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Abstract

Principal components analysis (PCA) is a well-known technique for ap-
proximating a tabular data set by a low rank matrix. Here, we extend
the idea of PCA to handle arbitrary data sets consisting of numerical,
Boolean, categorical, ordinal, and other data types. This framework
encompasses many well known techniques in data analysis, such as
nonnegative matrix factorization, matrix completion, sparse and ro-
bust PCA, k-means, k-SVD, and maximum margin matrix factoriza-
tion. The method handles heterogeneous data sets, and leads to coher-
ent schemes for compressing, denoising, and imputing missing entries
across all data types simultaneously. It also admits a number of inter-
esting interpretations of the low rank factors, which allow clustering
of examples or of features. We propose several parallel algorithms for
fitting generalized low rank models, and describe implementations and
numerical results.

M. Udell, C. Horn, R. Zadeh and S. Boyd. Generalized Low Rank Models.
Foundations and TrendsR© in Machine Learning, vol. 9, no. 1, pp. 1–118, 2016.
DOI: 10.1561/2200000055.
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1
Introduction

In applications of machine learning and data mining, one frequently
encounters large collections of high dimensional data organized into
a table. Each row in the table represents an example, and each col-
umn a feature or attribute. These tables may have columns of different
(sometimes, non-numeric) types, and often have many missing entries.

For example, in medicine, the table might record patient attributes
or lab tests: each row of the table lists test or survey results for a
particular patient, and each column corresponds to a distinct test or
survey question. The values in the table might be numerical (3.14),
Boolean (yes, no), ordinal (never, sometimes, always), or categorical (A,
B, O). Tests not administered or questions left blank result in missing
entries in the data set. Other examples abound: in finance, the table
might record known characteristics of companies or asset classes; in
social science settings, it might record survey responses; in marketing,
it might record known customer characteristics and purchase history.

Exploratory data analysis can be difficult in this setting. To better
understand a complex data set, one would like to be able to visualize
archetypical examples, to cluster examples, to find correlated features,
to fill in (impute) missing entries, and to remove (or simply identify)

2
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3

spurious, anomalous, or noisy data points. This paper introduces a
templated method to enable these analyses even on large data sets with
heterogeneous values and with many missing entries. Our approach
will be to embed both the rows (examples) and columns (features)
of the table into the same low dimensional vector space. These low
dimensional vectors can then be plotted, clustered, and used to impute
missing entries or identify anomalous ones.

If the data set consists only of numerical (real-valued) data, then
a simple and well-known technique to find this embedding is Princi-
pal Components Analysis (PCA). PCA finds a low rank matrix that
minimizes the approximation error, in the least-squares sense, to the
original data set. A factorization of this low rank matrix embeds the
original high dimensional features into a low dimensional space. Ex-
tensions of PCA can handle missing data values, and can be used to
impute missing entries.

Here, we extend PCA to approximate an arbitrary data set by re-
placing the least-squares error used in PCA with a loss function that
is appropriate for the given data type. Another extension beyond PCA
is to add regularization on the low dimensional factors to impose or
encourage some structure, such as sparsity or nonnegativity, in the low
dimensional factors. In this paper we use the term generalized low rank
model (GLRM) to refer to the problem of approximating a data set as
a product of two low dimensional factors by minimizing an objective
function. The objective will consist of a loss function on the approxima-
tion error together with regularization of the low dimensional factors.
With these extensions of PCA, the resulting low rank representation
of the data set still produces a low dimensional embedding of the data
set, as in PCA.

Many of the low rank modeling problems we must solve will be
familiar. We recover an optimization formulation of nonnegative ma-
trix factorization, matrix completion, sparse and robust PCA, k-means,
k-SVD, and maximum margin matrix factorization, to name just a
few.The scope of the problems we consider, however, is more broad,
encompassing many different combinations of loss function and regu-
larizer. A few of the choices we consider are shown in Tables A.1 and
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4 Introduction

A.2 of Appendix A for reference; all of these are discussed in detail
later in the paper.

