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Abstract

Modern applications in engineering and data science are increasingly
based on multidimensional data of exceedingly high volume, variety,
and structural richness. However, standard machine learning algo-
rithms typically scale exponentially with data volume and complex-
ity of cross-modal couplings - the so called curse of dimensionality -
which is prohibitive to the analysis of large-scale, multi-modal and
multi-relational datasets. Given that such data are often efficiently
represented as multiway arrays or tensors, it is therefore timely and
valuable for the multidisciplinary machine learning and data analytic
communities to review low-rank tensor decompositions and tensor net-
works as emerging tools for dimensionality reduction and large scale
optimization problems. Our particular emphasis is on elucidating that,
by virtue of the underlying low-rank approximations, tensor networks
have the ability to alleviate the curse of dimensionality in a number
of applied areas. In Part 1 of this monograph we provide innovative
solutions to low-rank tensor network decompositions and easy to in-
terpret graphical representations of the mathematical operations on
tensor networks. Such a conceptual insight allows for seamless migra-
tion of ideas from the flat-view matrices to tensor network operations
and vice versa, and provides a platform for further developments, prac-
tical applications, and non-Euclidean extensions. It also permits the
introduction of various tensor network operations without an explicit
notion of mathematical expressions, which may be beneficial for many
research communities that do not directly rely on multilinear algebra.
Our focus is on the Tucker and tensor train (TT) decompositions and
their extensions, and on demonstrating the ability of tensor networks
to provide linearly or even super-linearly (e.g., logarithmically) scalable
solutions, as illustrated in detail in Part 2 of this monograph.

A. Cichocki et al. Tensor Networks for Dimensionality Reduction and Large-Scale
Optimization Part 1 Low-Rank Tensor Decompositions. Foundations and TrendsR©

in Machine Learning, vol. 9, no. 4-5, pp. 249–429, 2016.
DOI: 10.1561/2200000059.
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1
Introduction and Motivation

This monograph aims to present a coherent account of ideas and
methodologies related to tensor decompositions (TDs) and tensor net-
works models (TNs). Tensor decompositions (TDs) decompose complex
data tensors of exceedingly high dimensionality into their factor (com-
ponent) tensors and matrices, while tensor networks (TNs) decompose
higher-order tensors into sparsely interconnected small-scale factor ma-
trices and/or low-order core tensors. These low-order core tensors are
called “components”, “blocks”, “factors” or simply “cores”. In this way,
large-scale data can be approximately represented in highly compressed
and distributed formats.

In this monograph, the TDs and TNs are treated in a unified way,
by considering TDs as simple tensor networks or sub-networks; the
terms “tensor decompositions” and “tensor networks” will therefore be
used interchangeably. Tensor networks can be thought of as special
graph structures which break down high-order tensors into a set of
sparsely interconnected low-order core tensors, thus allowing for both
enhanced interpretation and computational advantages. Such an ap-
proach is valuable in many application contexts which require the com-
putation of eigenvalues and the corresponding eigenvectors of extremely
high-dimensional linear or nonlinear operators. These operators typi-
cally describe the coupling between many degrees of freedom within
real-world physical systems; such degrees of freedom are often only
weakly coupled. Indeed, quantum physics provides evidence that cou-
plings between multiple data channels usually do not exist among all

2
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1.1. Challenges in Big Data Processing 3

the degrees of freedom but mostly locally, whereby “relevant” infor-
mation, of relatively low-dimensionality, is embedded into very large-
dimensional measurements (Verstraete et al., 2008; Schollwöck, 2013;
Orús, 2014; Murg et al., 2015).

Tensor networks offer a theoretical and computational framework
for the analysis of computationally prohibitive large volumes of data, by
“dissecting” such data into the “relevant” and “irrelevant” information,
both of lower dimensionality. In this way, tensor network representa-
tions often allow for super-compression of datasets as large as 1050

entries, down to the affordable levels of 107 or even less entries (Os-
eledets and Tyrtyshnikov, 2009; Dolgov and Khoromskij, 2013; Kazeev
et al., 2013a, 2014; Kressner et al., 2014a; Vervliet et al., 2014; Dolgov
and Khoromskij, 2015; Liao et al., 2015; Bolten et al., 2016).

