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Abstract

A Hilbert space embedding of a distribution—in short, a kernel mean
embedding—has recently emerged as a powerful tool for machine learn-
ing and statistical inference. The basic idea behind this framework is
to map distributions into a reproducing kernel Hilbert space (RKHS)
in which the whole arsenal of kernel methods can be extended to prob-
ability measures. It can be viewed as a generalization of the original
“feature map” common to support vector machines (SVMs) and other
kernel methods. In addition to the classical applications of kernel meth-
ods, the kernel mean embedding has found novel applications in fields
ranging from probabilistic modeling to statistical inference, causal dis-
covery, and deep learning.

This survey aims to give a comprehensive review of existing work
and recent advances in this research area, and to discuss challenging
issues and open problems that could potentially lead to new research
directions. The survey begins with a brief introduction to the RKHS
and positive definite kernels which forms the backbone of this survey,
followed by a thorough discussion of the Hilbert space embedding of
marginal distributions, theoretical guarantees, and a review of its ap-
plications. The embedding of distributions enables us to apply RKHS
methods to probability measures which prompts a wide range of ap-
plications such as kernel two-sample testing, independent testing, and
learning on distributional data. Next, we discuss the Hilbert space em-
bedding for conditional distributions, give theoretical insights, and re-
view some applications. The conditional mean embedding enables us
to perform sum, product, and Bayes’ rules—which are ubiquitous in
graphical model, probabilistic inference, and reinforcement learning—
in a non-parametric way using this new representation of distributions.
We then discuss relationships between this framework and other related
areas. Lastly, we give some suggestions on future research directions.

K. Muandet, K. Fukumizu, B. Sriperumbudur and B. Schölkopf. Kernel Mean
Embedding of Distributions: A Review and Beyond. Foundations and TrendsR© in
Machine Learning, vol. 10, no. 1-2, pp. 1–141, 2017.
DOI: 10.1561/2200000060.



Notation

We summarize a collection of the commonly used notation and symbols
in Table 1.

Table 1: Notation and symbols

Symbol Description

x A scalar quantity
x A vector
X A matrix
X A random variable
R Real line or the field of real numbers
Rd Euclidean d-space
C Complex plane or the field of complex numbers
Cd Complex d-space
〈·, ·〉 An inner product
‖ · ‖ A norm
X , Y Non-empty spaces in which X and Y take values
RX A vector space of functions from X to R
H Reproducing kernel Hilbert spaces (RKHS) of functions

from X to R
G Reproducing kernel Hilbert spaces (RKHS) of functions

from Y to R
G ⊗H Tensor product space
k(·, ·) Positive definite kernel function on X × X
l(·, ·) Positive definite kernel function on Y × Y
φ(·) Feature map from X to H associated with the kernel k

2
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Table 1: Notation and symbols

Symbol Description

ϕ(·) Feature map from Y to G associated with the kernel l
K Gram matrix with Kij = k(xi,xj)
L Gram matrix with Lij = l(yi,yj)
H Centering matrix
K ◦ L Hadamard product of matrices K and L
K⊗ L Kronecker product of matrices K and L
CXX , CYY Covariance operators in H and G , respectively
CXY Cross-covariance operators from G to H

CXY |Z Conditional cross-covariance operator
VYX Normalized cross-covariance operator from H to G

VYX |Z Normalized conditional cross-covariance operator
Cb(X ) Space of bounded continuous functions on X
L2[a, b] Space of square-integrable functions on [a, b]
L2(X , µ) Space of square µ-integrable functions on X
M1

+(X ) Space of probability measures on X
`1 Space of sequences whose series is absolutely convergent
`2 Space of square summable sequences
`∞ Space of bounded sequences
Hr

2(Rd) Sobolev space of r-times differentiable functions
HS(G ,H ) Hilbert space of Hilbert-Schmidt operators mapping from

G to H

Fg Fourier transform of g
Id Identity operator
Λ Spectral density
N (C) Null space of an operator C
R(C) Range of an operator C
S⊥ Orthogonal complement of a closed subspace S
(hi)i∈I Orthonormal basis
P, Q Probability distributions
ϕP Characteristic function of the distribution P
O(n) Order n time complexity of an algorithm
Op(n) Order n in probability (or stochastic boundedness)



1
Introduction

This work aims to provide a comprehensive review of kernel mean em-
beddings of distributions and, in the course of doing so, discusses some
challenging issues that could potentially lead to new research direc-
tions. To the best of our knowledge, there is no comparable review in
this area so far; however, the short review paper of Song et al. (2013) on
Hilbert space embedding of conditional distributions and its applica-
tions in nonparametric inference in graphical models may be of interest
to some readers.

