containing qi.

Even though the technique was devised in 1970s-80s, BM25 and its
variations are still widely adopted for document retrieval, especially
when the document corpus is very large and using dense retrievers3 has
a big computational overhead.

A.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of artificial neural
networks that have loop connections that allow information propagation
across time through the same neurons. Prior to transformer networks
(Vaswani et al., 2017b), RNNs were the most popular framework class
to process sequential information, and are still widely adopted in real-
world systems. Most practical RNN-based architectures have additional
stored states that allow the vanilla RNN architecture to overcome its
shortcoming of short-term memory loss. Gated recurrent units (GRU)
cells (Cho et al., 2014) and long short term memory (LSTM) cells
(Hochreiter and Schmidhuber, 1997b) are two of the most popular
stateful RNN cells that use gated mechanism to handle long term
memory. See et al. (2017b) proposed a pointer generator network to
overcome the over-repetition of RNN generated output using coverage
loss. We point the readers to the comprehensive survey of recurrent
neural networks by Lipton et al. (2015) for extensive explanation on
the topic.

A.3 Transformers for Language Modeling

Even the advanced RNN models like LSTMs and GRUs have a tough
time dealing with long sequences. Luong et al. (2015) introduced the
attention mechanism which allows the model to focus on certain parts

3Dense retriever is a general umbrella term used to refer to the neural network
based retrieval systems.
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A.3. Transformers for Language Modeling 95

of the input when predicting a particular output token. Doing so signif-
icantly helps with tasks like machine translation where certain words of
the input sequence are directly related to a word in the output sequence.
Many forms of attention have since been used effectively for various
tasks.

Vaswani et al. (2017a) extended the idea of attention by removing
the recurrent component of the model altogether and proposed the
transformer model where both the encoder and the decoder consist of
several self-attention and feed forward layers. The transformer model
also introduced the multi-head attention. These components allows
for very large models which can have a lot more parameters without
comprising on the performance. Transformers are also proved to be very
versatile, having great success in a large number of natural language
applications.

While the original transformers model was trained using the next-
token prediction task implying the unidirectionality of the encoder
model, BERT (Kenton and Toutanova, 2019) was a bidirectional en-
coder based transformer which was trained using the masked language
modeling task. BERT has proved to be a versatile model and the word
representations learned using BERT have been used as embeddings for
almost all natural language tasks.

Success of transformer models including BERT led to their use as
large pre-training models and several models like AlBERT (Lan et al.,
2019), RoBERTa (Liu et al., 2019) and GPT were proposed. AlBERT
uses parameter reduction techniques which allow for smaller and faster
training of the BERT models while achieving a similar level of accuracy
as BERT. RoBERTa is a much more robustly optimized version of
BERT, trained with optimized design and hyperparameters choices,
which could significantly outperform the originally trained BERT model.

Pre-training of large language models (LLMs) has become increas-
ingly popular leading to larger and larger models trained on huge corpora
of natural language. The different versions of the model follow the same
principle, with GPT-1 having 117 million parameters and GPT-4 having
about a 100 trillion parameters. GPTs are trained on huge corpora using
the next token prediction task. An extensively detailed explanation of
different architectures and training techniques for transformer based
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models is neither feasible nor in the scope for this work. Therefore, we
point the readers to the comprehensive survey of transformers by Lin
et al. (2022) for further details on the topic.

A.4 Graph Neural Networks

Graphs are a very simple and versatile method of representing data and
its inherent structure. Neural Networks could be adapted to incorporate
this structure leading to Graph Neural Networks (GNNs). GNNs can be
adopted for various different types of data and tasks, leading to several
improvements increasing their capabilities. The integral part of all these
models is the message passing algorithm briefly explained below.

Given a graph G = (V, E) having n = |V | nodes, the representation
of each node is updated following the given steps:

• Initialization: The representation of every node v is initialized
as h0

v = Xv, where Xv is the feature vector.

• Update: For each layer i, the representations of each node v is
updated as:

hi
v = σuϵN(v)(WiΣ

hi−1
u

N(v) + Uih
i−1
v ) (A.3)

where σ is the activation function, Wi and Ui are the weight
matrices corresponding to the layer i and N(v) is the set of
neighbouring nodes of the node v.

• Prediction: The representations after layer K are passed to a
linear network for the eventual prediction task.