These low rank approximation problems are not convex, and in
general cannot be solved globally and efficiently. There are a few ex-
ceptional problems that are known to have convex relaxations which
are tight under certain conditions, and hence are efficiently (globally)
solvable under these conditions. However, all of these approximation
problems can be heuristically (locally) solved by methods that alter-
nate between updating the two factors in the low rank approximation.
Each step involves either a convex problem, or a nonconvex problem
that is simple enough that we can solve it exactly. While these alternat-
ing methods need not find the globally best low rank approximation,
they are often very useful and effective for the original data analysis
problem.

1.1 Previous work

Unified views of matrix factorization. We are certainly not the first
to note that matrix factorization algorithms may be viewed in a unified
framework, parametrized by a small number of modeling decisions. The
first instance we find in the literature of this unified view appeared in a
paper by Collins, Dasgupta, and Schapire, [29], extending PCA to use
loss functions derived from any probabilistic model in the exponential
family. Gordon’s Generalized2 Linear2 models [53] extended the frame-
work to loss functions derived from the generalized Bregman divergence
of any convex function, which includes models such as Independent
Components Analysis (ICA). Srebro’s 2004 PhD thesis [133] extended
the framework to other loss functions, including hinge loss and KL-
divergence loss, and to other regularizers, including the nuclear norm
and max-norm. Similarly, Chapter 8 in Tropp’s 2004 PhD thesis [144]
explored a number of new regularizers, presenting a range of cluster-
ing problems as matrix factorization problems with constraints, and
anticipated the k-SVD algorithm [4]. Singh and Gordon [129] offered
a complete view of the state of the literature on matrix factorization
in Table 1 of their 2008 paper, and noted that by changing the loss

Full text available at: http://dx.doi.org/10.1561/2200000055



1.1. Previous work 5

function and regularizer, one may recover algorithms including PCA,
weighted PCA, k-means, k-medians, `1 SVD, probabilistic latent se-
mantic indexing (pLSI), nonnegative matrix factorization with `2 or
KL-divergence loss, exponential family PCA, and MMMF. Witten et
al. introduced the statistics community to sparsity-inducing matrix fac-
torization in a 2009 paper on penalized matrix decomposition, with
applications to sparse PCA and canonical correlation analysis [155].
Recently, Markovsky’s monograph on low rank approximation [97] re-
viewed some of this literature, with a focus on applications in system,
control, and signal processing. The GLRMs discussed in this paper
include all of these models, and many more.

Heterogeneous data. Many authors have proposed the use of low
rank models as a tool for integrating heterogeneous data. The earliest
example of this approach is canonical correlation analysis, developed
by Hotelling [63] in 1936 to understand the relations between two sets
of variates in terms of the eigenvectors of their covariance matrix. This
approach was extended by Witten et al. [155] to encourage structured
(e.g., sparse) factors. In the 1970s, De Leeuw et al. proposed the use of
low rank models to fit data measured in nominal, ordinal and cardinal
levels [37]. More recently, Goldberg et al. [52] used a low rank model
to perform transduction (i.e., multi-label learning) in the presence of
missing data by fitting a low rank model to the features and the labels
simultaneously. Low rank models have also been used to embed image,
text and video data into a common low dimensional space [54], and have
recently come into vogue in the natural language processing community
as a means to embed words and documents into a low dimensional
vector space [99, 100, 112, 136].

Algorithms. In general, it can be computationally hard to find the
global optimum of a generalized low rank model. For example, it is
NP-hard to compute an exact solution to k-means [43], nonnegative
matrix factorization [149], and weighted PCA and matrix completion
[50], all of which are special cases of low rank models.
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6 Introduction

However, there are many (efficient) ways to go about fitting a low
rank model, by which we mean finding a good model with a small
objective value. The resulting model may or may not be the global
solution of the low rank optimization problem. We distinguish a model
fit in this way from the solution to an optimization problem, which
always refers to the global solution.

The matrix factorization literature presents a wide variety of meth-
ods to fit low rank models in a variety of special cases. For exam-
ple, there are variants on alternating minimization (with alternating
least squares as a special case) [37, 158, 141, 35, 36], alternating New-
ton methods [53, 129], (stochastic or incremental) gradient descent
[75, 88, 104, 119, 10, 159, 118], conjugate gradients [120, 134], expecta-
tion minimization (EM) (or “soft-impute”) methods [142, 134, 98, 60],
multiplicative updates [85], and convex relaxations to semidefinite pro-
grams [135, 46, 117, 48].