With the emergence of the big data paradigm, it is therefore both
timely and important to provide the multidisciplinary machine learning
and data analytic communities with a comprehensive overview of tensor
networks, together with an example-rich guidance on their application
in several generic optimization problems for huge-scale structured data.
Our aim is also to unify the terminology, notation, and algorithms for
tensor decompositions and tensor networks which are being developed
not only in machine learning, signal processing, numerical analysis and
scientific computing, but also in quantum physics/chemistry for the
representation of, e.g., quantum many-body systems.

1.1 Challenges in Big Data Processing

The volume and structural complexity of modern datasets are becom-
ing exceedingly high, to the extent which renders standard analysis
methods and algorithms inadequate. Apart from the huge Volume, the
other features which characterize big data include Veracity, Variety
and Velocity (see Figures 1.1(a) and (b)). Each of the “V features”
represents a research challenge in its own right. For example, high vol-
ume implies the need for algorithms that are scalable; high Velocity
requires the processing of big data streams in near real-time; high Ve-
racity calls for robust and predictive algorithms for noisy, incomplete

Full text available at: http://dx.doi.org/10.1561/2200000059



4 Introduction and Motivation

and/or inconsistent data; high Variety demands the fusion of different
data types, e.g., continuous, discrete, binary, time series, images, video,
text, probabilistic or multi-view. Some applications give rise to addi-
tional “V challenges”, such as Visualization, Variability and Value. The
Value feature is particularly interesting and refers to the extraction of
high quality and consistent information, from which meaningful and
interpretable results can be obtained.

Owing to the increasingly affordable recording devices, extreme-
scale volumes and variety of data are becoming ubiquitous across the
science and engineering disciplines. In the case of multimedia (speech,
video), remote sensing and medical/biological data, the analysis also
requires a paradigm shift in order to efficiently process massive datasets
within tolerable time (velocity). Such massive datasets may have bil-
lions of entries and are typically represented in the form of huge block
matrices and/or tensors. This has spurred a renewed interest in the
development of matrix/tensor algorithms that are suitable for very
large-scale datasets. We show that tensor networks provide a natural
sparse and distributed representation for big data, and address both es-
tablished and emerging methodologies for tensor-based representations
and optimization. Our particular focus is on low-rank tensor network
representations, which allow for huge data tensors to be approximated
(compressed) by interconnected low-order core tensors.

1.2 Tensor Notations and Graphical Representations

Tensors are multi-dimensional generalizations of matrices. A matrix
(2nd-order tensor) has two modes, rows and columns, while an Nth-
order tensor has N modes (see Figures 1.2–1.7); for example, a 3rd-
order tensor (with three-modes) looks like a cube (see Figure 1.2).
Subtensors are formed when a subset of tensor indices is fixed. Of par-
ticular interest are fibers which are vectors obtained by fixing every
tensor index but one, and matrix slices which are two-dimensional sec-
tions (matrices) of a tensor, obtained by fixing all the tensor indices
but two. It should be noted that block matrices can also be represented
by tensors, as illustrated in Figure 1.3 for 4th-order tensors.

Full text available at: http://dx.doi.org/10.1561/2200000059



1.2. Tensor Notations and Graphical Representations 5
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Figure 1.1: A framework for extremely large-scale data analysis. (a) The 4V
challenges for big data. (b) A unified framework for the 4V challenges and the
potential applications based on tensor decomposition approaches.
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6 Introduction and Motivation
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Figure 1.2: A 3rd-order tensor X P RI�J�K , with entries xi,j,k � Xpi, j, kq, and
its subtensors: slices (middle) and fibers (bottom). All fibers are treated as column
vectors.

We adopt the notation whereby tensors (for N ¥ 3) are denoted by
bold underlined capital letters, e.g., X P RI1�I2�����IN . For simplicity,
we assume that all tensors are real-valued, but it is, of course, possible
to define tensors as complex-valued or over arbitrary fields. Matrices
are denoted by boldface capital letters, e.g., X P RI�J , and vectors
(1st-order tensors) by boldface lower case letters, e.g., x P RJ . For
example, the columns of the matrix A � ra1,a2, . . . ,aRs P RI�R are
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1.2. Tensor Notations and Graphical Representations 7
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Figure 1.3: A block matrix and its representation as a 4th-order tensor, created
by reshaping (or a projection) of blocks in the rows into lateral slices of 3rd-order
tensors.
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Figure 1.4: Graphical representation of multiway array (tensor) data of increasing
structural complexity and “Volume” (see (Olivieri, 2008) for more detail).

the vectors denoted by ar P RI , while the elements of a matrix (scalars)
are denoted by lowercase letters, e.g., air � Api, rq (see Table 1.1).

