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Abstract

This monograph presents some new concentration inequalities for
Feynman-Kac particle processes. We analyze different types of stochas-
tic particle models, including particle profile occupation measures,
genealogical tree based evolution models, particle free energies, as well
as backward Markov chain particle models. We illustrate these results
with a series of topics related to computational physics and biology,
stochastic optimization, signal processing and Bayesian statistics, and
many other probabilistic machine learning algorithms. Special empha-
sis is given to the stochastic modeling, and to the quantitative perfor-
mance analysis of a series of advanced Monte Carlo methods, including
particle filters, genetic type island models, Markov bridge models, and
interacting particle Markov chain Monte Carlo methodologies.
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1

Stochastic Particle Methods

1.1 Introduction

Stochastic particle methods have come to play a significant role in
applied probability, numerical physics, Bayesian statistics, probabilistic
machine learning, and engineering sciences.

They are increasingly used to solve a variety of problems, includ-
ing nonlinear filtering equations, data assimilation problems, rare event
sampling, hidden Markov chain parameter estimation, stochastic con-
trol problems and financial mathematics. To name a few, They are
also used in computational physics for free energy computations, and
Schrödinger operator’s ground states estimation problems, as well as
in computational chemistry for sampling the conformation of polymers
in a given solvent.

To illustrate these methods, we start with a classical filtering exam-
ple. We consider a Markov chain Xk taking values in Rd, with prior
transitions given by

P(Xk ∈ dxk | Xk−1 = xk−1) = pk(xk|xk−1) dxk, (1.1)

1
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2 Stochastic Particle Methods

Using some slight abuse of Bayesian notation, the observations Yk are
Rd′-valued random variables defined in terms of the likelihood functions

P(Yk ∈ dyk | Xk = xk) = pk(yk|xk) dyk, (1.2)

In the above display, dxk and dyk stand for the Lebesgue measures
in Rd and Rd′ . To compute the conditional distribution of the signal
path sequence (X0, . . . ,Xn), given the observations (Y0, . . . ,Yn), we can
use the genealogical tree model associated with a genetic type inter-
acting particle model. This genetic algorithm is defined with mutation
transitions according to 1.1, and proportional selections with regard to
(w.r.t.) the fitness functions 1.2. The occupation measures of the cor-
responding genealogical tree provides an approximation of the desired
conditional distributions of the signal. More generally, for any function
f on the path space we have

lim
N↑∞

1
N

N∑
1

f(linen(i)) = E(f(X0, . . . ,Xn)|Y0 = y0, . . . ,Yn = yn) (1.3)

where linen(i) stands for the i−th ancestral line of the genealogical
tree, at time n.

More refined particle filters can be designed, including fixed param-
eter estimates in hidden Markov chain models, unbiased particle esti-
mates of the density of the observation sequence, and backward smooth-
ing models based on complete ancestral trees. Section 2 presents a more
rigorous and detailed discussion on these topics.

Rigorous understanding of these new particle Monte Carlo method-
ologies leads to fascinating mathematics related to Feynman-Kac path
integral theory and their interacting particle interpretations [17, 20, 38].
In the last two decades, this line of research has been developed by
using methods from stochastic analysis of interacting particle systems
and nonlinear semigroup models in distribution spaces, but it has also
generated difficult questions that cannot be addressed without devel-
oping new mathematical tools.

Let us survey some of the important challenges that arise.
For numerical applications, it is essential to obtain nonasymptotic

quantitative information on the convergence of the algorithms. For
instance, in the filtering problem presented at beginning of this section,
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1.1 Introduction 3

it is important to quantify the performance of the empirical particle
estimate in 1.3. Asymptotic theory, including central limit theorems,
moderate deviations, and large deviations principles have clearly lim-
ited practical values. An overview of these asymptotic results in the
context of mean field and Feynman-Kac particle models can be found
in the series of articles [13, 28, 29, 33, 41, 43].

Furthermore, when solving a given concrete problem, it is impor-
tant to obtain explicit nonasymptotic error bounds estimates to ensure
that the stochastic algorithm is provably correct. While non asymptotic
propagation of chaos results provides some insights on the bias prop-
erties of these models, it rarely provides useful effective convergence
rates.

Last but not least, it is essential to analyze the robustness prop-
erties, and more particularly the uniform performance of particle
algorithms w.r.t. the time horizon. By construction, these important
questions are intimately related to the stability properties of com-
plex nonlinear Markov chain semigroups associated with the limit-
ing measure valued process. In the filtering example illustrated in this
section, the limiting measure valued process is given by the so-called
nonlinear filtering equation. In this context, the stability property of
these equations ensures that the optimal filter will correct any erroneous
initial conditions. This line of thought has been further developed in
the articles [13, 31, 38, 40], and in the books [17, 20].

Without any doubt, one of the most powerful mathematical tools
to analyze the deviations of Monte Carlo based approximations is the
theory of empirical processes and measure concentration theory. In the
last two decades, these new tools have become one of the most impor-
tant steps forward in infinite dimensional stochastic analysis, advanced
machine learning techniques, as well as in the development of a statis-
tical non asymptotic theory.

In recent years, much effort has been devoted to describing the
behavior of the supremum norm of empirical functionals around the
mean value of the norm. For an overview of these subjects, we refer
the reader to the seminal books of Pollard [81], Van der Vaart and
Wellner [93], Ledoux and Talagrand [72], the remarkable articles by
Giné [56], Ledoux [70, 71], and Talagrand [90, 91, 92], and the more
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4 Stochastic Particle Methods

recent article by Adamczak [1]. The best constants in Talagrand’s con-
centration inequalities were obtained by Klein and Rio [67]. In this
article, the authors proved the functional version of Bennett’s and
Bernstein’s inequalities for sums of independent random variables.

