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Andrew McCallum (University of

Massachusetts Amherst)

Marina Meila (University of Washington)

Andrew Moore (Carnegie Mellon

University)

John Platt (Microsoft Research)

Luc de Raedt (Albert-Ludwigs Universitaet

Freiburg)

Christian Robert (Université
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Abstract

Networks are ubiquitous in science and have become a focal point for
discussion in everyday life. Formal statistical models for the analysis of
network data have emerged as a major topic of interest in diverse areas
of study, and most of these involve a form of graphical representation.
Probability models on graphs date back to 1959. Along with empirical
studies in social psychology and sociology from the 1960s, these early
works generated an active “network community” and a substantial liter-
ature in the 1970s. This effort moved into the statistical literature in the
late 1970s and 1980s, and the past decade has seen a burgeoning net-
work literature in statistical physics and computer science. The growth

Full text available at: http://dx.doi.org/10.1561/2200000005



of the World Wide Web and the emergence of online “networking com-
munities” such as Facebook, MySpace, and LinkedIn, and a host of more
specialized professional network communities has intensified interest in
the study of networks and network data.
Our goal in this review is to provide the reader with an entry point to
this burgeoning literature. We begin with an overview of the historical
development of statistical network modeling and then we introduce a
number of examples that have been studied in the network literature.
Our subsequent discussion focuses on a number of prominent static and
dynamic network models and their interconnections. We emphasize for-
mal model descriptions, and pay special attention to the interpretation
of parameters and their estimation. We end with a description of some
open problems and challenges for machine learning and statistics.
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1

Introduction

Many scientific fields involve the study of networks in some form.
Networks have been used to analyze interpersonal social relationships,
communication networks, academic paper co-authorships and cita-
tions, protein interaction patterns, and much more. Popular books
on networks and their analysis began to appear a decade ago (see,
e.g., [24, 50, 68, 318, 319]), and online “networking communities”
such as Facebook, MySpace, and LinkedIn are an even more recent
phenomenon.

In this work, we survey selective aspects of the literature on sta-
tistical modeling and analysis of networks in social sciences, computer
science, physics, and biology. Given the volume of books, papers, and
conference proceedings published on the subject in these different fields,
a single comprehensive survey would be impossible. Our goal is far
more modest. We attempt to chart the progress of statistical model-
ing of network data over the past 70 years and to outline succinctly
the major schools of thought and approaches to network modeling and
to describe some of their interconnections. We also attempt to identify
major statistical gaps in these modeling efforts. From this overview one
might then synthesize and deduce promising future research directions.
Kolaczyk [177] provides a complementary statistical overview.

1
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2 Introduction

The existing set of statistical network models may be organized
along several major axes. For this monograph, we choose the axis
of static vs. dynamic models. Static network models concentrate on
explaining the observed set of links based on a single snapshot of the
network, whereas dynamic network models are often concerned with
the mechanisms that govern changes in the network over time. Most
early examples of networks were single static snapshots. Hence static
network models have been the main focus of research for many years.
However, with the emergence of online networks, more data are avail-
able for dynamic analysis, and in recent years there has been growing
interest in dynamic modeling.

In the remainder of this chapter we provide a brief historical
overview of network modeling approaches. In subsequent chapters we
introduce some examples studied in the network literature and give a
more detailed comparative description of select modeling approaches.

1.1 Overview of Modeling Approaches

Almost all of the “statistically” oriented literature on the analysis of
networks derives from a handful of seminal papers. In social psychology
and sociology there is the early work of Simmel and Woff [268] at
the turn of the last century and Moreno [222] in the 1930s as well as
the empirical studies of Stanley Milgram [216, 298] in the 1960s; in
mathematics/probability there is the Erdös–Rényi paper on random
graph models [94]. There are other papers that dealt with these topics
contemporaneously or even earlier. But these are the ones that appear
to have had lasting impact.