A specific entry of an Nth-order tensor X P RI1�I2�����IN is denoted
by xi1,i2,...,iN � Xpi1, i2, . . . , iN q P R. The order of a tensor is the
number of its “modes”, “ways” or “dimensions”, which can include
space, time, frequency, trials, classes, and dictionaries. The term ‘‘size”
stands for the number of values that an index can take in a particular
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8 Introduction and Motivation
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Figure 1.5: Graphical representation of tensor manipulations. (a) Basic building
blocks for tensor network diagrams. (b) Tensor network diagrams for matrix-vector
multiplication (top), matrix by matrix multiplication (middle) and contraction of
two tensors (bottom). The order of reading of indices is anti-clockwise, from the left
position.

mode. For example, the tensor X P RI1�I2�����IN is of order N and size
In in all modes-n pn � 1, 2, . . . , Nq. Lower-case letters e.g, i, j are used
for the subscripts in running indices and capital letters I, J denote the
upper bound of an index, i.e., i � 1, 2, . . . , I and j � 1, 2, . . . , J . For
a positive integer n, the shorthand notation   n ¡ denotes the set of
indices t1, 2, . . . , nu.
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1.2. Tensor Notations and Graphical Representations 9

Table 1.1: Basic matrix/tensor notation and symbols.

X P RI1�I2�����IN Nth-order tensor of size I1 � I2 � � � � � IN

xi1,i2,...,iN
� Xpi1, i2, . . . , iN q pi1, i2, . . . , iN qth entry of X

x, x, X scalar, vector and matrix

G, S, Gpnq, Xpnq core tensors

Λ P RR�R�����R Nth-order diagonal core tensor with nonzero
entries λr on the main diagonal

AT, A�1, A: transpose, inverse and Moore–Penrose
pseudo-inverse of a matrix A

A � ra1,a2, . . . ,aRs P RI�R matrix with R column vectors ar P RI , with
entries air

A, B, C, Apnq,Bpnq, Upnq component (factor) matrices

Xpnq P RIn�I1���In�1In�1���IN

mode-n matricization of X P RI1�����IN

X n¡ P RI1I2���In�In�1���IN

mode-(1, . . . , n) matricization of X P RI1�����IN

Xp:, i2, i3, . . . , iN q P RI1 mode-1 fiber of a tensor X obtained by fixing all
indices but one (a vector)

Xp:, :, i3, . . . , iN q P RI1�I2 slice (matrix) of a tensor X obtained by fixing
all indices but two

Xp:, :, :, i4, . . . , iN q subtensor of X, obtained by fixing several in-
dices

R, pR1, . . . , RN q tensor rank R and multilinear rank

� , d , b

bL , |b|

outer, Khatri–Rao, Kronecker products

Left Kronecker, strong Kronecker products

x � vecpXq vectorization of X

trpq trace of a square matrix

diagpq diagonal matrix

Full text available at: http://dx.doi.org/10.1561/2200000059



10 Introduction and Motivation

Table 1.2: Terminology used for tensor networks across the machine learn-
ing/scientific computing and quantum physics/chemistry communities.

Machine Learning Quantum Physics

Nth-order tensor rank-N tensor

high/low-order tensor tensor of high/low dimension

ranks of TNs bond dimensions of TNs

unfolding, matricization grouping of indices

tensorization splitting of indices

core site

variables open (physical) indices

ALS Algorithm one-site DMRG or DMRG1

MALS Algorithm two-site DMRG or DMRG2

column vector x P RI�1 ket |Ψy
row vector xT P R1�I bra xΨ|
inner product xx,xy �
xTx

xΨ|Ψy

Tensor Train (TT) Matrix Product State (MPS) (with Open
Boundary Conditions (OBC))

Tensor Chain (TC) MPS with Periodic Boundary Conditions
(PBC)

Matrix TT Matrix Product Operators (with OBC)

Hierarchical Tucker (HT) Tree Tensor Network State (TTNS) with
rank-3 tensors

Full text available at: http://dx.doi.org/10.1561/2200000059



1.2. Tensor Notations and Graphical Representations 11

Notations and terminology used for tensors and tensor networks
differ across the scientific communities (see Table 1.2); to this end we
employ a unifying notation particularly suitable for machine learning
and signal processing research, which is summarized in Table 1.1.

