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Paris-Dauphine)

Sunita Sarawagi (IIT Bombay)

Robert Schapire (Princeton University)

Bernhard Schoelkopf (Max Planck Institute)

Richard Sutton (University of Alberta)

Larry Wasserman (Carnegie Mellon

University)

Bin Yu (UC Berkeley)

Full text available at: http://dx.doi.org/10.1561/2200000013



Editorial Scope

Foundations and Trends R© in Machine Learning will publish sur-

vey and tutorial articles in the following topics:

• Adaptive control and signal

processing

• Applications and case studies

• Behavioral, cognitive and neural

learning

• Bayesian learning

• Classification and prediction

• Clustering

• Data mining

• Dimensionality reduction

• Evaluation

• Game theoretic learning

• Graphical models

• Independent component analysis

• Inductive logic programming

• Kernel methods

• Markov chain Monte Carlo

• Model choice

• Nonparametric methods

• Online learning

• Optimization

• Reinforcement learning

• Relational learning

• Robustness

• Spectral methods

• Statistical learning theory

• Variational inference

• Visualization

Information for Librarians
Foundations and Trends R© in Machine Learning, 2011, Volume 4, 4 issues.

ISSN paper version 1935-8237. ISSN online version 1935-8245. Also available

as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/2200000013



Foundations and Trends R© in
Machine Learning

Vol. 4, No. 4 (2011) 267–373
c© 2012 C. Sutton and A. McCallum

DOI: 10.1561/2200000013

An Introduction to Conditional
Random Fields

Charles Sutton1 and Andrew McCallum2

1 School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB,
UK, csutton@inf.ed.ac.uk

2 Department of Computer Science, University of Massachusetts, Amherst,
MA, 01003, USA, mccallum@cs.umass.edu

Abstract

Many tasks involve predicting a large number of variables that depend

on each other as well as on other observed variables. Structured

prediction methods are essentially a combination of classification and

graphical modeling. They combine the ability of graphical models

to compactly model multivariate data with the ability of classifica-

tion methods to perform prediction using large sets of input features.

This survey describes conditional random fields, a popular probabilistic

method for structured prediction. CRFs have seen wide application in

many areas, including natural language processing, computer vision,

and bioinformatics. We describe methods for inference and parame-

ter estimation for CRFs, including practical issues for implementing

large-scale CRFs. We do not assume previous knowledge of graphical

modeling, so this survey is intended to be useful to practitioners in a

wide variety of fields.
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1

Introduction

Fundamental to many applications is the ability to predict multiple

variables that depend on each other. Such applications are as diverse

as classifying regions of an image [49, 61, 69], estimating the score in a

game of Go [130], segmenting genes in a strand of DNA [7], and syn-

tactic parsing of natural-language text [144]. In such applications, we

wish to predict an output vector y = {y0,y1, . . . ,yT } of random vari-

ables given an observed feature vector x. A relatively simple example

from natural-language processing is part-of-speech tagging, in which

each variable ys is the part-of-speech tag of the word at position s, and

the input x is divided into feature vectors {x0,x1, . . . ,xT }. Each xs
contains various information about the word at position s, such as its

identity, orthographic features such as prefixes and suffixes, member-

ship in domain-specific lexicons, and information in semantic databases

such as WordNet.

One approach to this multivariate prediction problem, especially

if our goal is to maximize the number of labels ys that are correctly

classified, is to learn an independent per-position classifier that maps

x 7→ ys for each s. The difficulty, however, is that the output variables

have complex dependencies. For example, in English adjectives do not

1
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2 Introduction

usually follow nouns, and in computer vision, neighboring regions in an

image tend to have similar labels. Another difficulty is that the output

variables may represent a complex structure such as a parse tree, in

which a choice of what grammar rule to use near the top of the tree

can have a large effect on the rest of the tree.

A natural way to represent the manner in which output variables

depend on each other is provided by graphical models. Graphical

models — which include such diverse model families as Bayesian net-

works, neural networks, factor graphs, Markov random fields, Ising

models, and others — represent a complex distribution over many vari-

ables as a product of local factors on smaller subsets of variables. It

is then possible to describe how a given factorization of the proba-

bility density corresponds to a particular set of conditional indepen-

dence relationships satisfied by the distribution. This correspondence

makes modeling much more convenient because often our knowledge of

the domain suggests reasonable conditional independence assumptions,

which then determine our choice of factors.

Much work in learning with graphical models, especially in statisti-

cal natural-language processing, has focused on generative models that

explicitly attempt to model a joint probability distribution p(y,x) over

inputs and outputs. Although this approach has advantages, it also

has important limitations. Not only can the dimensionality of x be

very large, but the features may have complex dependencies, so con-

structing a probability distribution over them is difficult. Modeling the

dependencies among inputs can lead to intractable models, but ignoring

them can lead to reduced performance.