Moreno [222] invented the sociogram — a diagram of points and
lines used to represent relations among persons, a precursor to the
graph representation for networks. Luce and others developed a math-
ematical structure to go with Moreno’s sociograms using incidence
matrices and graphs (see, e.g., [11, 200, 201, 202, 203, 244, 282]), but the
structure they explored was essentially deterministic. Milgram gave the
name to what is now referred to as the “Small-World” phenomenon —
short paths of connections linking most people in social spheres — and
his experiments had provocative results: the shortest path between any
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1.1 Overview of Modeling Approaches 3

two people for completed chains has a median length of around 6; how-
ever, the majority of chains initiated in his experiments were never
completed! (His studies provided the title for the play and movie Six
Degrees of Separation, ignoring the complexity of his results due to
the censoring.) White [321] and Fienberg and Lee [100] gave a for-
mal Markov chain like model and analysis of the Milgram experimen-
tal data, including information on the uncompleted chains. Milgram’s
data were gathered in batches of transmission, and thus these models
can be thought of as representing early examples of generative descrip-
tions of dynamic network evolution. Recently, Dodds et al. [86] studied
a global “replication” variation on the Milgram study in which more
than 60,000 e-mail users attempted to reach one of 18 target persons
in 13 countries by forwarding messages to acquaintances. Only 384 of
24,163 chains reached their targets but they estimate the median length
for completions to be 7, by assuming that attrition occurs at random.

The social science network research community that arose in the
1970s was built upon these earlier efforts, in particular the Erdös–
Rényi–Gilbert model. Research on the Erdös–Rényi–Gilbert model
(along with works by Katz et al. [166, 167, 168]) engendered the field
of random graph theory. In their papers, Erdös and Rényi worked with
fixed number of vertices, N , and number of edges, E, and studied the
properties of this model as E increases. Gilbert studied a related two-
parameter version of the model, with N as the number of vertices and
p the fixed probability for choosing edges. Although their descriptions
might at first appear to be static in nature, we could think in terms
of adding edges sequentially and thus turn the model into a dynamic
one. In this alternative binomial version of the Erdös–Rényi–Gilbert
model, the key to asymptotic behavior is the value λ = pN . There is
a “phase change” associated with the value of λ = 1, at which point
we shift from seeing many small connected components in the form of
trees to the emergence of a single “giant connected component.” Prob-
abilists such as Pittel [243] imported ideas and results from stochastic
processes into the random graph literature.

Holland and Leinhardt’s [150] p1 model extended the Erdös–Rényi–
Gilbert model to allow for differential attraction (popularity) and
expansiveness, as well as an additional effect due to reciprocation.
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4 Introduction

The p1 model was log-linear in form, which allowed for easy com-
putation of maximum likelihood estimates using a contingency table
formulation of the model [103, 104]. It also allowed for various gener-
alizations to multidimensional network structures [101] and stochastic
blockmodels. This approach to modeling network data quickly evolved
into the class of p∗ or exponential random graph models (ERGMs)
originating in the work of Frank and Strauss [110] and Strauss and
Ikeda [287]. A trio of papers demonstrating procedures for using
ERGMs [241, 254, 316] led to the widespread use of ERGMs in a
descriptive form for cross-sectional network structures or cumulative
links for networks — what we refer to here as static models. Full max-
imum likelihood approaches for ERGMs appeared in the work of Sni-
jders and Handcock and their collaborators, some of which we describe
in Section 3.

Most of the early examples of networks in the social science
literature were relatively small (in terms of the number of nodes) and
involved the study of the network at a fixed point in time or cumu-
latively over time. Only a few studies (e.g., Sampson’s 1968 data on
novice monks in the monastery [259]) collected, reported, and analyzed
network data at multiple points in time so that one could truly study
the evolution of the network, i.e., network dynamics. The focus on rel-
atively small networks reflected the state-of-art of computation, but it
was sufficient to trigger the discussion of how one might assess the fit
of a network model. Should one focus on “small sample” properties and
exact distributions given some form of minimal sufficient statistic, as
one often did in other areas of statistics, or should one look at asymp-
totic properties, where there is a sequence of networks of increasing
size? Even if we have “repeated cross-sections” of the network, if the
network is truly evolving in continuous-time we need to ask how to
ensure that the continuous-time parameters are estimable. We return
to many of these question in subsequent sections.