Two main difficulties we encountered in applying these concentra-
tion inequalities to interacting particle models are of different order:

First, all of the concentration inequalities developed in the literature
on empirical processes still involve the mean value of the supremum
norm empirical functionals. In practical situations, these tail style
inequalities can only be used if we have some precise information on the
magnitude of the mean value of the supremum norm of the functionals.

On the other hand, the range of application of the theory of
empirical processes and measure concentration theory is restricted
to independent random samples, or equivalently product measures,
and more recently to mixing Markov chain models. In the reverse
angle, stochastic particle techniques are not based on fully independent
sequences, nor on Markov chain Monte Carlo principles, but on inter-
acting particle samples combined with complex nonlinear Markov chain
semigroups. More precisely, in addition to the fact that particle models
are built sequentially using conditionally independent random samples,
their respective conditional distributions are still random. Also, in a
nonlinear way, they strongly depend on the occupation measure of the
current population.

In summary, the concentration analysis of interacting particle pro-
cesses requires the development of new stochastic perturbation style
techniques to control the interaction propagation and the degree of
independence between the samples.

Del Moral and Ledoux [36] extend empirical processes theory to
particle models. In this work, the authors proved Glivenko-Cantelli and
Donsker theorems under entropy conditions, as well as nonasymptotic
exponential bounds for Vapnik-Cervonenkis classes of sets or functions.
Nevertheless, in practical situations these non asymptotic results tend
to be a little disappointing, with very poor constants that degenerate
w.r.t. the time horizon.

The second most important result on the concentration properties
of the mean field particle model is found in [40]. This article is only
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1.1 Introduction 5

concerned with the finite marginal model. The authors generalize the
classical Hoeffding, Bernstein and Bennett inequalities for independent
random sequences to interacting particle systems.

In this monograph, we survey some of these results, and we pro-
vide new concentration inequalities for interacting empirical processes.
We emphasize that this review does not give a comprehensive treat-
ment of the theory of interacting empirical processes. To name a few
missing topics, we do not discuss large deviation principles w.r.t. the
strong τ -topology, Donsker type fluctuation theorems, moderate devi-
ation principles, and continuous time models. The first two topics are
developed [17], the third one is developed in [32], the last one is still
an open research subject.

Here, we emphasize a single stochastic perturbation method, with
second-order expansion entering the stability properties of the limiting
Feynman-Kac semigroups. The concentration results attained are prob-
ably not the best possible of their kind. We have chosen to strive for just
enough generality to derive useful and uniform concentration inequal-
ities w.r.t. the time horizon, without having to impose complex and
often unnatural regularity conditions to squeeze them into the general
theory of empirical processes.

Some of the results are borrowed from [40], and many others are
new. This monograph should be complemented with the books and
articles [17, 20, 31, 44]. A very basic knowledge in statistics and machine
learning theory will be useful, but not necessary. Good backgrounds in
Markov chain theory and in stochastic semigroup analysis are necessary.

We have done our best to give a self-contained presentation, with
detailed proofs. However, we assume some familiarity with Feynman-
Kac models, and basic facts on the theory of Markov chains on abstract
state spaces. Only in subsection 4.6.1, have we skipped the proof of
some tools from convex analysis. We hope that the essential ideas are
still accessible to the readers.

It is clearly not the scope of this monograph to give an exhaus-
tive list of references to articles in computational physics, engineering
sciences, and machine learning, presenting heuristic-like particle algo-
rithms to solve a specific estimation problem. With a few exceptions, we
have only provided references to articles with rigorous and well founded
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6 Stochastic Particle Methods

mathematical treatments on particle models. We apologize in advance
for possible errors, or for references that have been omitted due to the
lack of accurate information.

This monograph grew from series of lectures the first author gave
in the Computer Science and Communications Research Unit, of the
University of Luxembourg in February and March 2011. They were
reworked, with the addition of new material on the concentration of
empirical processes for a course given at the Sino-French Summer
Institute in Stochastic Modeling and Applications (CNRS-NSFC Joint
Institute of Mathematics), held at the Academy of Mathematics and
System Science, Beijing, in June 2011. The Summer Institute was
ably organized by Fuzhou Gong, Ying Jiao, Gilles Pagès, and Mingyu
Xu, and the members of the scientific committee, including Nicole El
Karoui, Zhiming Ma, Shige Peng, Liming Wu, Jia-An Yan, and Nizar
Touzi. The first author is grateful to them for giving to him the oppor-
tunity to experiment on a receptive audience with material not entirely
polished.

In reworking the lectures, we have tried to resist the urge to push
the analysis to general classes of mean field particle models, in the spirit
of the recent joint article with E. Rio [40]. Our principal objective has
been to develop just enough analysis to handle four types of Feynman-
Kac interacting particle processes, namely, genetic dynamic population
models, genealogical tree based algorithms, particle free energies, as
well as backward Markov chain particle models. These application
models do not exhaust the possible uses of the theory developed in
these lectures.

1.2 A Brief Review on Particle Algorithms

Stochastic particle methods belong to the class of Monte Carlo
methods. They can be thought of as a universal particle methodology
for sampling complex distributions in highly dimensional state spaces.

We can distinguish two different classes of models, namely, diffu-
sion type interacting processes, and interacting jump particle models.
Feynman-Kac particle methods belongs to the second class of models,
with rejection-recycling jump type interaction mechanisms. In contrast
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1.2 A Brief Review on Particle Algorithms 7

to conventional acceptance-rejection type techniques, Feynman-Kac
particle methods are equipped with an adaptive and interacting recy-
cling strategy.

The common central feature of all the Monte Carlo particle method-
ologies developed so far is to solve discrete generation, or continu-
ous time integro-differential equations in distribution spaces. The first
heuristic-like description of these probabilistic techniques in mathemat-
ical physics goes back to the Los Alamos report [49], and the article by
Everett and Ulam in 1948 [48], and the short article by Metropolis and
Ulam [79], published in 1949.

