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Abstract

Ţ This monograph presents the main complexity theorems in convex
optimization and their corresponding algorithms. Starting from the
fundamental theory of black-box optimization, the material progresses
towards recent advances in structural optimization and stochastic op-
timization. Our presentation of black-box optimization, strongly in-
fluenced by Nesterov’s seminal book and Nemirovski’s lecture notes,
includes the analysis of cutting plane methods, as well as (acceler-
ated) gradient descent schemes. We also pay special attention to non-
Euclidean settings (relevant algorithms include Frank-Wolfe, mirror
descent, and dual averaging) and discuss their relevance in machine
learning. We provide a gentle introduction to structural optimization
with FISTA (to optimize a sum of a smooth and a simple non-smooth
term), saddle-point mirror prox (Nemirovski’s alternative to Nesterov’s
smoothing), and a concise description of interior point methods. In
stochastic optimization we discuss stochastic gradient descent, mini-
batches, random coordinate descent, and sublinear algorithms. We also
briefly touch upon convex relaxation of combinatorial problems and the
use of randomness to round solutions, as well as random walks based
methods.

S. Bubeck. Convex Optimization: Algorithms and Complexity. Foundations and
TrendsR© in Machine Learning, vol. 8, no. 3-4, pp. 231–357, 2015.
DOI: 10.1561/2200000050.
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1

Introduction

The central objects of our study are convex functions and convex sets
in Rn.

Definition 1.1 (Convex sets and convex functions). A set X ⊂ Rn is
said to be convex if it contains all of its segments, that is

∀(x, y, γ) ∈ X × X × [0, 1], (1− γ)x+ γy ∈ X .

A function f : X → R is said to be convex if it always lies below its
chords, that is

∀(x, y, γ) ∈ X × X × [0, 1], f((1− γ)x+ γy) ≤ (1− γ)f(x) + γf(y).

We are interested in algorithms that take as input a convex set X
and a convex function f and output an approximate minimum of f
over X . We write compactly the problem of finding the minimum of f
over X as

min. f(x)
s.t. x ∈ X .

In the following we will make more precise how the set of constraints X
and the objective function f are specified to the algorithm. Before that

2
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1.1. Some convex optimization problems in machine learning 3

we proceed to give a few important examples of convex optimization
problems in machine learning.

1.1 Some convex optimization problems in machine learning

Many fundamental convex optimization problems in machine learning
take the following form:

min.
x∈Rn

m∑
i=1

fi(x) + λR(x), (1.1)

where the functions f1, . . . , fm,R are convex and λ ≥ 0 is a fixed
parameter. The interpretation is that fi(x) represents the cost of using
x on the ith element of some data set, and R(x) is a regularization term
which enforces some “simplicity” in x. We discuss now major instances
of (1.1). In all cases one has a data set of the form (wi, yi) ∈ Rn×Y, i =
1, . . . ,m and the cost function fi depends only on the pair (wi, yi). We
refer to Hastie et al. [2001], Schölkopf and Smola [2002], Shalev-Shwartz
and Ben-David [2014] for more details on the origin of these important
problems. The mere objective of this section is to expose the reader to a
few concrete convex optimization problems which are routinely solved.

In classification one has Y = {−1, 1}. Taking fi(x) = max(0, 1 −
yix
>wi) (the so-called hinge loss) and R(x) = ‖x‖22 one obtains the

SVM problem. On the other hand taking fi(x) = log(1+exp(−yix>wi))
(the logistic loss) and again R(x) = ‖x‖22 one obtains the (regularized)
logistic regression problem.

In regression one has Y = R. Taking fi(x) = (x>wi − yi)2 and
R(x) = 0 one obtains the vanilla least-squares problem which can be
rewritten in vector notation as

min.
x∈Rn

‖Wx− Y ‖22,

where W ∈ Rm×n is the matrix with w>i on the ith row and Y =
(y1, . . . , yn)>. With R(x) = ‖x‖22 one obtains the ridge regression prob-
lem, while with R(x) = ‖x‖1 this is the LASSO problem Tibshirani
[1996].

Our last two examples are of a slightly different flavor. In particular
the design variable x is now best viewed as a matrix, and thus we

Full text available at: http://dx.doi.org/10.1561/2200000050



4 Introduction

denote it by a capital letterX. The sparse inverse covariance estimation
problem can be written as follows, given some empirical covariance
matrix Y ,

min. Tr(XY )− logdet(X) + λ‖X‖1
s.t. X ∈ Rn×n, X> = X,X � 0.

