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Abstract

A popular method for selecting the number of clusters is based on
stability arguments: one chooses the number of clusters such that the
corresponding clustering results are “most stable”. In recent years, a
series of papers has analyzed the behavior of this method from a theo-
retical point of view. However, the results are very technical and diffi-
cult to interpret for non-experts. In this monograph we give a high-level
overview about the existing literature on clustering stability. In addi-
tion to presenting the results in a slightly informal but accessible way,
we relate them to each other and discuss their different implications.
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Introduction

Model selection is a difficult problem in non-parametric clustering. The
obvious reason is that, as opposed to supervised classification, there is
no ground truth against which we could “test” our clustering results.
One of the most pressing questions in practice is how to determine the
number of clusters. Various ad hoc methods have been suggested in
the literature, but none of them is entirely convincing. These methods
usually suffer from the fact that they implicitly have to define “what a
clustering is” before they can assign different scores to different num-
bers of clusters. In recent years a new method has become increasingly
popular: selecting the number of clusters based on clustering stability.
Instead of defining “what is a clustering”, the basic philosophy is simply
that a clustering should be a structure on the data set that is “stable”.
That is, if applied to several data sets from the same underlying model
or of the same data-generating process, a clustering algorithm should
obtain similar results. In this philosophy it is not so important how
the clusters look (this is taken care of by the clustering algorithm), but
that they can be constructed in a stable manner.

The basic intuition of why people believe that this is a good principle
can be described by Figure 1.1. Shown is a data distribution with four

1
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2 Introduction

Fig. 1.1 Idea of clustering stability. Instable clustering solutions if the number of clusters

is too small (first row) or too large (second row). See text for details.

underlying clusters (depicted by the black circles), and different sam-
ples from this distribution (depicted by red diamonds). If we cluster this
data set into K = 2 clusters, there are two reasonable solutions: a hori-
zontal and a vertical split. If a clustering algorithm is applied repeatedly
to different samples from this distribution, it might sometimes con-
struct the horizontal and sometimes the vertical solution. Obviously,
these two solutions are very different from each other, hence the clus-
tering results are instable. Similar effects take place if we start with
K = 5. In this case, we necessarily have to split an existing cluster into
two clusters, and depending on the sample this could happen to any
of the four clusters. Again the clustering solution is instable. Finally,
if we apply the algorithm with the correct number K = 4, we observe
stable results (not shown in the figure): the clustering algorithm always
discovers the correct clusters (maybe up to a few outlier points). In this
example, the stability principle detects the correct number of clusters.

At first glance, using stability-based principles for model selection
appears to be very attractive. It is elegant as it avoids to define what a
good clustering is. It is a meta-principle that can be applied to any basic
clustering algorithm and does not require a particular clustering model.
Finally, it sounds “very fundamental” from a philosophy of inference
point of view.
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However, the longer one thinks about this principle, the less obvious
it becomes that model selection based on clustering stability “always
works”. What is clear is that solutions that are completely instable
should not be considered at all. However, if there are several stable
solutions, is it always the best choice to select the one corresponding
to the most stable results? One could conjecture that the most sta-
ble parameter always corresponds to the simplest solution, but clearly
there exist situations where the most simple solution is not what we
are looking for. To find out how model selection based on clustering
stability works we need theoretical results.

In this monograph we discuss a series of theoretical results on clus-
tering stability that have been obtained in recent years. In Section 2
we review different protocols for how clustering stability is computed
and used for model selection. In Section 3 we concentrate on theoretical
results for the K-means algorithm and discuss their various relations.
This is the main section of the paper. Results for more general cluster-
ing algorithms are presented in Section 4.
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