In some instances, the flow of measures is dictated by the problem at
hand. In advanced signal processing, the conditional distributions of the
signal, given partial and noisy observations, are given by the so-called
nonlinear filtering equation in distribution space (see for instance [15,
16, 17, 20, 38], and references therein).

Free energies and Schrödinger operator’s ground states are given by
the quasi-invariant distribution of a Feynman-Kac conditional distri-
bution flow of non absorbed particles in absorbing media. We refer the
reader to the articles by Cancès, Jourdain and Lelièvre [5], El Makrini,
Jourdain and Lelièvre [46], Rousset [85], the pair of articles of Del
Moral with Miclo [38, 39], with Doucet [19], and the book [17], and the
references therein.

In mathematical biology, branching processes and infinite popula-
tion models are also expressed by nonlinear parabolic type integro-
differential equations. Further details on this subject can be found in
the articles by Dawson and his co-authors [11, 12, 14], the works of
Dynkin [45], and Le Gall [69], and more particularly the seminal book
of Ethier and Kurtz [47], and the pioneering article by Feller [50].

In other instances, we formulate a given estimation problem
in terms of a sequence of distributions with increasing complexity
on state space models with increasing dimension. These stochastic
evolutions can be related to decreasing temperature schedules in
Boltzmann-Gibbs measures, multilevel decompositions for rare event
excursion models on critical level sets, decreasing subsets strategies
for sampling tail style distributions, and many other sequential
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8 Stochastic Particle Methods

importance sampling plans. For a more thorough discussion on these
models we refer the reader to [21].

From a purely probabilistic point of view, any flow of probability
measures can be interpreted as the evolution of the laws of the random
states of a Markov process. In contrast to conventional Markov chain
models, the Markov transitions of these chains may depend on the dis-
tribution of the current random state. The mathematical foundations
of these discrete generation models began in 1996 in [15] within the
context of nonlinear filtering problems. Further analysis was developed
in [38]. For a more thorough discussion on the origin and the perfor-
mance analysis of these discrete generation models, we also refer the
reader to the book [17], and the joint articles Del Moral with Guionnet
[28, 29, 30, 31], and with Kouritzin [35].

The continuous time version of these nonlinear type Markov chain
models take their origins from the 1960s, with the development of fluid
mechanisms and statistical physics. We refer the reader to the pio-
neering works of McKean [61, 63], as well as the more recent treat-
ments by Bellomo and Pulvirenti [3, 4], the series of articles by Graham
and Méléard on interacting jump models [58, 59, 82], the articles by
Méléard on Boltzmann equations [75, 76, 77, 78], and the lecture notes
of Sznitman [89], and references therein.

In contrast to conventional Markov chain Monte Carlo techniques,
these McKean type nonlinear Markov chain models can be thought of
as perfect importance sampling strategies, in the sense that the desired
target measures coincide at any time step with the law of the random
states of a Markov chain. Unfortunately, as we mentioned above, the
transitions of these chains depend on the distributions of their random
states. Thus, they cannot be sampled without an additional level of
approximation. One natural solution is to use a mean field particle
interpretation model. These stochastic techniques belong to the class of
stochastic population models, with free evolutions mechanisms, coupled
with branching and/or adaptive interacting jumps. At any time step,
the occupation measure of the population of individuals approximates
the solution of the nonlinear equation, when the size of the system
tends to ∞.
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1.3 Feynman-Kac Path Integrals 9

In genetic algorithms and sequential Monte Carlo literature, the
reference free evolution model is interpreted as a reference sequence
of twisted Markov chain samplers. These chains are used to perform
the mutation/proposal transitions. As in conventional Markov chain
Monte Carlo methods, the interacting jumps are interpreted as an
acceptance-rejection transition, equipped with sophisticated interact-
ing and adaptive recycling mechanism. In Bayesian statistics and engi-
neering sciences, the resulting adaptive particle sampling model is often
coined as a sequential Monte Carlo algorithm, genetic procedure, or
simply a Sampling Importance Resampling method, mainly because it
is based on importance sampling plans and online approximations of a
flow of probability measures.

Since the 1960s, the adaptive particle recycling strategy has also
been associated, in biology and engineering science, with several
heuristic-like paradigms, with a proliferation of botanical names,
depending on the application area in which they are considered: boot-
strapping, switching, replenishing, pruning, enrichment, cloning, recon-
figurations, resampling, rejuvenation, acceptance/rejection, spawning.

Of course, the idea of duplicating online better-fitted individuals
and moving them one step forward to explore state-space regions is the
basis of various stochastic search algorithms, such as:

Particle and bootstrap filters, Rao-Blackwell particle filters, sequen-
tial Monte Carlo methods, sequentially interacting Markov chain Monte
Carlo methods, genetic type search algorithms, Gibbs cloning search
techniques, interacting simulated annealing algorithms, sampling-
importance resampling methods, quantum Monte Carlo walkers,
adaptive population Monte Carlo sampling models, and many others
evolutionary type Monte Carlo methods.

For a more detailed discussion on these models, with precise refer-
ences, we refer the reader to the three books [17, 20, 44].

1.3 Feynman-Kac Path Integrals

Feynman-Kac measures represent the distribution of the paths of
a Markov process, weighted by a collection of potential functions.
These functional models encapsulate traditional changes of probability
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10 Stochastic Particle Methods

measures, commonly used in importance sampling, posterior distribu-
tions in Bayesian statistics, and the optimal filter in nonlinear filtering
problems.

These stochastic models are defined in terms of only two ingredients:
A Markov chain Xn, with Markov transition Mn on some measur-

able state spaces (En,En) with initial distribution η0, and a sequence
of (0,1]-valued potential functions Gn on the set En.