The kernel mean embedding owes its success to a positive definite
function commonly known as the kernel function. The kernel function
has become popular in the machine learning community for more than
20 years. Initially, it arises as an effortless way to perform an inner prod-
uct 〈x,y〉 in a high-dimensional feature space H for some data points
x,y ∈ X . The positive definiteness of the kernel function guarantees
the existence of a dot product space H and a mapping φ : X → H

such that k(x,y) = 〈φ(x), φ(y)〉H (Aronszajn 1950) without needing
to compute φ explicitly (Boser et al. 1992, Cortes and Vapnik 1995,
Vapnik 2000, Schölkopf and Smola 2002). The kernel function can be
applied to any learning algorithm as long as the latter can be expressed

4
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x

p(x) Reproducing Kernel Hilbert Space

RKHS embedding of P

RKHS embedding of Q

P

Q

Figure 1.1: Embedding of marginal distributions: each distribution is mapped into
a reproducing kernel Hilbert space via an expectation operation.

entirely in terms of a dot product 〈x,y〉 (Schölkopf et al. 1998). This
trick is commonly known as the kernel trick (see Section 2 for a more de-
tailed account). Many kernel functions have been proposed for various
kinds of data structures including non-vectorial data such as graphs,
text documents, semi-groups, and probability distributions (Schölkopf
and Smola 2002, Gärtner 2003). Many well-known learning algorithms
have already been kernelized and have proven successful in scientific
disciplines such as bioinformatics, natural language processing, com-
puter vision, robotics, and causal inference.

Figures 1.1 and 1.2 depict schematic illustrations of the kernel mean
embedding framework. In words, the idea of kernel mean embedding is
to extend the feature map φ to the space of probability distributions
by representing each distribution P as a mean function

φ(P) = µP :=
∫
X
k(x, ·) dP(x), (1.1)

where k : X ×X → R is a symmetric and positive definite kernel func-
tion (Berlinet and Thomas-Agnan 2004, Smola et al. 2007). Since k(x, ·)
takes values in the feature space H , the integral in (1.1) should be in-
terpreted as a Bochner integral (see, e.g., Diestel and Uhl 1977; Chapter
2 and Dinculeanu 2000; Chapter 1 for a definition of the Bochner in-
tegral). Conditions ensuring the existence of such an integral will be
discussed in Section 3, but in this case we essentially transform the
distribution P to an element in H , which is nothing but a reproducing
kernel Hilbert space (RKHS) corresponding to the kernel k. Through
(1.1), most RKHS methods can be extended to probability measures.
This representation is beneficial for the following reasons.



6 Introduction

First of all, for a class of kernel functions known as characteristic
kernels, the kernel mean representation captures all information about
the distribution P (Fukumizu et al. 2004, Sriperumbudur et al. 2008;
2010). In other words, the mean map P 7→ µP is injective, implying
that ‖µP − µQ‖H = 0 if and only if P = Q, i.e., P and Q are the
same distribution. Consequently, the kernel mean representation can
be used to define a metric over the space of probability distributions
(Sriperumbudur et al. 2010). Since ‖µP − µQ‖H can be bounded from
above by some popular probability metrics such as the Wasserstein dis-
tance and the total variation distance, it follows that if P and Q are
close in these distances, then µP is also close to µQ in the ‖ · ‖H norm
(see §3.5). Injectivity of P 7→ µP makes it suitable for applications that
require a unique characterization of distributions such as two-sample
homogeneity tests (Gretton et al. 2012a, Fukumizu et al. 2008, Zhang
et al. 2011, Doran et al. 2014). Moreover, using the kernel mean rep-
resentation, most learning algorithms can be extended to the space
of probability distributions with minimal assumptions on the underly-
ing data generating process (Gómez-Chova et al. 2010, Muandet et al.
2012, Guevara et al. 2015, Lopez-Paz et al. 2015). See §3.3 for details.

Secondly, several elementary operations on distributions (and asso-
ciated random variables) can be performed directly by means of this
representation. For example, by the reproducing property of H ,

EP[f(x)] = 〈f, µP〉H , ∀f ∈H .