In the late 1990s, physicists began to work on network models and
study their properties in a form similar to the macro-level descriptions
of statistical physics. Barabási, Newman, and Watts, among others,
produced what we can think of as variations on the Erdös–Rényi–
Gilbert model which either controlled the growth of the network or
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1.1 Overview of Modeling Approaches 5

allowed for differential probabilities for edge addition and/or deletion.
These variations were intended to produce phenomena such as “hubs,”
“local clustering,” and “triadic closures.” The resulting models gave us
fixed degree distribution limits in the form of power-laws — variations
on preferential attachment models (“the rich get richer”) that date
back to Yule [329] and Simon [269] (see also [219]) — as well as what
became known as “small-world” models. The small-world phenomenon,
which harks back to Milgram’s 1960s studies, usually refers to two dis-
tinct properties: (1) small average distance and (2) the “clustering”
effect, where two nodes with a common neighbor are more likely to be
adjacent. Many of these authors claim that these properties are ubiq-
uitous in realistic networks. To model networks with the small-world
phenomenon, it is natural to utilize randomly generated graphs with a
power-law degree distribution, where the fraction of nodes with degree
k is proportional to k−a for some positive exponent a. Many of the
most relevant papers are included in an edited collection by Newman
et al. [204]. More recently this style of statistical physics models has
been used to detect community structure in networks, e.g., see Girvan
and Newman [122] and Backstrom et al. [20], a phenomenon which
has its counterpart description in the social science network modeling
literature.

The probabilistic literature on random graph models from the 1990s
made the link with epidemics and other evolving stochastic phenom-
ena. Picking up on this idea, Watt and Strogatz [320] and others used
epidemic models to capture general characteristics of the evolution of
these new variations on random networks. Durrett [91] has provided us
with a book-length treatment on the topic with a number of interesting
variations on the theme. The appeal of stochastic processes as descrip-
tions of dynamic network models comes from being able to exploit the
extensive literature already developed, including the existence and the
form of stationary distributions and other model features or properties.
Chung and Lu [69] provide a complementary treatment of these models
and their probabilistic properties.

One of the principal problems with this diverse network literature
that we see is that, with some notable exceptions, the statistical tools
for estimation and assessing the fit of “statistical physics” or stochastic
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6 Introduction

process models are lacking. Consequently, no attention is paid to the
fact that real data may often be biased and noisy. What authors in
the network literature have often relied upon is the extraction of key
features of the related graphical network representation, e.g., the use of
power-laws to represent degree distributions or measures of centrality
and clustering, without any indication that they are either necessary
or sufficient as descriptors for the actual network data. Moreover, these
summary quantities can often be highly misleading as the critique by
Stouffer et al. [285, 286] of methods used by Barabási [25] and Vázquez
et al. [304] suggest. Barabási claimed that the dynamics of a number
of human activities are scale-free, i.e., he specifically reported that the
probability distribution of time intervals between consecutive e-mails
sent by a single user and time delays for e-mail replies follow a power-
law with exponent −1, and he proposed a priority-queuing process as an
explanation of the bursty nature of human activity. Stouffer et al. [286]
demonstrated that the reported power-law distribution was solely an
artifact of the analysis of the empirical data and used Bayes factors to
show that the proposed model is not representative of e-mail commu-
nication patterns. See a related discussion of the poor fit of power-laws
in Clauset et al. [74]. There are several works, however, that try to
address model fitting and model comparison. For example, the work of
Williams and Martinez [323] showed how a simple two-parameter model
predicted “key structural properties of the most complex and compre-
hensive food webs in the primary literature”. Another good example
is the work of Middendorf et al. [215] where the authors used network
motif counts as input to a discriminative systematic classification for
deciding which configuration model the actual observed network came
from; they looked at power-law, small-world, duplication-mutation
and duplication-mutation-complementation and other models (seven in
total) and concluded that the duplication-mutation-complementation
model described the protein–protein interaction data in Drosophila
melanogaster species best.