The Feynman-Kac path measure associated with the pairs (Mn,Gn)
is the probability measure Qn on the product state space

En := (E0 × . . . × En)

defined by the following formula

dQn :=
1
Zn

 ∏
0≤p<n

Gp(Xp)

dPn (1.4)

where Zn is a normalizing constant and Pn is the distribution of the
random paths

Xn = (X0, . . . ,Xn) ∈ En

of the Markov process Xp from the origin p = 0 with initial distribution
η0, up to the current time p = n. We also denote by

Γn = ZnQn (1.5)

its unnormalized version.
The prototype model we have in mind is the traditional particle

absorbed Markov chain model

Xc
n ∈ Ecn := En ∪ {c}

absorption ∼(1−Gn)−−−−−−−−−−−−−→ X̂c
n
exploration ∼Mn+1−−−−−−−−−−−−→ Xc

n+1.

(1.6)

The chain Xc
n starts at some initial state Xc

0 randomly chosen with
distribution η0. During the absorption stage, we set X̂c

n = Xc
n with

probability Gn(Xn), otherwise we put the particle in an auxiliary ceme-
tery state X̂c

n = c. When the particle X̂c
n is still alive (that is, if we have

X̂c
n ∈ En), it performs an elementary move X̂c

n ; Xc
n+1 according to the

Full text available at: http://dx.doi.org/10.1561/2200000026



1.3 Feynman-Kac Path Integrals 11

Markov transition Mn+1. Otherwise, the particle is absorbed and we
set Xc

p = X̂c
p = c, for any time p > n.

If we let T be the first time X̂c
n = c, then we have the Feynman-Kac

representation formulae

Qn = Law((Xc
0, . . . ,X

c
n) | T ≥ n) and Zn = Proba(T ≥ n).

For a more thorough discussion on the variety of application domains
of Feynman-Kac models, we refer the reader to Section 2.

We also denote by ηn and γn, the n-th time marginal of Qn and Γn.
It is a simple exercise to check that

γn = γn−1Qn and ηn+1 = Φn+1(ηn) := ΨGn(ηn)Mn+1 (1.7)

with the positive integral operator

Qn(x,dy) = Gn−1(x) Mn(x,dy)

and the Boltzmann-Gibbs transformation

ΨGn(ηn)(dx) =
1

ηn(Gn)
Gn(x)ηn(dx). (1.8)

In addition, the normalizing constants Zn can be expressed in terms
of the flow of marginal measures ηp, from the origin p = 0 up to the
current time n, with the following multiplicative formulae:

Zn := γn( ) = E

 ∏
0≤p<n

Gp(Xp)

 =
∏

0≤p<n
ηp(Gp). (1.9)

This multiplicative formula is easily checked using the induction

γn+1(1) = γn(Gn) = ηn(Gn)γn(1).

The abstract formulae discussed above are more general than they
may appear. For instance, they can be used to analyze, without further
work, path spaces models, including historical processes or transition
space models, as well as finite excursion models. These functional
models also encapsulate quenched Feynman-Kac models, Brownian
type bridges and linear Gaussian Markov chains conditioned on starting
and end points.
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12 Stochastic Particle Methods

For a more thorough discussion on these path space models, we refer
the reader to subsections 2.4 and 2.6, Chapters 11–12 in the book [17],
as well as to the Section 2, in this monograph.

When the Markov transitions Mn are absolutely continuous with
respect to some measures λn on En, and for any (x,y) ∈ (En−1 × En)
we have

Hn(x,y) :=
dMn(x, .)
dλn

(y) > 0. (1.10)

We also have the following backward formula

Qn(d(x0, . . . ,xn)) = ηn(dxn)
n∏
q=1

Mq,ηq−1(xq,dxq−1) (1.11)

with the collection of Markov transitions defined by

Mn+1,ηn(x,dy) ∝ Gn(y)Hn+1(y,x)ηn(dy). (1.12)

The proof of this formula is postponed to subsection 3.2.
Before launching into the description of the particle approximation

of these models, we end this subsection with some connexions between
discrete generation Feynman-Kac models and more conventional con-
tinuous time models arising in physics and scientific computing.

The Feynman-Kac models presented above play a central role in
the numerical analysis of certain partial differential equations, offering
a natural way to solve these functional integral models by simulat-
ing random paths of stochastic processes. These Feynman-Kac models
were originally presented by Mark Kac in 1949 [66] for continuous time
processes.

These continuous time models are used in molecular chemistry
and computational physics to calculate the ground state energy of
some Hamiltonian operators associated with some potential function
V describing the energy of a molecular configuration (see, for instance,
[5, 17, 39, 46, 85], and references therein). To better connect these
partial differential equation models with (1.4), let us assume that
Mn(xn−1,dxn) is the Markov probability transitionXn = xn ; Xn+1 =
xn+1 coming from a discretization in time Xn = X ′tn of a continuous
time E-valued Markov process X ′t on a given time mesh (tn)n≥0 with
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1.4 Interacting Particle Systems 13

a given time step (tn − tn−1) = ∆t. For potential functions of the form
Gn = e−V∆t, the measures Qn '∆t→0 Qtn represent the time discretiza-
tion of the following distribution:

dQt =
1
Zt

exp
(
−
∫ t

0
V (X ′s)ds

)
dPX

′
t

where PX′t stands for the distribution of the random paths (X ′s)0≤s≤t
with a given infinitesimal generator L. The marginal distributions γt at
time t of the unnormalized measures Zt dQt are the solution of the so-
called imaginary time Schrödinger equation, given in weak formulation
on sufficiently regular function f by the following integro–differential
equation

d

dt
γt(f) := γt(LV (f)) with LV = L − V.

The errors introduced by the discretization of the time are well under-
stood for regular models; we refer the interested reader to [34, 42, 68, 80]
in the context of nonlinear filtering.