That is, an expected value of any function f ∈ H w.r.t. P is nothing
but an inner product in H between f and µP. Likewise, for an RKHS
G over some input space Y, we have

EY |x[g(Y ) |X = x] = 〈g,UY |x〉G , ∀g ∈ G ,

where UY |x denotes the embedding of the conditional distribution
P(Y |X = x). That is, we can compute a conditional expected value
of any function g ∈ G w.r.t. P(Y |X = x) by taking an inner product
in G between the function g and the embedding of P(Y |X = x) (see
Section 4 for further details). These operations only require knowledge
of the empirical estimates of µP and UY |x. Hence, the kernel mean rep-
resentation allows us to implement these operations in non-parametric
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probabilistic inference, e.g., filtering for dynamical systems (Song et al.
2009), kernel belief propagation (Song et al. 2011a), kernel Monte Carlo
filter (Kanagawa et al. 2013), kernel Bayes’ rule (Fukumizu et al. 2011),
often with strong theoretical guarantees. Moreover, it can be used to
perform functional operations f(X,Y ) on random variables X and Y
(Schölkopf et al. 2015, Simon-Gabriel et al. 2016).

In some applications such as testing for homogeneity from finite
samples, representing the distribution P by µP bypasses an interme-
diate density estimation, which is known to be difficult in the high-
dimensional setting (Wasserman 2006; Section 6.5). Moreover, we can
extend the applications of kernel mean embedding straightforwardly
to non-vectorial data such as graphs, strings, and semi-groups, thanks
to the kernel function. As a result, statistical inference—such as two-
sample testing and independence testing—can be adapted directly to
distributions over complex objects (Gretton et al. 2012a).

Under additional assumptions, we can generalize the principle un-
derlying (1.1) to conditional distributions P(Y |X) and P(Y |X = x).
Essentially, the latter two objects are represented as an operator that
maps the feature space H to G , and as an object in the feature space
G , respectively, where H and G denote the RKHS forX and Y , respec-
tively (see Figure 1.2). These representations allow us to develop a pow-
erful language for algebraic manipulation of probability distributions
in an analogous way to the sum rule, product rule, and Bayes’ rule—
which are ubiquitous in graphical models and probabilistic inference—
without making assumption on parametric forms of the underlying dis-
tributions. The details of conditional mean embeddings will be given
in Section 4.

A Synopsis. As a result of the aforementioned advantages, the kernel
mean embedding has made widespread contributions in various direc-
tions. Firstly, most tasks in machine learning and statistics involve
estimation of the data-generating process whose success depends criti-
cally on the accuracy and the reliability of this estimation. It is known
that estimating the kernel mean embedding is easier than estimating
the distribution itself, which helps improve many statistical inference
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X

Y

P(Y
|X

)

RKHS H RKHS G

RKHS embedding
of P(Y |X = x)

feature map of x RKHS embedding
of P(Y |X)

y

p(y|x)

P(Y |X = x)

Figure 1.2: From marginal distribution to conditional distribution: unlike the em-
beddings shown in Figure 1.1, the embedding of conditional distribution P(Y |X) is
not a single element in the RKHS. Instead, it may be viewed as a family of Hilbert
space embeddings of conditional distributions P(Y |X = x) indexed by the condi-
tioning variable X. In other words, the conditional mean embedding can be viewed
as an operator from H to G (cf. §4.2).

methods. These include, for example, two-sample testing (Gretton et al.
2012a), independence and conditional independence tests (Fukumizu
et al. 2008, Zhang et al. 2011, Doran et al. 2014), causal inference
(Sgouritsa et al. 2013, Chen et al. 2014), adaptive MCMC (Sejdinovic
et al. 2014), and approximate Bayesian computation (Fukumizu et al.
2013).

Secondly, several attempts have been made in using kernel mean
embedding as a representation in the predictive learning on distribu-
tions (Muandet et al. 2012, Szabó et al. 2016, Muandet and Schölkopf
2013, Guevara et al. 2015, Lopez-Paz et al. 2015). As opposed to the
classical setting where training and test examples are data points, many
applications call for a learning framework in which training and test
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examples are probability distributions. This is ubiquitous in, for exam-
ple, multiple-instance learning (Doran 2013), learning with noisy and
uncertain input, learning from missing data, group anomaly detection
(Muandet and Schölkopf 2013, Guevara et al. 2015), dataset squish-
ing, and bag-of-words data (Yoshikawa et al. 2014; 2015). The kernel
mean representation equipped with the RKHS methods enables clas-
sification, regression, and anomaly detection to be performed on such
distributions.