Intuitively the above problem is simply a regularized maximum likeli-
hood estimator (under a Gaussian assumption).

Finally we introduce the convex version of the matrix completion
problem. Here our data set consists of observations of some of the
entries of an unknown matrix Y , and we want to “complete" the unob-
served entries of Y in such a way that the resulting matrix is “simple"
(in the sense that it has low rank). After some massaging (see Can-
dès and Recht [2009]) the (convex) matrix completion problem can be
formulated as follows:

min. Tr(X)
s.t. X ∈ Rn×n, X> = X,X � 0, Xi,j = Yi,j for (i, j) ∈ Ω,

where Ω ⊂ [n]2 and (Yi,j)(i,j)∈Ω are given.

1.2 Basic properties of convexity

A basic result about convex sets that we shall use extensively is the
Separation Theorem.

Theorem 1.1 (Separation Theorem). Let X ⊂ Rn be a closed convex
set, and x0 ∈ Rn \ X . Then, there exists w ∈ Rn and t ∈ R such that

w>x0 < t, and ∀x ∈ X , w>x ≥ t.

Note that if X is not closed then one can only guarantee that
w>x0 ≤ w>x,∀x ∈ X (and w 6= 0). This immediately implies the Sup-
porting Hyperplane Theorem (∂X denotes the boundary of X , that is
the closure without the interior):

Theorem 1.2 (Supporting Hyperplane Theorem). Let X ⊂ Rn be a con-
vex set, and x0 ∈ ∂X . Then, there exists w ∈ Rn, w 6= 0 such that

∀x ∈ X , w>x ≥ w>x0.
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1.2. Basic properties of convexity 5

We introduce now the key notion of subgradients.

Definition 1.2 (Subgradients). Let X ⊂ Rn, and f : X → R. Then
g ∈ Rn is a subgradient of f at x ∈ X if for any y ∈ X one has

f(x)− f(y) ≤ g>(x− y).

The set of subgradients of f at x is denoted ∂f(x).

To put it differently, for any x ∈ X and g ∈ ∂f(x), f is above the
linear function y 7→ f(x)+g>(y−x). The next result shows (essentially)
that a convex functions always admit subgradients.

Proposition 1.1 (Existence of subgradients). Let X ⊂ Rn be convex,
and f : X → R. If ∀x ∈ X , ∂f(x) 6= ∅ then f is convex. Conversely
if f is convex then for any x ∈ int(X ), ∂f(x) 6= ∅. Furthermore if f is
convex and differentiable at x then ∇f(x) ∈ ∂f(x).

Before going to the proof we recall the definition of the epigraph of
a function f : X → R:

epi(f) = {(x, t) ∈ X × R : t ≥ f(x)}.

It is obvious that a function is convex if and only if its epigraph is a
convex set.

Proof. The first claim is almost trivial: let g ∈ ∂f((1− γ)x+ γy), then
by definition one has

f((1− γ)x+ γy) ≤ f(x) + γg>(y − x),
f((1− γ)x+ γy) ≤ f(y) + (1− γ)g>(x− y),

which clearly shows that f is convex by adding the two (appropriately
rescaled) inequalities.

Now let us prove that a convex function f has subgradients in the
interior of X . We build a subgradient by using a supporting hyperplane
to the epigraph of the function. Let x ∈ X . Then clearly (x, f(x)) ∈
∂epi(f), and epi(f) is a convex set. Thus by using the Supporting
Hyperplane Theorem, there exists (a, b) ∈ Rn × R such that

a>x+ bf(x) ≥ a>y + bt,∀(y, t) ∈ epi(f). (1.2)

Full text available at: http://dx.doi.org/10.1561/2200000050



6 Introduction

Clearly, by letting t tend to infinity, one can see that b ≤ 0. Now let
us assume that x is in the interior of X . Then for ε > 0 small enough,
y = x+εa ∈ X , which implies that b cannot be equal to 0 (recall that if
b = 0 then necessarily a 6= 0 which allows to conclude by contradiction).
Thus rewriting (1.2) for t = f(y) one obtains

f(x)− f(y) ≤ 1
|b|
a>(x− y).

Thus a/|b| ∈ ∂f(x) which concludes the proof of the second claim.

Finally let f be a convex and differentiable function. Then by defi-
nition:

f(y) ≥ f((1− γ)x+ γy)− (1− γ)f(x)
γ

= f(x) + f(x+ γ(y − x))− f(x)
γ

→
γ→0

f(x) +∇f(x)>(y − x),

which shows that ∇f(x) ∈ ∂f(x).