1.4 Interacting Particle Systems

Our aim here is to design an interacting particle approximation of the
Feynman-Kac measures introduced in the previous subsection. These
particle methods can be interpreted in different ways, depending on the
application domain in which they are considered.

In the filtering example presented at the beginning of this mono-
graph, these particle algorithms can be seen as a stochastic adaptive
fixed approximation of the filtering equations. From a purely statisti-
cal point of view, these algorithms can also be seen as a sophisticated
acceptance-rejection technique with an interacting recycling transition.

The particle model is defined as follows:
We start with a population of N candidate possible solutions

(ξ1
0 , . . . , ξ

N
0 ) randomly chosen w.r.t. some distribution η0.

The coordinates ξi0 are also called individuals or phenotypes, with
1 ≤ N . The random evolution of the particles is decomposed into two
main steps : the free exploration and the adaptive selection transition.
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14 Stochastic Particle Methods

During the updating-selection stage, multiple individuals in the cur-
rent population (ξ1

n, . . . , ξ
N
n ) at time n ∈ N are stochastically selected

based on the fitness function Gn. In practice, we choose a random pro-
portion Bi

n of an existing solution ξin in the current population with a
mean value ∝ Gn(ξin) to breed a brand new generation of “improved”
solutions (ξ̂1

n, . . . , ξ̂
N
n ). For instance, for every index i, with a proba-

bility εnGn(ξin), we set ξ̂in = ξin, otherwise we replace ξin with a new
individual ξ̂in = ξjn randomly chosen from the whole population with
a probability proportional to Gn(ξjn). The parameter εn ≥ 0 is a tun-
ing parameter that must satisfy the constraint εnGn(ξin) ≤ 1, for every
1 ≤ i ≤ N . During the prediction-mutation stage, every selected indi-
vidual ξ̂in moves to a new solution ξin+1 = x randomly chosen in En+1,
with a distribution Mn+1(ξ̂in,dx).

If we interpret the updating-selection transition as a birth and death
process, then the important notion of the ancestral line of a current
individual arises. More precisely, when a particle ξ̂in−1 −→ ξin evolves
to a new location ξin, we can interpret ξ̂in−1 as the parent of ξin. Looking
backwards in time and recalling that the particle ξ̂in−1 has selected a
site ξjn−1 in the configuration at time (n − 1), we can interpret this site
ξjn−1 as the parent of ξ̂in−1 and therefore as the ancestor denoted ξin−1,n

at level (n − 1) of ξin. Running backwards in time we may trace the
whole ancestral line as

ξi0,n←− ξi1,n←− ·· · ←− ξin−1,n←− ξin,n = ξin. (1.13)

Most of the terminology we have used is drawn from filtering and
genetic evolution theories.

In the filtering example presented in the subsection 1.1, the former
particle model is dictated by the two steps prediction-updating learning
equations of the conditional distributions of the signal processXk, given
some noisy and partial observations Yk. In this setting, the potential
functions represent the likelihood function of the current observation,
while the free exploration transitions are related to the Markov transi-
tions of the signal process. More formally, using the notation we used
in example (1.2), we have:

dpk(xk|xk−1) = Mk(xk−1|xk)
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1.4 Interacting Particle Systems 15

and

pk(yk|xk) = Gk(xk).

In biology, the mutation-selection particle model presented above
is used to mimic genetic evolutions of biological organisms and, more
generally, natural evolution processes. For instance, in gene analysis,
each population of individuals represents a chromosome and each indi-
vidual particle is called a gene. In this setting the fitness potential
function is usually time-homogeneous and it represents the quality and
the adaptation potential value of the set of genes in a chromosome [62].
These particle algorithms are also used in population analysis to model
changes in the structure of population in time and in space.

The different types of particle approximation measures associated
with the genetic type particle model described above are summarized
in the following synthetic picture corresponding to the case N = 3.

In the next four subsections we give an overview of the four parti-
cle approximation measures that can be extracted from the interact-
ing population evolution model described above. We also provide some
basic formulation of the concentration inequalities that will be treated
in greater detail later. As a service to the reader we also provide precise
pointers to their location within each section of the monograph.

We have already mentioned that the proofs of these results are quite
subtle. In the further development of the next subsections, c1 stands
for a finite constant related to the bias of the particle model, while c2

is related to the variance of the scheme. The value of these constants
may vary from one line to another, but in all the situations they do not
depend on the time parameter.

The precise form of the constants in these exponential inequali-
ties depends on the contraction properties of Feynman-Kac flows. Our
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16 Stochastic Particle Methods

stochastic analysis requires us to combine the stability properties of the
nonlinear semigroup of the Feynman-Kac distribution flow ηn, with the
deep convergence results of empirical processes theory associated with
interacting random samples.

1.4.1 Last Population Models

The occupation measures of the current population, represented by the
red dots in the above figure

ηNn :=
1
N

N∑
i=1

δξin

converge to the n-th time marginals ηn of the Feynman-Kac mea-
sures Qn. We shall measure the performance of these particle estimates
through several concentration inequalities, with a special emphasis on
uniform inequalities w.r.t. the time parameter. Our results will basi-
cally be stated as follows.

1) For any time horizon n ≥ 0, any bounded function f , any N ≥ 1,
and for any x ≥ 0, the probability of the event

[ηNn − ηn](f) ≤ c1

N
(1 + x +

√
x) +

c2√
N

√
x

is greater than 1 − e−x.
We have already mentioned one important consequence of these

uniform concentration inequalities for time homogeneous Feynman-Kac
models. Under some regularity conditions, the flow of measures ηn tends
to some fixed point distribution η∞, in the sense that

‖ηn − η∞‖tv ≤ c3 e
−δn (1.14)

for some finite positive constants c3 and δ. In the above display
‖ν − µ‖tv stands for the total variation distance. The connexions
between these limiting measures and the top of the spectrum of
Schrödinger operators is discussed in subsection 2.7.1. We also refer
the reader to subsection 2.7.2 for a discussion on these quasi-invariant
measures and Yaglom limits. Quantitative contraction theorems for
Feynman-Kac semigroups are developed in subsection 3.4.2. As a direct
consequence of the above inequalities, we find that for any x ≥ 0, the

Full text available at: http://dx.doi.org/10.1561/2200000026



1.4 Interacting Particle Systems 17

probability of the following events is greater than 1 − e−x:

[ηNn − η∞](f) ≤ c1

N
(1 + x +

√
x) +

c2√
N

√
x + c3e

−δn.

