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ABSTRACT

Many modern methods for prediction leverage nearest neigh-
bor search to find past training examples most similar to
a test example, an idea that dates back in text to at least
the 11th century and has stood the test of time. This mono-
graph aims to explain the success of these methods, both in
theory, for which we cover foundational nonasymptotic sta-
tistical guarantees on nearest-neighbor-based regression and
classification, and in practice, for which we gather promi-
nent methods for approximate nearest neighbor search that
have been essential to scaling prediction systems reliant on
nearest neighbor analysis to handle massive datasets. Fur-
thermore, we discuss connections to learning distances for
use with nearest neighbor methods, including how random
decision trees and ensemble methods learn nearest neighbor
structure, as well as recent developments in crowdsourcing
and graphons.

In terms of theory, our focus is on nonasymptotic statistical
guarantees, which we state in the form of how many training
data and what algorithm parameters ensure that a nearest
neighbor prediction method achieves a user-specified error
tolerance. We begin with the most general of such results

George H. Chen and Devavrat Shah (2018), “Explaining the Success of Nearest
Neighbor Methods in Prediction”, Foundations and TrendsR© in Machine Learning:
Vol. 10, No. 5-6, pp 337–588. DOI: 10.1561/2200000064.
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2

for nearest neighbor and related kernel regression and clas-
sification in general metric spaces. In such settings in which
we assume very little structure, what enables successful pre-
diction is smoothness in the function being estimated for
regression, and a low probability of landing near the deci-
sion boundary for classification. In practice, these conditions
could be difficult to verify empirically for a real dataset. We
then cover recent theoretical guarantees on nearest neighbor
prediction in the three case studies of time series forecasting,
recommending products to people over time, and delineat-
ing human organs in medical images by looking at image
patches. In these case studies, clustering structure, which
is easier to verify in data and more readily interpretable by
practitioners, enables successful prediction.
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1
Introduction

Things that appear similar are likely similar. For example, a baseball
player’s future performance can be predicted by comparing the player
to other similar players (Silver, 2003). When forecasting election results
for a U.S. state, accounting for polling trends at similar states improves
forecast accuracy (Silver, 2008). In image editing, when removing an
object from an image, one of the most successful ways to fill in the deleted
pixels is by completing the missing pixels using image patches similar to
the ones near the missing pixels (Criminisi et al., 2004). These are but a
few examples of how finding similar instances or nearest neighbors help
produce predictions. Of course, this idea is hardly groundbreaking, with
nearest neighbor classification already appearing as an explanation for
visual object recognition in a medieval text Book of Optics by acclaimed
scholar Alhazen in the early 11th century.1 Despite their simplicity and

1A brief history of nearest neighbor classification and its appearance in Alhazen’s
Book of Optics is given by Pelillo (2014). The exact completion date of Optics is
unknown. Al-Khalili (2015) dates the work to be from years 1011 to 1021, coinciding
with much of Alhazen’s decade of imprisonment in Cairo, while Smith (2001) claims
a completion time between 1028 and 1038, closer to Alhazen’s death circa 1040.

3
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4 Introduction

age, nearest neighbor methods remain extremely popular,2 often used
as a critical cog in a larger prediction machine. In fact, the machine can
be biological, as there is now evidence that fruit flies’ neural circuits
execute approximate nearest neighbor in sensing odors as to come up
with an appropriate behavioral response (Dasgupta et al., 2017).

Although nearest neighbor classification dates back a millennium,
analysis for when and why it works did not begin until far more recently,
starting with a pair of unpublished technical reports by Fix and Hodges
(1951; 1952) on asymptotic convergence properties as well as a small
dataset study, followed by the landmark result of Cover and Hart (1967)
that showed that k-nearest neighbors classification achieves an error
rate that is at most twice the best error rate achievable. Decades later,
Cover recollected how his paper with Hart came about:

Early in 1966 when I first began teaching at Stanford, a
student, Peter Hart, walked into my office with an interesting
problem. He said that Charles Cole and he were using a
pattern classification scheme which, for lack of a better
word, they described as the nearest neighbor procedure.
This scheme assigned to an as yet unclassified observation
the classification of the nearest neighbor. Were there any
good theoretical properties of this procedure? (Cover, 1982)

It would take some time for the term “nearest neighbor” to enter com-
mon parlance. However, the nearest neighbor procedure spread quickly
across areas in computer science. Not long after Cover and Hart’s 1967
paper, Donald Knuth’s third volume of The Art of Computer Program-
ming introduced nearest neighbor search as the post office problem
(Knuth, 1973), paving the beginnings of computational geometry. In
various coding theory contexts, maximum likelihood decoding turns out
to mean nearest neighbor classification (Hill, 1986). Fast forwarding to
present time, with the explosion in the availability of data in virtually
all disciplines, architecting database systems that scale to this volume

2Not only was the k-nearest neighbor method named as one of the top 10
algorithms in data mining (Wu et al., 2008), three of the other top 10 methods
(AdaBoost, C4.5, and CART) have nearest neighbor interpretations.
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1.1. Explaining the Popularity of Nearest Neighbor Methods 5

of data and that can efficiently find nearest neighbors has become a
fundamental problem (Papadopoulos and Manolopoulos, 2005). Under-
standing when, why, and how well nearest neighbor prediction works
now demands accounting for computational costs.