In several cases of interest the set of contraints can have an empty
interior, in which case the above proposition does not yield any informa-
tion. However it is easy to replace int(X ) by ri(X ) -the relative interior
of X - which is defined as the interior of X when we view it as subset of
the affine subspace it generates. Other notions of convex analysis will
prove to be useful in some parts of this text. In particular the notion
of closed convex functions is convenient to exclude pathological cases:
these are the convex functions with closed epigraphs. Sometimes it is
also useful to consider the extension of a convex function f : X → R to
a function from Rn to R by setting f(x) = +∞ for x 6∈ X . In convex
analysis one uses the term proper convex function to denote a convex
function with values in R ∪ {+∞} such that there exists x ∈ Rn with
f(x) < +∞. From now on all convex functions will be closed,
and if necessary we consider also their proper extension. We
refer the reader to Rockafellar [1970] for an extensive discussion of these
notions.
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1.3. Why convexity? 7

1.3 Why convexity?

The key to the algorithmic success in minimizing convex functions is
that these functions exhibit a local to global phenomenon. We have
already seen one instance of this in Proposition 1.1, where we showed
that ∇f(x) ∈ ∂f(x): the gradient ∇f(x) contains a priori only local
information about the function f around x while the subdifferential
∂f(x) gives a global information in the form of a linear lower bound on
the entire function. Another instance of this local to global phenomenon
is that local minima of convex functions are in fact global minima:

Proposition 1.2 (Local minima are global minima). Let f be convex. If x
is a local minimum of f then x is a global minimum of f . Furthermore
this happens if and only if 0 ∈ ∂f(x).

Proof. Clearly 0 ∈ ∂f(x) if and only if x is a global minimum of f .
Now assume that x is local minimum of f . Then for γ small enough
one has for any y,

f(x) ≤ f((1− γ)x+ γy) ≤ (1− γ)f(x) + γf(y),

which implies f(x) ≤ f(y) and thus x is a global minimum of f .

The nice behavior of convex functions will allow for very fast algo-
rithms to optimize them. This alone would not be sufficient to justify
the importance of this class of functions (after all constant functions
are pretty easy to optimize). However it turns out that surprisingly
many optimization problems admit a convex (re)formulation. The ex-
cellent book Boyd and Vandenberghe [2004] describes in great details
the various methods that one can employ to uncover the convex aspects
of an optimization problem. We will not repeat these arguments here,
but we have already seen that many famous machine learning problems
(SVM, ridge regression, logistic regression, LASSO, sparse covariance
estimation, and matrix completion) are formulated as convex problems.

We conclude this section with a simple extension of the optimality
condition “0 ∈ ∂f(x)” to the case of constrained optimization. We state
this result in the case of a differentiable function for sake of simplicity.
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8 Introduction

Proposition 1.3 (First order optimality condition). Let f be convex and
X a closed convex set on which f is differentiable. Then

x∗ ∈ argmin
x∈X

f(x),

if and only if one has

∇f(x∗)>(x∗ − y) ≤ 0,∀y ∈ X .

Proof. The “if" direction is trivial by using that a gradient is also
a subgradient. For the “only if" direction it suffices to note that if
∇f(x)>(y − x) < 0, then f is locally decreasing around x on the
line to y (simply consider h(t) = f(x + t(y − x)) and note that
h′(0) = ∇f(x)>(y − x)).

1.4 Black-box model

We now describe our first model of “input" for the objective function
and the set of constraints. In the black-box model we assume that
we have unlimited computational resources, the set of constraint X is
known, and the objective function f : X → R is unknown but can be
accessed through queries to oracles:

• A zeroth order oracle takes as input a point x ∈ X and outputs
the value of f at x.

• A first order oracle takes as input a point x ∈ X and outputs a
subgradient of f at x.

In this context we are interested in understanding the oracle complexity
of convex optimization, that is how many queries to the oracles are
necessary and sufficient to find an ε-approximate minima of a convex
function. To show an upper bound on the sample complexity we need to
propose an algorithm, while lower bounds are obtained by information
theoretic reasoning (we need to argue that if the number of queries is
“too small" then we don’t have enough information about the function
to identify an ε-approximate solution).

Full text available at: http://dx.doi.org/10.1561/2200000050



1.4. Black-box model 9

From a mathematical point of view, the strength of the black-box
model is that it will allow us to derive a complete theory of convex op-
timization, in the sense that we will obtain matching upper and lower
bounds on the oracle complexity for various subclasses of interesting
convex functions. While the model by itself does not limit our compu-
tational resources (for instance any operation on the constraint set X is
allowed) we will of course pay special attention to the algorithms’ com-
putational complexity (i.e., the number of elementary operations that
the algorithm needs to do). We will also be interested in the situation
where the set of constraint X is unknown and can only be accessed
through a separation oracle: given x ∈ Rn, it outputs either that x is
in X , or if x 6∈ X then it outputs a separating hyperplane between x
and X .