2) For any x = (xi)1≤i≤d ∈ En = Rd, we set (−∞,x] =
∏d
i=1(−∞,xi]

and we consider the repartition functions

Fn(x) = ηn(1(−∞,x]) and FNn (x) = ηNn (1(−∞,x]).

The probability of the following event
√
N‖FNn − Fn‖ ≤ c

√
d(x + 1)

is greater than 1 − e−x, for any x ≥ 0, for some universal constant
c <∞ that does not depend on the dimension, nor on the time param-
eter. In the above display ‖F‖ = supx |F (x)| stands for the uniform
norm. Furthermore, under the stability properties (1.14), if we set

F∞(x) = η∞(1(−∞,x])

then, the probability of the following event

‖FNn − F∞‖ ≤
c√
N

√
d(x + 1) + c3e

−δn

is greater than 1 − e−x, for any x ≥ 0, for some universal constant
c <∞ that does not depend on the dimension.

For more precise statements, we refer the reader to Corollary 6.4,
and Corollary 6.9, respectively.

The concentration properties of the particle measures ηNn around
their limiting values are developed in Section 6. In subsection 6.3,
we design a stochastic perturbation analysis that allows us to enter
the stability properties of the limiting Feynman-Kac semigroup. Finite
marginal models are discussed in subsection 6.4.1. Subsection 6.4.2 is
concerned with the concentration inequalities of interacting particle
processes w.r.t. some collection of functions.

1.4.2 Particle Free Energy Models

Mimicking the multiplicative formula (1.9), we set

ZNn =
∏

0≤p<n
ηNp (Gp) and γNn (dx) = ZNn × ηNn (dx). (1.15)

Full text available at: http://dx.doi.org/10.1561/2200000026



18 Stochastic Particle Methods

We have already mentioned that these rather complex particle mod-
els provide an unbiased estimate of the unnormalized measures. That
is, we have that

E

ηNn (fn)
∏

0≤p<n
ηNp (Gp)

 = E

fn(Xn)
∏

0≤p<n
Gp(Xp)

 . (1.16)

The concentration properties of the unbiased particle free energies
ZNn around their limiting values Zn are developed in subsection 6.5.
Our results will basically be stated as follows.

For any N ≥ 1, and any ε ∈ {+1,−1}, the probability of each of the
following events

ε

n
log
ZNn
Zn
≤ c1

N
(1 + x +

√
x) +

c2√
N

√
x

is greater than 1 − e−x. A more precise statement is provided in
Corollary 6.14.

1.4.3 Genealogical Tree Model

The occupation measure of the N -genealogical tree model represented
by the lines linking the blue dots converges as N →∞ to the distribu-
tion Qn

lim
N→∞

1
N

N∑
i=1

δ(ξi0,n,ξ
i
1,n,...,ξ

i
n,n) = Qn. (1.17)

Our concentration inequalities will basically be stated as follows.
A more precise statement is provided in Corollary 6.5.

For any n ≥ 0, any bounded function fn on the path space En,
such that (s.t.) ‖fn‖ ≤ 1, and any N ≥ 1, the probability of each of the
following events[

1
N

N∑
i=1

fn(ξi0,n, ξ
i
1,n, . . . , ξ

i
n,n) − Qn(fn)

]

≤ c1
n + 1
N

(1 + x +
√
x) + c2

√
(n + 1)
N

√
x

is greater than 1 − e−x.
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1.4 Interacting Particle Systems 19

The concentration properties of genealogical tree occupation mea-
sures can be derived more or less directly from those of the current
population models. This rather surprising assertion comes from the
fact that the n-th time marginal ηn of a Feynman-Kac measure asso-
ciated with a reference historical Markov process has the same form
as in the measure (1.4). This equivalence principle between Qn and
the marginal measures are developed in subsection 3.2, dedicated to
historical Feynman-Kac models.

Using these properties, we prove concentration properties for inter-
acting empirical processes associated with genealogical tree models.
Our concentration inequalities will basically be stated as follows.
A more precise statement is provided in subsection 6.4.2. We let Fn
be the set of product functions of cell indicators in the path space
En = (Rd0 × . . . ,×Rdn), for some dp ≥ 1, p ≥ 0. We also denote by ηNn
the occupation measure of the genealogical tree model. In this notation,
the probability of the following event

sup
fn∈Fn

|ηNn (fn) − Qn(fn)| ≤ c(n + 1)

√∑
0≤p≤n dp

N
(x + 1)

is greater than 1 − e−x, for any x ≥ 0, for some universal constant
c <∞ that does not depend on the dimension.

1.4.4 Complete Genealogical Tree Models

Mimicking the backward model (1.11) and the above formulae, we set

ΓNn = ZNn × QN
n (1.18)

with

QN
n (d(x0, . . . ,xn)) = ηNn (dxn)

n∏
q=1

Mq,ηNq−1
(xq,dxq−1).

