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Abstract

Property testing deals with tasks where the goal is to distinguish
between the case that an object (e.g., function or graph) has a pre-
specified property (e.g., the function is linear or the graph is bipartite)
and the case that it differs significantly from any such object. The task
should be performed by observing only a very small part of the object,
in particular by querying the object, and the algorithm is allowed a
small failure probability.

One view of property testing is as a relaxation of learning the object
(obtaining an approximate representation of the object). Thus property
testing algorithms can serve as a preliminary step to learning. That is,
they can be applied in order to select, very efficiently, what hypothesis
class to use for learning. This survey takes the learning-theory point of
view and focuses on results for testing properties of functions that are
of interest to the learning theory community. In particular, we cover
results for testing algebraic properties of functions such as linearity,
testing properties defined by concise representations, such as having a
small DNF representation, and more.
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1

Introduction

Property testing [82, 128] is the study of the following class of problems.

Given the ability to perform (local) queries concerning a
particular object the problem is to determine whether the
object has a predetermined (global) property or differs
significantly from any object that has the property. In
the latter case we say it is far from (having) the property.
The algorithm is allowed a small probability of failure,
and typically it inspects only a small part of the whole
object.

For example, the object may be a graph and the property is that it is
bipartite, or the object may be a function and the property is that it is
linear. It is usually assumed that the property testing algorithm is given
query access to the object. When the object is a function f the queries
are of the form: “what is f(x)?” while if the object is a graph then
queries may be: “is there an edge between vertices u and v” or: “what
vertex is the ith neighbor of v?”. In order to determine what it means to
be far from the property, we need a distance measure between objects.
In the case of functions it is usually the weight according to the uniform

1
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2 Introduction

distribution of the symmetric difference between the functions, while in
the case of graphs it is usually the number of edge modifications divided
by some upper bound on the number of edges. When dealing with other
objects (e.g., the object may be a set of points and the property may
be that the set of points can be clustered in a certain way) one has to
define both the types of queries allowed and the distance measure.

1.1 Property Testing as Relaxed Decision

Property testing problems are often viewed as a relaxation of deci-
sion problems. Namely, instead of requiring that the algorithm decide
whether the object has the property or does not have the property, the
algorithm is required to decide whether the object has the property
or is far from having the property. Given this view there are several
scenarios in which property testing may be useful.

• If the object is very large, then it is infeasible to examine
all of it and we must design algorithms that examine only a
small part of the object and make an approximate decision
based on what they view.

• Another scenario is when the object is not too large to fully
examine, but the exact decision problem is NP-hard. In such
a case some form of approximate decision is necessary if one
seeks an efficient algorithm and property testing suggest one
such form. We note that in some cases the approximation
essentially coincides with standard notions of approximation
problems (e.g., Max-Cut [82]) while in others it is quite dif-
ferent (e.g., k-Colorability [82]).

• It may be the case that the object is not very large and
there is an efficient (polynomial-time) algorithm for solving
the problem exactly. However, we may be interested in a
very efficient (sublinear-time) algorithm, and are willing to
tolerate the approximation/error it introduces.

• Finally, there are cases in which typical no-instances of the
problem (that is, objects that do not have the property) are
actually relatively far from having the property. In such cases
we may first run the testing algorithm. If it rejects the object
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1.2 Property Testing and Learning (Estimation) 3

then we reject it and otherwise we run the exact decision
procedure. Thus, we save time on the typical no-instances.
This is in particular useful if the testing algorithm has one-
sided error so that it never rejects yes-instances (that have
the property).

In all the aforementioned scenarios we are interested in testing algo-
rithms that are much more efficient than the corresponding decision
algorithms, and in particular have complexity that is sublinear in the
size of the object.

1.2 Property Testing and Learning (Estimation)

Here when we say learning we mean outputting a good estimate of the
target object.1 Thus, another view of property testing is as a relaxation
of learning (with queries and under the uniform distribution).2 Namely,
instead of asking that the algorithm output a good estimate of the
function (object), which is assumed to belong to a particular class of
functions F , we only require that the algorithm decide whether the
function belongs to F or is far from any function in F . Given this view, a
natural motivation for property testing is to serve as a preliminary step
before learning (and in particular, agnostic learning (e.g., [107]) where
no assumption is made about the target function but the hypothesis
should belong to a particular class of functions): we can first run the
testing algorithm to decide whether to use a particular class of functions
as our hypothesis class.