A solution to this problem is a discriminative approach, similar to

that taken in classifiers such as logistic regression. Here we model the

conditional distribution p(y|x) directly, which is all that is needed for

classification. This is the approach taken by conditional random fields

(CRFs). CRFs are essentially a way of combining the advantages of dis-

criminative classification and graphical modeling, combining the ability

to compactly model multivariate outputs y with the ability to leverage

a large number of input features x for prediction. The advantage to a

conditional model is that dependencies that involve only variables in x

play no role in the conditional model, so that an accurate conditional

Full text available at: http://dx.doi.org/10.1561/2200000013



3

model can have much simpler structure than a joint model. The differ-

ence between generative models and CRFs is thus exactly analogous

to the difference between the naive Bayes and logistic regression classi-

fiers. Indeed, the multinomial logistic regression model can be seen as

the simplest kind of CRF, in which there is only one output variable.

There has been a large amount of interest in applying CRFs to

many different problems. Successful applications have included text

processing [105, 124, 125], bioinformatics [76, 123], and computer vision

[49, 61]. Although early applications of CRFs used linear chains, recent

applications of CRFs have also used more general graphical structures.

General graphical structures are useful for predicting complex struc-

tures, such as graphs and trees, and for relaxing the independence

assumption among entities, as in relational learning [142].

This survey describes modeling, inference, and parameter estima-

tion using CRFs. We do not assume previous knowledge of graphical

modeling, so this survey is intended to be useful to practitioners in a

wide variety of fields. We begin by describing modeling issues in CRFs

(Section 2), including linear-chain CRFs, CRFs with general graphical

structure, and hidden CRFs that include latent variables. We describe

how CRFs can be viewed both as a generalization of the well-known

logistic regression procedure, and as a discriminative analogue of the

hidden Markov model.

In the next two sections, we describe inference (Section 4) and

learning (Section 5) in CRFs. In this context, inference refers both

to the task of computing the marginal distributions of p(y|x) and to

the related task of computing the maximum probability assignment

y∗ = argmaxy p(y|x). With respect to learning, we will focus on the

parameter estimation task, in which p(y|x) is determined by parame-

ters that we will choose in order to best fit a set of training examples

{x(i),y(i)}Ni=1. The inference and learning procedures are often closely

coupled, because learning usually calls inference as a subroutine.

Finally, we discuss relationships between CRFs and other families

of models, including other structured prediction methods, neural

networks, and maximum entropy Markov models (Section 6).

Full text available at: http://dx.doi.org/10.1561/2200000013



4 Introduction

1.1 Implementation Details

Throughout this survey, we strive to point out implementation details

that are sometimes elided in the research literature. For example, we

discuss issues relating to feature engineering (Section 2.5), avoiding

numerical underflow during inference (Section 4.3), and the scalability

of CRF training on some benchmark problems (Section 5.5).

Since this is the first of our sections on implementation details, it

seems appropriate to mention some of the available implementations of

CRFs. At the time of writing, a few popular implementations are:

CRF++ http://crfpp.sourceforge.net/

MALLET http://mallet.cs.umass.edu/

GRMM http://mallet.cs.umass.edu/grmm/

CRFSuite http://www.chokkan.org/software/crfsuite/

FACTORIE http://www.factorie.cc

Also, software for Markov Logic networks (such as Alchemy:

http://alchemy.cs.washington.edu/) can be used to build CRF models.

Alchemy, GRMM, and FACTORIE are the only toolkits of which we

are aware that handle arbitrary graphical structure.

Full text available at: http://dx.doi.org/10.1561/2200000013
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random fields for image labelling,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2004.

[50] G. E. Hinton, “Training products of experts by minimizing contrastive diver-
gence,” Neural Computation, vol. 14, pp. 1771–1800, 2002.

[51] L. Hirschman, A. Yeh, C. Blaschke, and A. Valencia, “Overview of BioCre-
AtIvE: critical assessment of information extraction for biology,” BMC Bioin-
formatics, vol. 6, no. Suppl 1, no. Suppl 1, 2005.

[52] F. Jiao, S. Wang, C.-H. Lee, R. Greiner, and D. Schuurmans, “Semi-supervised
conditional random fields for improved sequence segmentation and labeling,”
in Joint Conference of the International Committee on Computational Lin-
guistics and the Association for Computational Linguistics (COLING/ACL),
2006.

[53] S. S. Keerthi and S. Sundararajan, “CRF versus SVM-struct for sequence
labeling,” Technical report, Yahoo! Research, 2007.

[54] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a regres-
sion function,” Annals of Mathematical Statistics, vol. 23, pp. 462–466, 1952.

[55] J.-D. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, and N. Collier, “Introduction to
the bio-entity recognition task at JNLPBA,” in International joint workshop
on natural language processing in biomedicine and its applications, pp. 70–75,
Association for Computational Linguistics, 2004.
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