Even with the above notation conventions, a precise description of
tensors and tensor operations is often tedious and cumbersome, given
the multitude of indices involved. To this end, in this monograph, we
grossly simplify the description of tensors and their mathematical op-
erations through diagrammatic representations borrowed from physics
and quantum chemistry (see (Orús, 2014) and references therein). In
this way, tensors are represented graphically by nodes of any geometri-
cal shapes (e.g., circles, squares, dots), while each outgoing line (“edge”,
“leg”,“arm”) from a node represents the indices of a specific mode (see
Figure 1.5(a)). In our adopted notation, each scalar (zero-order ten-
sor), vector (first-order tensor), matrix (2nd-order tensor), 3rd-order
tensor or higher-order tensor is represented by a circle (or rectangu-
lar), while the order of a tensor is determined by the number of lines
(edges) connected to it. According to this notation, an Nth-order ten-
sor X P RI1�����IN is represented by a circle (or any shape) with N

branches each of size In, n � 1, 2, . . . , N (see Section 2). An intercon-
nection between two circles designates a contraction of tensors, which
is a summation of products over a common index (see Figure 1.5(b)
and Section 2).

Block tensors, where each entry (e.g., of a matrix or a vector) is an
individual subtensor, can be represented in a similar graphical form,
as illustrated in Figure 1.6. Hierarchical (multilevel block) matrices are
also naturally represented by tensors and vice versa, as illustrated in
Figure 1.7 for 4th-, 5th- and 6th-order tensors. All mathematical oper-
ations on tensors can be therefore equally performed on block matrices.

In this monograph, we make extensive use of tensor network di-
agrams as an intuitive and visual way to efficiently represent tensor
decompositions. Such graphical notations are of great help in studying
and implementing sophisticated tensor operations. We highlight the
significant advantages of such diagrammatic notations in the descrip-
tion of tensor manipulations, and show that most tensor operations can

Full text available at: http://dx.doi.org/10.1561/2200000059



12 Introduction and Motivation

4th-order tensor
. . . =

5th-order tensors
...

...

... ...... = =

6th-order tensor

=

Figure 1.6: Graphical representations and symbols for higher-order block tensors.
Each block represents either a 3rd-order tensor or a 2nd-order tensor. The outer
circle indicates a global structure of the block tensor (e.g. a vector, a matrix, a
3rd-order block tensor), while the inner circle reflects the structure of each element
within the block tensor. For example, in the top diagram a vector of 3rd order
tensors is represented by an outer circle with one edge (a vector) which surrounds
an inner circle with three edges (a 3rd order tensor), so that the whole structure
designates a 4th-order tensor.

be visualized through changes in the architecture of a tensor network
diagram.

1.3 Curse of Dimensionality and Generalized Separation of
Variables for Multivariate Functions

1.3.1 Curse of Dimensionality

The term curse of dimensionality was coined by Bellman (1961) to
indicate that the number of samples needed to estimate an arbitrary
function with a given level of accuracy grows exponentially with the
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Figure 1.7: Hierarchical matrix structures and their symbolic representation as
tensors. (a) A 4th-order tensor representation for a block matrix X P RR1I1�R2I2

(a matrix of matrices), which comprises block matrices Xr1,r2 P RI1�I2 . (b) A 5th-
order tensor. (c) A 6th-order tensor.

number of variables, that is, with the dimensionality of the function.
In a general context of machine learning and the underlying optimiza-
tion problems, the “curse of dimensionality” may also refer to an ex-
ponentially increasing number of parameters required to describe the
data/system or an extremely large number of degrees of freedom. The
term “curse of dimensionality”, in the context of tensors, refers to the
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phenomenon whereby the number of elements, IN , of an Nth-order ten-
sor of size pI�I�� � ��Iq grows exponentially with the tensor order, N .
Tensor volume can therefore easily become prohibitively big for multi-
way arrays for which the number of dimensions (“ways” or “modes”)
is very high, thus requiring enormous computational and memory re-
sources to process such data. The understanding and handling of the
inherent dependencies among the excessive degrees of freedom create
both difficult to solve problems and fascinating new opportunities, but
comes at a price of reduced accuracy, owing to the necessity to involve
various approximations.