Notice that the computation of sums w.r.t. these particle measures
are reduced to summations over the particle locations ξin. It is therefore
natural to identify a population of individuals (ξ1

n, . . . , ξ
N
n ) at time n

to the ordered set of indexes {1, . . . ,N}. In this case, the occupation
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20 Stochastic Particle Methods

measures and the functions are identified with the following line and
column vectors

ηNn :=
[

1
N
,. . . ,

1
N

]
and fn :=

fn(ξ1
n)

...
fn(ξNn )


and the matrices Mn,ηNn−1

by the (N × N) matrices

Mn,ηNn−1
:=


Mn,ηNn−1

(ξ1
n, ξ

1
n−1) · · · Mn,ηNn−1

(ξ1
n, ξ

N
n−1)

...
...

...
Mn,ηNn−1

(ξNn , ξ
1
n−1) · · · Mn,ηNn−1

(ξNn , ξ
N
n−1)

 (1.19)

with the (i, j)-entries

Mn,ηNn−1
(ξin, ξ

j
n−1) =

Gn−1(ξjn−1)Hn(ξjn−1, ξ
i
n)∑N

k=1Gn−1(ξkn−1)Hn(ξkn−1, ξ
i
n)
.

For instance, the Qn-integration of normalized additive linear function-
als of the form

fn(x0, . . . ,xn) =
1

n + 1

∑
0≤p≤n

fp(xp) (1.20)

is given the particle matrix approximation model

QN
n (fn) =

1
n + 1

∑
0≤p≤n

ηNn Mn,ηNn−1
Mn−1,ηNn−2

. . .Mp+1,ηNp
(fp).

These type of additive functionals arise in the calculation of the
sensitivity measures discussed in subsection 2.4.1.

The concentration properties of the particle measures QN
n around

the Feynman-Kac measures Qn are developed in subsection 6.6. Spe-
cial emphasis is given to the additive functional models (1.20). In
subsection 6.6.3, we extend the stochastic perturbation methodology
developed in subsection 6.3 for time marginal models to the particle
backward Markov chain associated with the random stochastic matrices
(1.19). This technique allows us to enter not only the stability prop-
erties of the limiting Feynman-Kac semigroup, but also those of the
particle backward Markov chain model.
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Our concentration inequalities will basically be stated as follows.
A more precise statement is provided in Corollary 6.20 and in Corol-
lary 6.24.

For any n ≥ 0, any normalized additive functional of the form (1.20),
with max0≤p≤n ‖fp‖ ≤ 1, and any N ≥ 1, the probability of each of the
following events

[QN
n − Qn](fn) ≤ c1

1
N

(1 + x +
√
x) + c2

√
x

N(n + 1)

is greater than 1 − e−x.
For any a = (ai)1≤i≤d ∈ En = Rd, we denote by Ca the cell

Ca := (−∞,a] =
d∏
i=1

(−∞,ai]

and fa,n the additive functional

fa,n(x0, . . . ,xn) =
1

n + 1

∑
0≤p≤n

1(−∞,a](xp).

The probability of the following event

sup
a∈Rd
|QN

n (fa,n) − Qn(fa,n)| ≤ c
√

d

N
(x + 1)

is greater than 1 − e−x, for any x ≥ 0, for some constant c <∞ that
does not depend on the dimension, nor on the time horizon.

Remark 1.1. One way to turn all of these inequalities into of Bern-
stein style concentration inequalities is as follows. For any exponential
inequality of the form

∀x ≥ 0 P(X ≤ ax +
√

2bx + c) ≤ 1 − e−x

for some non negative constants (a,b,c), we also have

∀y ≥ 0 P(X ≤ y + c) ≤ 1 − exp
(
− y2

2(b + ay)

)
.

A proof of this result is provided in Lemma 4.13.

Full text available at: http://dx.doi.org/10.1561/2200000026



22 Stochastic Particle Methods

1.5 Basic Notation

Here we provide some background from stochastic analysis and integral
operator theory, which we require for our proofs. Most of the results
with detailed proofs can be located in the book [17] on Feynman-Kac
formulae and interacting particle methods. Our proofs also contain
cross-references to this rather well known material, so the reader may
wish to skip this subsection and proceed directly to Section 2, which is
dedicated to some application domains of Feynman-Kac models.

1.5.1 Integral Operators

We denote respectively byM(E),M0(E), P(E), and B(E), the set of
all finite signed measures on some measurable space (E,E), the con-
vex subset of measures with null mass, the set of all probability mea-
sures, and the Banach space of all bounded and measurable functions
f equipped with the uniform norm ‖f‖. We also denote by Osc1(E),
and by B1(E) the set of E-measurable functions f with oscillations
osc(f) ≤ 1, and respectively with ‖f‖ ≤ 1. We let

µ(f) =
∫
µ(dx)f(x)

be the Lebesgue integral of a function f ∈ B(E), with respect to a
measure µ ∈M(E).

We recall that the total variation distance on M(E) is defined for
any µ ∈M(E) by

‖µ‖tv =
1
2

sup
(A,B)∈E2

(µ(A) − µ(B)).

We recall that a bounded integral operatorM turned from a measurable
space (E,E) into an auxiliary measurable space (F,F) is an operator
f 7→M(f) from B(F ) into B(E) such that the functions

M(f)(x) :=
∫
F
M(x,dy)f(y)

are E-measurable and bounded, for any f ∈ B(F ). A Markov kernel is a
positive and bounded integral operator M with M(1) = 1. Given a pair
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of bounded integral operators (M1,M2), we let (M1M2) represent the
composition operator defined by (M1M2)(f) = M1(M2(f)). For time
homogeneous state spaces, we denote by Mm = Mm−1M = MMm−1

the m-th composition of a given bounded integral operator M , with
m ≥ 1. A bounded integral operator M turned from a measurable space
(E,E) into an auxiliary measurable space (F,F) also generates a dual
operator

µ(dx) 7→ (µM)(dx) =
∫
µ(dy)M(y,dx)

fromM(E) intoM(F ) defined by (µM)(f) := µ(M(f)). We also used
the notation

K([f − K(f)]2)(x) := K([f − K(f)(x)]2)(x)

for some bounded integral operator K and some bounded function f .
We prefer to avoid unnecessary abstraction and technical assump-

tions, so we frame the standing assumption that all the test functions
are in the unit sphere, and the integral operators, and all the random
variables are sufficiently regular so that we are justified in computing
integral transport equations, regular versions of conditional expecta-
tions, and so forth.