The black-box model was essentially developed in the early days
of convex optimization (in the Seventies) with Nemirovski and Yudin
[1983] being still an important reference for this theory (see also Ne-
mirovski [1995]). In the recent years this model and the corresponding
algorithms have regained a lot of popularity, essentially for two reasons:

• It is possible to develop algorithms with dimension-free oracle
complexity which is quite attractive for optimization problems in
very high dimension.

• Many algorithms developed in this model are robust to noise
in the output of the oracles. This is especially interesting for
stochastic optimization, and very relevant to machine learning
applications. We will explore this in details in Chapter 6.

Chapter 2, Chapter 3 and Chapter 4 are dedicated to the study of
the black-box model (noisy oracles are discussed in Chapter 6). We do
not cover the setting where only a zeroth order oracle is available, also
called derivative free optimization, and we refer to Conn et al. [2009],
Audibert et al. [2011] for further references on this.
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10 Introduction

1.5 Structured optimization

The black-box model described in the previous section seems extremely
wasteful for the applications we discussed in Section 1.1. Consider for
instance the LASSO objective: x 7→ ‖Wx− y‖22 + ‖x‖1. We know this
function globally, and assuming that we can only make local queries
through oracles seem like an artificial constraint for the design of al-
gorithms. Structured optimization tries to address this observation.
Ultimately one would like to take into account the global structure of
both f and X in order to propose the most efficient optimization pro-
cedure. An extremely powerful hammer for this task are the Interior
Point Methods. We will describe this technique in Chapter 5 alongside
with other more recent techniques such as FISTA or Mirror Prox.

We briefly describe now two classes of optimization problems for
which we will be able to exploit the structure very efficiently, these
are the LPs (Linear Programs) and SDPs (Semi-Definite Programs).
Ben-Tal and Nemirovski [2001] describe a more general class of Conic
Programs but we will not go in that direction here.

The class LP consists of problems where f(x) = c>x for some c ∈
Rn, and X = {x ∈ Rn : Ax ≤ b} for some A ∈ Rm×n and b ∈ Rm.

The class SDP consists of problems where the optimization vari-
able is a symmetric matrix X ∈ Rn×n. Let Sn be the space of n × n
symmetric matrices (respectively Sn+ is the space of positive semi-
definite matrices), and let 〈·, ·〉 be the Frobenius inner product (re-
call that it can be written as 〈A,B〉 = Tr(A>B)). In the class SDP
the problems are of the following form: f(x) = 〈X,C〉 for some
C ∈ Rn×n, and X = {X ∈ Sn+ : 〈X,Ai〉 ≤ bi, i ∈ {1, . . . ,m}} for
some A1, . . . , Am ∈ Rn×n and b ∈ Rm. Note that the matrix comple-
tion problem described in Section 1.1 is an example of an SDP.

1.6 Overview of the results and disclaimer

The overarching aim of this monograph is to present the main complex-
ity theorems in convex optimization and the corresponding algorithms.
We focus on five major results in convex optimization which give the
overall structure of the text: the existence of efficient cutting-plane
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1.6. Overview of the results and disclaimer 11

methods with optimal oracle complexity (Chapter 2), a complete char-
acterization of the relation between first order oracle complexity and
curvature in the objective function (Chapter 3), first order methods
beyond Euclidean spaces (Chapter 4), non-black box methods (such as
interior point methods) can give a quadratic improvement in the num-
ber of iterations with respect to optimal black-box methods (Chapter
5), and finally noise robustness of first order methods (Chapter 6). Ta-
ble 1.1 can be used as a quick reference to the results proved in Chapter
2 to Chapter 5, as well as some of the results of Chapter 6 (this last
chapter is the most relevant to machine learning but the results are
also slightly more specific which make them harder to summarize).

An important disclaimer is that the above selection leaves out meth-
ods derived from duality arguments, as well as the two most popular
research avenues in convex optimization: (i) using convex optimization
in non-convex settings, and (ii) practical large-scale algorithms. Entire
books have been written on these topics, and new books have yet to be
written on the impressive collection of new results obtained for both
(i) and (ii) in the past five years.