We show that the curse of dimensionality can be alleviated or even
fully dealt with through tensor network representations; these natu-
rally cater for the excessive volume, veracity and variety of data (see
Figure 1.1) and are supported by efficient tensor decomposition algo-
rithms which involve relatively simple mathematical operations. An-
other desirable aspect of tensor networks is their relatively small-scale
and low-order core tensors, which act as “building blocks” of tensor
networks. These core tensors are relatively easy to handle and visual-
ize, and enable super-compression of the raw, incomplete, and noisy
huge-scale datasets. This also suggests a solution to a more general
quest for new technologies for processing of exceedingly large datasets
within affordable computation times.

To address the curse of dimensionality, this work mostly focuses on
approximative low-rank representations of tensors, the so-called low-
rank tensor approximations (LRTA) or low-rank tensor network de-
compositions.

1.3.2 Separation of Variables and Tensor Formats

A tensor is said to be in a full format when it is represented as an orig-
inal (raw) multidimensional array (Klus and Schütte, 2015), however,
distributed storage and processing of high-order tensors in their full
format is infeasible due to the curse of dimensionality. The sparse for-
mat is a variant of the full tensor format which stores only the nonzero
entries of a tensor, and is used extensively in software tools such as the
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Tensor Toolbox (Bader and Kolda, 2015) and in the sparse grid ap-
proach (Garcke et al., 2001; Bungartz and Griebel, 2004; Hackbusch,
2012).

As already mentioned, the problem of huge dimensionality can be
alleviated through various distributed and compressed tensor network
formats, achieved by low-rank tensor network approximations. The un-
derpinning idea is that by employing tensor networks formats, both
computational costs and storage requirements may be dramatically re-
duced through distributed storage and computing resources. It is im-
portant to note that, except for very special data structures, a tensor
cannot be compressed without incurring some compression error, since
a low-rank tensor representation is only an approximation of the orig-
inal tensor.

The concept of compression of multidimensional large-scale data
by tensor network decompositions can be intuitively explained as fol-
lows. Consider the approximation of an N -variate function fpxq �
fpx1, x2, . . . , xN q by a finite sum of products of individual functions,
each depending on only one or a very few variables (Bebendorf, 2011;
Dolgov, 2014; Cho et al., 2016; Trefethen, 2017). In the simplest sce-
nario, the function fpxq can be (approximately) represented in the
following separable form

fpx1, x2, . . . , xN q � f p1qpx1qf p2qpx2q � � � f pNqpxN q. (1.1)

In practice, when an N -variate function fpxq is discretized into an Nth-
order array, or a tensor, the approximation in (1.1) then corresponds to
the representation by rank-1 tensors, also called elementary tensors (see
Section 2). Observe that with In, n � 1, 2, . . . , N denoting the size of
each mode and I � maxntInu, the memory requirement to store such a
full tensor is

±N
n�1 In ¤ IN , which grows exponentially with N . On the

other hand, the separable representation in (1.1) is completely defined
by its factors, f pnqpxnq, pn � 1, 2, . . . , N), and requires only

°N
n�1 In !

IN storage units. If x1, x2, . . . , xN are statistically independent random
variables, their joint probability density function is equal to the product
of marginal probabilities, fpxq � f p1qpx1qf p2qpx2q � � � f pNqpxN q, in an
exact analogy to outer products of elementary tensors. Unfortunately,
the form of separability in (1.1) is rather rare in practice.
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The concept of tensor networks rests upon generalized (full or par-
tial) separability of the variables of a high dimensional function. This
can be achieved in different tensor formats, including:

• The Canonical Polyadic (CP) format (see Section 3.2), where

fpx1, x2, . . . , xN q �
Ŗ

r�1
f p1qr px1q f p2qr px2q � � � f pNq

r pxN q, (1.2)

in an exact analogy to (1.1). In a discretized form, the above CP
format can be written as an Nth-order tensor

F �
Ŗ

r�1
f p1qr � f p2qr � � � � � f pNq

r P RI1�I2�����IN , (1.3)

where f pnqr P RIn denotes a discretized version of the univariate
function f pnqr pxnq, symbol � denotes the outer product, and R is
the tensor rank.

• The Tucker format, given by

fpx1, . . . , xN q �
R1̧

r1�1
� � �

RŅ

rN�1
gr1,...,rN f p1qr1 px1q � � � f pNq

rN
pxN q,

(1.4)
and its distributed tensor network variants (see Section 3.3),

• The Tensor Train (TT) format (see Section 4.1), in the form

fpx1, x2, . . . , xN q �
R1̧

r1�1

R2̧

r2�1
� � �

RN�1¸
rN�1�1

f p1qr1 px1q f p2qr1 r2px2q � � �

� � � f pN�2q
rN�2 rN�1pxN�1q f pNq

rN�1pxN q, (1.5)

with the equivalent compact matrix representation

fpx1, x2, . . . , xN q � Fp1qpx1qFp2qpx2q � � �FpNqpxN q, (1.6)

where Fpnqpxnq P RRn�1�Rn , with R0 � RN � 1.