1.5.2 Contraction Coefficients

When the bounded integral operator M has a constant mass, that is,
when M(1)(x) = M(1)(y) for any (x,y) ∈ E2, the operator µ 7→ µM

maps M0(E) into M0(F ). In this situation, we let β(M) be the
Dobrushin coefficient of a bounded integral operator M defined by the
formula

β(M) := sup {osc(M(f)); f ∈ Osc(F )}.

Notice that β(M) is the operator norm of M on M0(E), and we have
the equivalent formulations

β(M) = sup{‖M(x, .) −M(y, .)‖tv ; (x,y) ∈ E2}

= sup
µ∈M0(E)

‖µM‖tv/‖µ‖tv.
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A detailed proof of these well known formulae can be found in [17].
Given a positive and bounded potential function G on E, we also

denote by ΨG the Boltzmann-Gibbs mapping from P(E) into itself,
defined for any µ ∈ P(E) by

ΨG(µ)(dx) =
1

µ(G)
G(x)µ(dx).

For [0,1]-valued potential functions, we also mention that ΨG(µ) can
be expressed as a non linear Markov transport equation

ΨG(µ) = µSµ,G (1.21)

with the Markov transitions

Sµ,G(x,dy) = G(x)δx(dy) + (1 − G(x))ΨG(µ)(dy).

We notice that

ΨG(µ) − ΨG(ν) = (µ − ν)Sµ + ν(Sµ − Sν)

and

ν(Sµ − Sν) = (1 − ν(G))[ΨG(µ) − ΨG(ν)]

from which we find the formula

ΨG(µ) − ΨG(ν) =
1

ν(G)
(µ − ν)Sµ.

In addition, using the fact that

∀(x,A) ∈ (E,E) Sµ(x,A) ≥ (1 − ‖G‖)ΨG(µ)(A)

we prove that β(Sµ) ≤ ‖G‖ and

‖ΨG(µ) − ΨG(ν)‖tv ≤
‖G‖

µ(G) ∨ ν(G)
‖µ − ν‖tv.

If we set Φ(µ) = ΨG(µ)M , for some Markov transition M , then we
have the decomposition

Φ(µ) − Φ(ν) =
1

ν(G)
(µ − ν)SµM (1.22)
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for any couple of measures ν,µ on E. From the previous discussion, we
also find the following Lipschitz estimates

‖Φ(µ) − Φ(ν)‖tv ≤
‖G‖

µ(G) ∨ ν(G)
β(M)‖µ − ν‖tv. (1.23)

We end this subsection with an interesting contraction property of a
Markov transition

MG(x,dy) =
M(x,dy)G(y)
M(G)(x)

= ΨG(δxM)(dy) (1.24)

associated with a ]0,1]-valued potential function G, with

g = sup
x,y

G(x)/G(y) <∞. (1.25)

It is easily checked that

|MG(f)(x) −MG(f)(y)| = |ΨG(δxM)(f) − ΨG(δyM)(f)|

≤ g‖δxM − δyM‖tv

from which we conclude that

β(MG) ≤ gβ(M). (1.26)

1.5.3 Orlicz Norms and Gaussian Moments

We let πψ[Y ] be the Orlicz norm of an R-valued random variable Y
associated with the convex function ψ(u) = eu

2 − 1, and defined by

πψ(Y ) = inf {a ∈ (0,∞) :E(ψ(|Y |/a)) ≤ 1}

with the convention inf∅ =∞. Notice that

πψ(Y ) ≤ c⇐⇒ E(ψ(Y/c)) ≤ 1.

For instance, the Orlicz norm of a Gaussian and centered random
variable U , s.t. E(U2) = 1, is given by πψ(U) =

√
8/3. We also recall

that

E(U2m) = b(2m)2m := (2m)m 2−m

E(|U |2m+1) ≤ b(2m + 1)2m+1 :=
(2m + 1)(m+1)√

m + 1/2
2−(m+1/2) (1.27)
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with (q + p)p := (q + p)!/q!. The second assertion comes from the fact
that

E(U2m+1)2 ≤ E(U2m)E(U2(m+1))

and therefore

b(2m + 1)2(2m+1) = E(U2m)E(U2(m+1))

= 2−(2m+1) (2m)m (2(m + 1))(m+1).

This formula is a direct consequence of the following decompositions

(2(m + 1))(m+1) =
(2(m + 1))!

(m + 1)!
= 2

(2m + 1)!
m!

= 2(2m + 1)(m+1)

and

(2m)m =
1

2m + 1
(2m + 1)!

m!
=

1
2m + 1

(2m + 1)(m+1).

We also mention that

b(m) ≤ b(2m). (1.28)

Indeed, for even numbers m = 2p we have

b(m)2m = b(2p)4p = E(U2p)2 ≤ E(U4p) = b(4p)4p = b(2m)2m

and for odd numbers m = (2p + 1), we have

b(m)2m = b(2p + 1)2(2p+1) = E(U2p)E(U2(p+1))

≤ E
(

(U2p)
(2p+1)
p

) p
2p+1

E
(

(U2(p+1))
(2p+1)
p+1

) p+1
2p+1

= E(U2(2p+1)) = b(2(2p + 1))2(2p+1) = b(2m)2m.
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[58] C. Graham and S. Méléard, “Stochastic particle approximations for generalized
Boltzmann models and convergence estimates,” Ann. Probab., vol. 25, no. 1,
pp. 115–132, 1997.

Full text available at: http://dx.doi.org/10.1561/2200000026



References 163
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