Here too we are interested in testing algorithms that are more effi-
cient than the corresponding learning algorithms. As observed in [82],
property testing is no harder than proper learning (where the learning
algorithm is required to output a hypothesis from the same class of
functions as the target function). Namely, if we have a proper learning

1 One may argue that property testing is also a certain form of learning as we learn infor-

mation about the object (i.e., whether it has a certain property or is far from having the
property). However, we have chosen to adopt the notion of learning usually used in the

computational learning theory community.
2 Testing under non-uniform distributions (e.g., [1, 92]) and testing with random examples
(e.g., [105]) have been considered (and are discussed in this survey), but most of the work
in property testing deals with testing under the uniform distributions and with queries.
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4 Introduction

algorithm for a class of functions F then we can use it as a subroutine
to test the property: “does the function belong to F” (see Section 2.2
for a formal statement and proof).

Choosing between the two viewpoints. The choice of which of the afore-
mentioned views to take is typically determined by the type of objects
and properties in question. Much of property testing deals with combi-
natorial objects and in particular graphs. For such objects it is usually
more natural to view property testing as a relaxation of exact decision.
Indeed, there are many combinatorial properties for which there are
testing algorithms that are much more efficient than the corresponding
(exact) decision algorithms. On the other hand, when the objects are
functions, then it is usually natural to look at property testing from a
learning theory perspective. In some cases, both viewpoints are appro-
priate. This survey focuses on the latter perspective.

1.3 Property Testing and Hypothesis Testing

The notion of property testing is related to that of hypothesis testing
(see e.g., [108, Chap. 8]) and indeed the distinction between estimation
and testing is well known in the mathematical statistics literature. In
this context, having the tested property (belonging to the correspond-
ing class of objects) is called the null hypothesis, while being ε-far from
the property (where ε is the distance parameter that the algorithm is
given as input) is the alternative hypothesis. There are two major math-
ematical approaches to the study of testing in statistics (see, e.g., [136]
and [113]). In the first, the alternative is taken to approach the null
hypothesis at a certain rate as a function of the number of data points;
when the correct rate is chosen the error probabilities stabilize at val-
ues strictly greater than zero and strictly less than one. In the second
approach, the alternative is held fixed as the number of data points
grows; in this case error probabilities go to zero and large deviation
methods are used to assess the rate at which error probabilities go to
zero. Aspects of both of these approaches can be found in the property
testing literature.

While in many cases the particular problems studied in the property
testing literature are somewhat different from those typically studied
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1.4 Topics and Organization 5

in the mathematical statistics literature, the work on testing proper-
ties of distributions (which is discussed shortly in Section 6.3) deals
with problems that are similar (or even the same) as those studied in
mathematical statistics.

We also note that there are several works with a mathematical
statistics flavor that are related to property testing and appeared in
the computational learning literature (e.g., [33, 112, 137]).

1.4 Topics and Organization

We start with some preliminaries, which include basic definitions and
notations. The preliminaries also include a precise statement and proof
of the simple but important observation that testing is no harder than
learning.

In Section 3, we consider the first type of properties that were
studied in the context of property testing: algebraic properties. These
include testing whether a function is (multi-)linear and more generally
whether it is a polynomial of bounded degree. This work has implica-
tions to coding theory, and some of the results played an important
role in the design of Probabilistically Check Proof (PCP) systems.

In Section 4, we turn to the study of function class that have a
concise (propositional logic) representation such as singletons, mono-
mials, and small DNF formula. This section includes a general result
that applies to many classes of functions, where the underlying idea is
that testing is performed by implicit learning.

The results in Sections 3 and 4 are in the standard model of testing.
That is, the underlying distribution is uniform and the algorithm may
perform queries to the function. In Section 5, we discuss distribution-
free testing, and testing from random examples alone.

Finally, in Section 6, we give a more brief survey of other results
in property testing. These include testing monotonicity, testing of clus-
tering, testing properties of distributions, and more.
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