At every layer, the representation of node v is updated with an activation
applied to the weighted average of representations of the nodes directly
connected to v. Therefore, after k layers, the node v is supposed to
receive the ‘message’ from all nodes having a path to v of length ≤ k.
The weighted average also ensures that the nodes that are closer to v

in the graph end up affecting its representation more.
A layer of a Graph Convolutional Network (GCN) (Kipf and Welling,

2016b) consists of a GNN layer followed by a Linear layer. Relation
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GCN (R-GCN) (Schlichtkrull et al., 2017) allow for different kinds of
edges by having different weight matrices for nodes connected to v via
different kind of edges. Graph Attention Networks (GAN) (Veličković
et al., 2018) incorporate self attention into GNNs by using the attention
weights while performing the message passing algorithm. Several other
modifications of GNNs are proposed for different tasks.

We point the readers to the comprehensive survey of graph neural
networks by Wu et al. (2020) for further reading on the topic.

A.5 Large Language models

Language models refer to a class of self-supervised NLP models that
are trained on large unlabeled datasets to learn to predict the likelihood
of a word or sequence of words occurring based on the context provided
by the preceding words. This ability to estimate the probability of a
word given its context forms the foundation of language modeling. These
models undergo training on various tasks, such as next-word prediction
(Brown et al., 2020), masked language modeling (the task of predicting
randomly missing tokens), and next-sentence prediction (Kenton and
Toutanova, 2019), without the need for labeled data. Due to their
reliance on extensive training data, language models develop a strong
grasp of underlying language patterns and concepts. Generally, language
models are not designed for specific tasks and can be fine-tuned with
minimal data for various downstream applications. Extensive research
has shown that utilizing large language models (LLMs) pre-trained on
vast amounts of data yields impressive results in language understanding
and generation tasks (Tan et al., 2023; Wang et al., 2021d; Hendy et al.,
2023; Blair-Stanek et al., 2023). The advent of transformer models
has made it possible to train such highly advanced language models,
resulting in popular models like BERT, T5, and GPT-3 (Kenton and
Toutanova, 2019; Raffel et al., 2019; Brown et al., 2020).

A.5.1 Generative Pre-trained Transformer (GPT)

GPT, a series of generative pre-trained large language models (Brown et
al., 2020), is characterized by its decoder-only transformer architecture.
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Unlike other transformer models that have both encoder and decoder
blocks, GPT models consist solely of decoder blocks, eliminating the
encoder-decoder cross-attention layer from each block. The different
versions of GPT, namely GPT, GPT-2, GPT-3, and GPT-4, vary in
terms of model size and training data. For example, GPT-3 has 175
billion model parameters and is trained on a massive corpus of 499
billion tokens, while GPT-2 has 1.5 billion parameters and is trained
on a dataset of 10 billion tokens.

A.5.2 Prompting GPT-3

GPT-3 has achieved remarkable success in various downstream natural
language tasks, including question answering (Tan et al., 2023), Machine
Translation (Hendy et al., 2023) and Entailment prediction (Wang et al.,
2021d), with minimal supervision required. During a typical run of the
model, an incomplete piece of text is provided as a ‘prompt’, and the
model iteratively generates the most likely tokens to complete the text.
This prompting technique has demonstrated impressive performance
in the zero-shot setting, where the model is not provided with any
in-context examples and is expected to predict the correct output for
the given question in the prompt (Figure A.1).

On the other hand, few-shot prompting (Fei-Fei et al., 2006) involves
including a small number of sample input-output pairs within the
prompt as references for the model (Figure A.1). The inclusion of a few
reference examples provides valuable guidance to the model, allowing it
to generate more accurate and relevant responses.

In their work, Wei et al. (2023) introduced the concept of chain-of-
thought (CoT) prompting, which goes a step beyond simply providing
input-sample output pairs. CoT prompting includes a coherent sequence
of reasoning steps that gradually build up to the correct answer. By pre-
senting the model with a step-by-step thought process, CoT prompting
offers explicit examples of how to arrive at the correct answer based on
the given input facts. This method is particularly valuable for tackling
complex tasks that demand multiple layers of reasoning including the
task that this study focuses on. Figure A.1 shows examples of zero-shot,
few-shot, and CoT prompts for an arithmetic question. Here, the prompt
consists of 2 in-context examples is 2.
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Figure A.1: Example of zero-shot (top), few-shot (middle), and CoT (bottom)
prompting for the same question.

For further background and details, we refer the readers to the
comprehensive survey on LLMs by Zhao et al. (2023b)
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