A few of the blatant omissions regarding (i) include (a) the theory
of submodular optimization (see Bach [2013]), (b) convex relaxations of
combinatorial problems (a short example is given in Section 6.6), and
(c) methods inspired from convex optimization for non-convex prob-
lems such as low-rank matrix factorization (see e.g. Jain et al. [2013]
and references therein), neural networks optimization, etc.

With respect to (ii) the most glaring omissions include (a) heuris-
tics (the only heuristic briefly discussed here is the non-linear conjugate
gradient in Section 2.4), (b) methods for distributed systems, and (c)
adaptivity to unknown parameters. Regarding (a) we refer to Nocedal
and Wright [2006] where the most practical algorithms are discussed in
great details (e.g., quasi-newton methods such as BFGS and L-BFGS,
primal-dual interior point methods, etc.). The recent survey Boyd
et al. [2011] discusses the alternating direction method of multipliers
(ADMM) which is a popular method to address (b). Finally (c) is a
subtle and important issue. In the entire monograph the emphasis
is on presenting the algorithms and proofs in the simplest way, and
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12 Introduction

thus for sake of convenience we assume that the relevant parameters
describing the regularity and curvature of the objective function
(Lipschitz constant, smoothness constant, strong convexity parameter)
are known and can be used to tune the algorithm’s own parameters.
Line search is a powerful technique to replace the knowledge of these
parameters and it is heavily used in practice, see again Nocedal and
Wright [2006]. We observe however that from a theoretical point of
view (c) is only a matter of logarithmic factors as one can always
run in parallel several copies of the algorithm with different guesses
for the values of the parameters1. Overall the attitude of this text
with respect to (ii) is best summarized by a quote of Thomas Cover:
“theory is the first term in the Taylor series of practice”, Cover [1992].

Notation. We always denote by x∗ a point in X such that f(x∗) =
minx∈X f(x) (note that the optimization problem under consideration
will always be clear from the context). In particular we always assume
that x∗ exists. For a vector x ∈ Rn we denote by x(i) its ith coordinate.
The dual of a norm ‖ · ‖ (defined later) will be denoted either ‖ · ‖∗ or
‖·‖∗ (depending on whether the norm already comes with a subscript).
Other notation are standard (e.g., In for the n× n identity matrix, �
for the positive semi-definite order on matrices, etc).

1Note that this trick does not work in the context of Chapter 6.
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1.6. Overview of the results and disclaimer 13

f Algorithm Rate # Iter Cost/iter

non-smooth center of
gravity exp

(
− t
n

)
n log

(
1
ε

) 1 ∇,
1 n-dim

∫
non-smooth ellipsoid

method
R
r

exp
(
− t
n2

)
n2 log

(
R
rε

) 1 ∇,
mat-vec ×

non-smooth Vaidya Rn
r

exp
(
− t
n

)
n log

(
Rn
rε

) 1 ∇,
mat-mat ×

quadratic CG
exact

exp
(
− t
κ

) n
κ log

(
1
ε

) 1 ∇

non-smooth,
Lipschitz PGD RL/

√
t R2L2/ε2 1 ∇,

1 proj.

smooth PGD βR2/t βR2/ε
1 ∇,
1 proj.

smooth AGD βR2/t2 R
√
β/ε 1 ∇

smooth
(any norm) FW βR2/t βR2/ε

1 ∇,
1 LP

strong.
conv.,

Lipschitz
PGD L2/(αt) L2/(αε) 1 ∇ ,

1 proj.
strong.
conv.,
smooth

PGD R2 exp
(
− t
κ

)
κ log

(
R2

ε

) 1 ∇ ,
1 proj.

strong.
conv.,
smooth

AGD R2 exp
(
− t√

κ

) √
κ log

(
R2

ε

)
1 ∇

f + g,
f smooth,
g simple

FISTA βR2/t2 R
√
β/ε

1 ∇ of f
Prox of g

max
y∈Y

ϕ(x, y),
ϕ smooth

SP-MP βR2/t βR2/ε
MD on X
MD on Y

linear,
X with F
ν-self-conc.

IPM ν exp
(
− t√

ν

) √
ν log

(
ν
ε

) Newton
step on F

non-smooth SGD BL/
√
t B2L2/ε2 1 stoch. ∇,

1 proj.
non-smooth,
strong. conv. SGD B2/(αt) B2/(αε) 1 stoch. ∇,

1 proj.
f = 1

m

∑
fi

fi smooth
strong. conv.

SVRG – (m+ κ) log
(

1
ε

)
1 stoch. ∇

Table 1.1: Summary of the results proved in Chapter 2 to Chapter 5 and some of
the results in Chapter 6.
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