Generally, expectation minimization, which proceeds by iteratively
imputing missing entries in the matrix and solving the fully observed
problem, has been found to underperform relative to other methods
[129]. However, when used in conjunction with computational tricks
exploiting a particular problem structure, such as Grammatrix caching,
these methods can still work extremely well [60].

Semidefinite programming becomes computationally intractable for
very large (or even just large) scale problems [120]. However, a theoret-
ical analysis of optimality conditions for rank-constrained semidefinite
programs [20] has led to a few algorithms for semidefinite program-
ming based on matrix factorization [19, 1, 70] which guarantee global
optimality and converge quickly if the global solution to the problem is
exactly low rank. Fast approximation algorithms for rank-constrained
semidefinite programs have also been developed [127].

Recently, there has been a resurgence of interest in methods based
on alternating minimization, as numerous authors have shown that
alternating minimization (suitably initialized, and under a few technical
assumptions) provably converges to the global minimum for a range of
problems including matrix completion [72, 66, 58], robust PCA [103],
and dictionary learning [2].
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1.1. Previous work 7

Gradient descent methods are often preferred for extremely large
scale problems since these methods parallelize naturally in both shared
memory and distributed memory architectures. See [118, 159] and ref-
erences therein for some recent innovative approaches to speeding up
stochastic gradient descent for matrix factorization by eliminating lock-
ing and reducing interprocess communication. These stochastic non-
locking methods often run faster than their deterministic counterparts;
and for the matrix completion problem in particular, these methods
can be shown to provably converge to the global minimum under the
same conditions required for alternating minimization [38].

Contributions. The present paper differs from previous work in a
number of ways. We are consistently concerned with the meaning of
applying these different loss functions and regularizers to approximate
a data set. The generality of our view allows us to introduce a number
of loss functions and regularizers that have not previously been con-
sidered. Moreover, our perspective enables us to extend these ideas to
arbitrary data sets, rather than just matrices of real numbers.

A number of new considerations emerge when considering the prob-
lem so broadly. First, we must face the problem of comparing approx-
imation errors across data of different types. For example, we must
choose a scaling to trade off the loss due to a misclassification of a
categorical value with an error of 0.1 (say) in predicting a real value.

Second, we require algorithms that can handle the full gamut of
losses and regularizers, which may be smooth or nonsmooth, finite or
infinite valued, with arbitrary domain. This work is the first to consider
these problems in such generality, and therefore also the first to wrestle
with the algorithmic consequences. Below, we give a number of algo-
rithms appropriate for this setting, including many that have not been
previously proposed in the literature. Our algorithms are all based on
alternating minimization and variations on alternating minimization
that are more suitable for large scale data and can take advantage of
parallel computing resources.

These algorithms for fitting any GLRM are particularly useful for
interactive data analysis: a practitioner can mix and match different

Full text available at: http://dx.doi.org/10.1561/2200000055



8 Introduction

loss functions and regularizers, and test which combinations provide the
best fit to the data, without having to identify a different method to
fit each particular model. We present a few software packages designed
for this purpose, with interfaces in Julia, R, Java, Python, and Scala,
in §9.

Finally, we present some new results on some old problems. For
example, in Appendix A.1, we derive a formula for the solution to
quadratically regularized PCA, and show that quadratically regularized
PCA has no local nonglobal minima; and in §7.6 we show how to certify
(in some special cases) that a model is a global solution of a GLRM.

1.2 Organization

The organization of this paper is as follows. In §2 we first recall some
properties of PCA and its common variations to familiarize the reader
with our notation. We then generalize the regularization on the low
dimensional factors in §3, and the loss function on the approximation
error in §4. Returning to the setting of heterogeneous data, we extend
these dimensionality reduction techniques to abstract data types in §5
and to multi-dimensional loss functions in §6. Finally, we address algo-
rithms for fitting GLRMs in §7, discuss a few practical considerations
in choosing a GLRM for a particular problem in §8, and describe some
implementations of the algorithms that we have developed in §9.
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