Finally, the kernel mean embedding also allows one to perform com-
plex approximate inference without making strong parametric assump-
tion on the form of underlying distribution. The idea is to represent
all relevant probabilistic quantities as a kernel mean embedding. Then,
basic operations such as sum rule and product rule can be formulated in
terms of the expectation and inner product in feature space. Examples
of algorithms in this class include kernel belief propagation (KBP), ker-
nel embedding of latent tree model, kernel Bayes rule, and predictive-
state representation (Song et al. 2010b; 2009; 2011a; 2013, Fukumizu
et al. 2013). Recently, the kernel mean representation has become one
of the prominent tools in causal inference and discovery (Lopez-Paz
et al. 2015, Sgouritsa et al. 2013, Chen et al. 2014, Schölkopf et al.
2015).

The aforementioned examples represent only a handful of successful
applications of kernel mean embedding. More examples and details will
be provided throughout the survey.

1.1 Purpose and Scope

The purpose of this survey is to give a comprehensive review of ker-
nel mean embedding of distributions, to present important theoretical
results and practical applications, and to draw connections to related
areas. We restrict the scope of this survey to key theoretical results and
new applications of kernel mean embedding with references to related
work. We focus primarily on basic intuition and sketches for proofs,
leaving the full proofs to the papers cited.
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All materials presented in this paper should be accessible to a wide
audience. In particular, we hope that this survey will be most useful
to readers who are not at all familiar with the idea of kernel mean
embedding, but already have some background knowledge in machine
learning. To ease the reading, we suggest non-expert readers to also
consult elementary machine learning textbooks such as Bishop (2006),
Schölkopf and Smola (2002), Mohri et al. (2012), and Murphy (2012).
Experienced machine learners who are interested in applying the idea
of kernel mean embedding to their work are also encouraged to read
this survey. Lastly, we will also provide some practical considerations
that could be useful to practitioners who are interested in implementing
the idea in real-world applications.

1.2 Outline of the Survey

The schematic outline of this survey is depicted in Figure 1.3 and can
be summarized as follows.

Section 2 introduces notation and the basic idea of a positive def-
inite kernel and reproducing kernel Hilbert space (RKHS) (§2.1 and
§2.2). It also presents general theoretical results such as the repro-
ducing property (Prop 2.1), the Riesz representation theorem (Thm
2.4), Mercer’s theorem (Thm 2.1), Bochner’s theorem (Thm 2.2), and
Schoenberg’s characterization (Thm 2.3). In addition, it contains a brief
discussion about Hilbert-Schmidt operators on RKHS (§2.3).

Section 3 conveys the idea of Hilbert space embedding of marginal
distributions (§3.1) as well as covariance operators (§3.2), presents es-
sential properties of mean embedding (§3.3), discusses its estimation
and approximation procedures (§3.4), and reviews important applica-
tions, notably maximum mean discrepancy (MMD) (§3.5), kernel de-
pendence measure (§3.6), learning on distributional data (§3.7), and
how to recover information from the embedding of distributions (§3.8).

Section 4 generalizes the idea of kernel mean embedding to the space
of conditional distributions, called conditional mean embedding (§4.1),
presents regression perspective (§4.2), and describes basic operations—
namely sum rule, product rule, and Bayes’ rule—in terms of marginal
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Section 2
Background

Section 3
Embedding of

marginal distributions

Section 4
Embedding of condi-
tional distributions

Section 5
Relationships to
other methods

Section 6
Future directions

Section 7
Conclusions

Figure 1.3: Schematic outline of this survey.

and conditional mean embeddings (§4.3). We review applications in
graphical models, probabilistic inference (§4.4), reinforcement learning
(§4.6), conditional dependence measures (§4.7), and causal discovery
(§4.8). Estimating the conditional mean embedding is challenging both
theoretically and empirically. We discuss some of the key challenges as
well as some applications.

Section 5 draws connections between the kernel mean embedding
framework and other methods including kernel density estimation, em-
pirical characteristic function, divergence methods and probabilistic
modeling. Section 6 provides suggestions for future research. Lastly,
Section 7 concludes the survey.
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