• The Hierarchical Tucker (HT) format (also known as the Hierar-
chical Tensor format) can be expressed via a hierarchy of nested
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separations in the following way. Consider nested nonempty dis-
joint subsets u, v, and t � u Y v � t1, 2, . . . , Nu, then for some
1 ¤ N0   N , with u0 � t1, . . . , N0u and v0 � tN0 � 1, . . . , Nu,
the HT format can be expressed as

fpx1, . . . , xN q �
Ru0̧

ru0�1

Rv0̧

rv0�1
gp12���Nq
ru0 ,rv0

f pu0q
ru0

pxu0q f pv0q
rv0

pxv0q,

f ptqrt
pxtq �

Ru̧

ru�1

Rv̧

rv�1
gptqru,rv ,rt

f puqru
pxuq f pvqrv

pxvq,

where xt � txi : i P tu. See Section 2.2.1 for more detail.
Example. In a particular case for N=4, the HT format can be
expressed by

fpx1, x2, x3, x4q �
R12̧

r12�1

R34̧

r34�1
gp1234q
r12,r34 f

p12q
r12 px1, x2q f p34q

r34 px3, x4q,

f p12q
r12 px1, x2q �

R1̧

r1�1

R2̧

r2�1
gp12q
r1,r2,r12 f

p1q
r1 px1q f p2qr2 px2q,

f p34q
r34 px3, x4q �

R3̧

r3�1

R4̧

r4�1
gp34q
r3,r4,r34 f

p3q
r3 px3q f p4qr4 px4q.

The Tree Tensor Network States (TTNS) format, which is an ex-
tension of the HT format, can be obtained by generalizing the two
subsets, u, v, into a larger number of disjoint subsets u1, . . . , um,
m ¥ 2. In other words, the TTNS can be obtained by more flexi-
ble separations of variables through products of larger numbers of
functions at each hierarchical level (see Section 2.2.1 for graphical
illustrations and more detail).

All the above approximations adopt the form of “sum-of-products” of
single-dimensional functions, a procedure which plays a key role in all
tensor factorizations and decompositions.

Indeed, in many applications based on multivariate functions, very
good approximations are obtained with a surprisingly small number
of factors; this number corresponds to the tensor rank, R, or tensor
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network ranks, tR1, R2, . . . , RNu (if the representations are exact and
minimal). However, for some specific cases this approach may fail to
obtain sufficiently good low-rank TN approximations. The concept of
generalized separability has already been explored in numerical meth-
ods for high-dimensional density function equations (Liao et al., 2015;
Trefethen, 2017; Cho et al., 2016) and within a variety of huge-scale
optimization problems (see Part 2 of this monograph).

To illustrate how tensor decompositions address excessive volumes
of data, if all computations are performed on a CP tensor format in
(1.3) and not on the raw Nth-order data tensor itself, then instead of
the original, exponentially growing, data dimensionality of IN , the num-
ber of parameters in a CP representation reduces to NIR, which scales
linearly in the tensor order N and size I (see Table 4.4). For exam-
ple, the discretization of a 5-variate function over 100 sample points on
each axis would yield the difficulty to manage 1005 � 10, 000, 000, 000
sample points, while a rank-2 CP representation would require only
5� 2� 100 � 1000 sample points.

Although the CP format in (1.2) effectively bypasses the curse of
dimensionality, the CP approximation may involve numerical problems
for very high-order tensors, which in addition to the intrinsic unclose-
ness of the CP format (i.e., difficulty to arrive at a canonical format),
the corresponding algorithms for CP decompositions are often ill-posed
(de Silva and Lim, 2008). As a remedy, greedy approaches may be
considered which, for enhanced stability, perform consecutive rank-1
corrections (Lim and Comon, 2010). On the other hand, many efficient
and stable algorithms exist for the more flexible Tucker format in (1.4),
however, this format is not practical for tensor orders N ¡ 5 because
the number of entries of both the original data tensor and the core
tensor (expressed in (1.4) by elements gr1,r2,...,rN ) scales exponentially
in the tensor order N (curse of dimensionality).