Machine learning approaches emerged in several forms over the past
decade with the empirical studies of Faloutsos et al. [97] and Klein-
berg [172, 173, 174], who introduced a model for which the underlying
graph is a grid — the graphs generated do not have a power-law degree
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1.2 What This Survey Does Not Cover 7

distribution, and each vertex has the same expected degree. The strict
requirement that the underlying graph be a cycle or grid renders the
model inapplicable to webgraphs or biological networks. Durrett [91]
treats variations on this model as well. More recently, a number of
authors have looked to combine the stochastic blockmodel ideas from
the 1980s with latent space models, model-based clustering [137] or
mixed-membership models [7], to provide generative models that scale
in reasonable ways to substantial-sized networks. The class of mixed
membership models resembles a form of soft clustering [95] and includes
the latent Dirichlet allocation model [41] from machine learning as a
special case. This class of models offers much promise for the kinds of
network dynamical processes we discuss here.

1.2 What This Survey Does Not Cover

This survey focuses primarily on statistical network models and their
applications. As a consequence there are a number of topics that we
touch upon only briefly or essentially not at all, such as:

• Probability theory associated with random graph models. The
probabilistic literature on random graph models is now truly
extensive and the bulk of the theorems and proofs, while
interesting in their own right, are largely unconnected with
the present exposition. For excellent introductions to this lit-
erature, see Chung and Lu [69] and Durrett [91]. For related
results on the mathematics of graph theory, see Bollobás [43].
• Efficient computation on networks. There is a substantial

computer science literature dealing with efficient calcula-
tion of quantities associated with network structures, such
as shortest paths, network diameter, and other measures of
connectivity, centrality, clustering, etc. The edited volume
by Brandes and Erlebach [48] contains good overviews of a
number of these topics as well as other computational issues
associated with the study of graphs.
• Use of the network as a tool for sampling. Adaptive sam-

pling strategies modify the sampling probabilities of selec-
tion based on observed values in a network structure.
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8 Introduction

This strategy is beneficial when searching for rare or
clustered populations. Thompson and Seber [296] and
Thompson [293] discuss adaptive sampling in detail. There
is also related work on target sampling [294] and respondent-
driven sampling [258, 305].
• Neural networks. Neural networks originated as simple mod-

els for connections in the brain but have more recently been
used as a computational tool for pattern recognition (e.g.,
Bishop [38]), machine learning (e.g., Neal [229]), and models
of cognition (e.g., Rogers and McClelland [257]).
• Networks and economic theory. A relatively new area of

study is the link between network problems, economic theory,
and game theory. Some useful entrees to this literature are
Even-Dar and Kearns [96], Goyal [131], Kearns et al. [169],
and Jackson [160], whose book contains an excellent semi-
technical introduction to network concepts and structures.
• Relational networks. This is a very popular area in machine

learning. It uses probabilistic graphical models to represent
uncertainty in the data. The types of “networks” in this area,
such as Bayes nets, dependency diagrams, etc., have a differ-
ent meaning than the networks we consider in this review.
The main difference is that the networks in our work are con-
sidered to “be given” or arising directly from properties of
the network under study, rather than being representative of
the uncertainty of the relationships between nodes and node
attributes. There is a multitude of literature on relational
networks, e.g., see Friedman et al. [112], Getoor et al. [116],
Neville and Jensen [230], Neville et al. [231], and Getoor and
Taskar [117].
• Bipartite graphs. These are graphs that represent measure-

ment on two populations of objects, such as individuals and
features. The graphs in this context are seldom the best rep-
resentation of the data, with exception perhaps of binary
measurements or when the true populations have comparable
sizes. Recent work on exchangeable Rasch matrices is related
to this topic and potentially relevant for network analysis.
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1.2 What This Survey Does Not Cover 9

Lauritzen [186, 187], Bassetti et al. [29] suggest applications
to bipartite graphs.
• Agent-based modeling. Building on older ideas such as cel-

lular automata, agent-based modeling attempts to simulate
the simultaneous operations of multiple agents, in an effort
to re-create and predict the actions of complex phenomena.
Because the interest is often on the interaction among the
agents, this domain of research has been linked with network
ideas. With the recent advances in high-performance comput-
ing, simulations of large-scale social systems have become an
active area of research, e.g., see [46]. In particular, there is a
strong interest in areas that revolve around national security
and the military, with studies on the effects of catastrophic
events and biological warfare, as well as computational explo-
rations of possible recovery strategies [56, 58]. These works
are the contemporary counterparts of more classical work
at the interface between artificial intelligence and the social
sciences [54, 55, 57].
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