In contrast to CP decomposition algorithms, TT tensor network for-
mats in (1.5) exhibit both very good numerical properties and the abil-
ity to control the error of approximation, so that a desired accuracy of
approximation is obtained relatively easily. The main advantage of the
TT format over the CP decomposition is the ability to provide stable
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quasi-optimal rank reduction, achieved through, for example, truncated
singular value decompositions (tSVD) or adaptive cross-approximation
(Oseledets and Tyrtyshnikov, 2010; Bebendorf, 2011; Khoromskij and
Veit, 2016). This makes the TT format one of the most stable and
simple approaches to separate latent variables in a sophisticated way,
while the associated TT decomposition algorithms provide full control
over low-rank TN approximations1. In this monograph, we therefore
make extensive use of the TT format for low-rank TN approximations
and employ the TT toolbox software for efficient implementations (Os-
eledets et al., 2012). The TT format will also serve as a basic prototype
for high-order tensor representations, while we also consider the Hier-
archical Tucker (HT) and the Tree Tensor Network States (TTNS) for-
mats (having more general tree-like structures) whenever advantageous
in applications.

Furthermore, we address in depth the concept of tensorization of
structured vectors and matrices to convert a wide class of huge-scale op-
timization problems into much smaller-scale interconnected optimiza-
tion sub-problems which can be solved by existing optimization meth-
ods (see Part 2 of this monograph).

The tensor network optimization framework is therefore performed
through the two main steps:

• Tensorization of data vectors and matrices into a high-order ten-
sor, followed by a distributed approximate representation of a
cost function in a specific low-rank tensor network format.

• Execution of all computations and analysis in tensor network for-
mats (i.e., using only core tensors) that scale linearly, or even
sub-linearly (quantized tensor networks), in the tensor order N .
This yields both the reduced computational complexity and dis-
tributed memory requirements.

1Although similar approaches have been known in quantum physics for a long
time, their rigorous mathematical analysis is still a work in progress (see (Oseledets,
2011; Orús, 2014) and references therein).
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1.4 Advantages of Multiway Analysis via Tensor Networks

In this monograph, we focus on two main challenges in huge-scale data
analysis which are addressed by tensor networks: (i) an approximate
representation of a specific cost (objective) function by a tensor net-
work while maintaining the desired accuracy of approximation, and (ii)
the extraction of physically meaningful latent variables from data in a
sufficiently accurate and computationally affordable way. The benefits
of multiway (tensor) analysis methods for large-scale datasets then in-
clude:

• Ability to perform all mathematical operations in tractable tensor
network formats;

• Simultaneous and flexible distributed representations of both the
structurally rich data and complex optimization tasks;

• Efficient compressed formats of large multidimensional data
achieved via tensorization and low-rank tensor decompositions
into low-order factor matrices and/or core tensors;

• Ability to operate with noisy and missing data by virtue of numer-
ical stability and robustness to noise of low-rank tensor/matrix
approximation algorithms;

• A flexible framework which naturally incorporates various diver-
sities and constraints, thus seamlessly extending the standard,
flat view, Component Analysis (2-way CA) methods to multiway
component analysis;

• Possibility to analyze linked (coupled) blocks of large-scale ma-
trices and tensors in order to separate common/correlated from
independent/uncorrelated components in the observed raw data;

• Graphical representations of tensor networks allow us to express
mathematical operations on tensors (e.g., tensor contractions and
reshaping) in a simple and intuitive way, and without the explicit
use of complex mathematical expressions.
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In that sense, this monograph both reviews current research in this
area and complements optimisation methods, such as the Alternating
Direction Method of Multipliers (ADMM) (Boyd et al., 2011).

Tensor decompositions (TDs) have been already adopted in widely
diverse disciplines, including psychometrics, chemometrics, biometric,
quantum physics/information, quantum chemistry, signal and image
processing, machine learning, and brain science (Smilde et al., 2004;
Tao et al., 2007; Kroonenberg, 2008; Kolda and Bader, 2009; Hack-
busch, 2012; Favier and de Almeida, 2014; Cichocki et al., 2009, 2015b).
This is largely due to their advantages in the analysis of data that ex-
hibit not only large volume but also very high variety (see Figure 1.1),
as in the case in bio- and neuroinformatics and in computational neu-
roscience, where various forms of data collection include sparse tabular
structures and graphs or hyper-graphs.

Moreover, tensor networks have the ability to efficiently parame-
terize, through structured compact representations, very general high-
dimensional spaces which arise in modern applications (Kressner et al.,
2014b; Cichocki, 2014; Zhang et al., 2015; Corona et al., 2015; Litsarev
and Oseledets, 2016; Khoromskij and Veit, 2016; Benner et al., 2016).
Tensor networks also naturally account for intrinsic multidimensional
and distributed patterns present in data, and thus provide the oppor-
tunity to develop very sophisticated models for capturing multiple in-
teractions and couplings in data – these are more physically insightful
and interpretable than standard pair-wise interactions.

1.5 Scope and Objectives

Review and tutorial papers (Kolda and Bader, 2009; Lu et al., 2011;
Grasedyck et al., 2013; Cichocki et al., 2015b; de Almeida et al., 2015;
Sidiropoulos et al., 2016; Papalexakis et al., 2016; Bachmayr et al.,
2016) and books (Smilde et al., 2004; Kroonenberg, 2008; Cichocki
et al., 2009; Hackbusch, 2012) dealing with TDs and TNs already exist,
however, they typically focus on standard models, with no explicit links
to very large-scale data processing topics or connections to a wide class
of optimization problems. The aim of this monograph is therefore to
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extend beyond the standard Tucker and CP tensor decompositions,
and to demonstrate the perspective of TNs in extremely large-scale
data analytics, together with their role as a mathematical backbone
in the discovery of hidden structures in prohibitively large-scale data.
Indeed, we show that TN models provide a framework for the analysis
of linked (coupled) blocks of tensors with millions and even billions of
non-zero entries.

We also demonstrate that TNs provide natural extensions of 2-
way (matrix) Component Analysis (2-way CA) methods to multi-way
component analysis (MWCA), which deals with the extraction of de-
sired components from multidimensional and multimodal data. This
paradigm shift requires new models and associated algorithms capable
of identifying core relations among the different tensor modes, while
guaranteeing linear/sub-linear scaling with the size of datasets2.

Furthermore, we review tensor decompositions and the associated
algorithms for very large-scale linear/multilinear dimensionality reduc-
tion problems. The related optimization problems often involve struc-
tured matrices and vectors with over a billion entries (see (Grasedyck
et al., 2013; Dolgov, 2014; Garreis and Ulbrich, 2016) and references
therein). In particular, we focus on Symmetric Eigenvalue Decomposi-
tion (EVD/PCA) and Generalized Eigenvalue Decomposition (GEVD)
(Dolgov et al., 2014; Kressner et al., 2014a; Kressner and Uschmajew,
2016), SVD (Lee and Cichocki, 2015), solutions of overdetermined and
undetermined systems of linear algebraic equations (Oseledets and Dol-
gov, 2012; Dolgov and Savostyanov, 2014), the Moore–Penrose pseudo-
inverse of structured matrices (Lee and Cichocki, 2016b), and Lasso
problems (Lee and Cichocki, 2016a). Tensor networks for extremely
large-scale multi-block (multi-view) data are also discussed, especially
TN models for orthogonal Canonical Correlation Analysis (CCA) and
related Partial Least Squares (PLS) problems. For convenience, all
these problems are reformulated as constrained optimization problems

2Usually, we assume that huge-scale problems operate on at least 107 parameters.
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which are then, by virtue of low-rank tensor networks reduced to man-
ageable lower-scale optimization sub-problems. The enhanced tractabil-
ity and scalability is achieved through tensor network contractions and
other tensor network transformations.

The methods and approaches discussed in this work can be con-
sidered a both an alternative and complementary to other emerging
methods for huge-scale optimization problems like random coordinate
descent (RCD) scheme (Nesterov, 2012; Richtárik and Takáč, 2016),
sub-gradient methods (Nesterov, 2014), alternating direction method
of multipliers (ADMM) (Boyd et al., 2011), and proximal gradient de-
scent methods (Parikh and Boyd, 2014) (see also (Cevher et al., 2014;
Hong et al., 2016) and references therein).

This monograph systematically introduces TN models and the as-
sociated algorithms for TNs/TDs and illustrates many potential appli-
cations of TDs/TNS. The dimensionality reduction and optimization
frameworks (see Part 2 of this monograph) are considered in detail,
and we also illustrate the use of TNs in other challenging problems
for huge-scale datasets which can be solved using the tensor network
approach, including anomaly detection, tensor completion, compressed
sensing, clustering, and classification.
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