1.1 Explaining the Popularity of Nearest Neighbor Methods

That nearest neighbor methods remain popular in practice largely has
to do with their empirical success over the years. However, this expla-
nation is perhaps overly simplistic. We highlight four aspects of nearest
neighbor methods that we believe have been crucial to their contin-
ued popularity. First, the flexibility in choosing what “near” means
in nearest neighbor prediction allows us to readily handle ad-hoc dis-
tances, or to take advantage of existing representation and distance
learning machinery such as deep neural networks or decision-tree-based
ensemble learning approaches. Second, the computational efficiency of
numerous approximate nearest neighbor search procedures enables near-
est neighbor prediction to scale to massive high-dimensional datasets
common in modern applications. Third, nearest neighbor methods are
nonparametric, making few modeling assumptions on data and instead
letting the data more directly drive predictions. Lastly, nearest neighbor
methods are interpretable: they provide evidence for their predictions
by exhibiting the nearest neighbors found.

Flexibility in defining similarity. Specifying what “near” means for a
nearest neighbor method amounts to choosing a “feature space” in which
data are represented (as “feature vectors”), and a distance function to use
within the feature space. For example, a common choice for the feature
space and distance function are Euclidean space and Euclidean distance,
respectively. Of course, far more elaborate choices are possible and, in
practice, often these are chosen in an ad-hoc manner depending on the
application. For example, when working with time series, the distance
function could involve a highly nonlinear time warp (to try to align two
time series as well as possible before computing a simpler distance like
Euclidean distance). In choosing a “good” feature space (i.e., a good
way to represent data), features could be manually “hand-engineered”
depending on the data modality (e.g., text, images, video, audio) or

Full text available at: http://dx.doi.org/10.1561/2200000064



6 Introduction

learned, for example, using deep neural networks (e.g., Goodfellow et
al. 2016, Chapter 15). Meanwhile, sensor fusion is readily possible as
features extracted from multiple sensors (e.g., different data modalities)
can be concatenated to form a large feature vector. Separately, the
distance function itself can be learned, for example using Mahalanobis
distance learning methods (Kulis, 2013) or Siamese networks (Bromley
et al., 1994; Chopra et al., 2005). In fact, decision trees and their use
in ensemble methods such as random forests, AdaBoost, and gradient
boosting can be shown to be weighted nearest neighbor methods that
learn a distance function (we discuss this relationship toward the end of
the monograph in Section 7.1, building on a previous observation made
by Lin and Jeon 2006). Thus, nearest neighbor methods actually mesh
well with a number of existing representation and distance learning
results.

Computational efficiency. Perhaps the aspect of nearest neighbor
methods that has contributed the most to their popularity is their
computational efficiency, which has enabled these methods to scale to
massive datasets (“big data”). Depending on the feature space and
distance function chosen or learned by the practitioner, different fast
approximate nearest neighbor search algorithms are available. These
search algorithms, both for general high-dimensional feature spaces
(e.g., Gionis et al. 1999; Datar et al. 2004; Bawa et al. 2005; Andoni and
Indyk 2008; Ailon and Chazelle 2009; Muja and Lowe 2009; Boytsov
and Naidan 2013; Dasgupta and Sinha 2015; Mathy et al. 2015; Andoni
et al. 2017) and specialized to image patches (e.g., Barnes et al. 2009; Ta
et al. 2014), can rapidly determine which data points are close to each
other while parallelizing across search queries. These methods often
use locality-sensitive hashing (Indyk and Motwani, 1998), which comes
with a theoretical guarantee on approximation accuracy, or randomized
trees (e.g., Bawa et al. 2005; Muja and Lowe 2009; Dasgupta and Sinha
2015; Mathy et al. 2015), which quickly prune search spaces when the
trees are sufficiently balanced. These randomized trees can even be
efficiently constructed for streaming data using an arbitrary distance
function (Mathy et al., 2015).

Full text available at: http://dx.doi.org/10.1561/2200000064



1.1. Explaining the Popularity of Nearest Neighbor Methods 7

Nonparametric. Roughly speaking, nearest neighbor methods be-
ing nonparametric means that they make very few assumptions on
the underlying model for the data. This is a particularly attractive
property since in a growing number of modern applications such as
social networks, recommendation systems, healthcare decision support,
and online education, we wish to analyze big data that we do not
a priori know the structure of. A nonparametric approach sidesteps
the question of explicitly positing or learning the structure underlying
the data. When we posit intricate structure for data, the structure
may stray from reality or otherwise not account for the full palette of
possibilities in what the data look like. When we learn structure, the
computational overhead and amount of data needed may dwarf what is
sufficient for tackling the prediction task at hand. Instead of positing or
learning structure, nonparametric methods let the data more directly
drive predictions. However, being nonparametric doesn’t mean that
nearest neighbor methods have no parameters. We still have to choose
a feature space and distance, and a poor choice of these could make
prediction impossible.

Interpretability. Nearest neighbor methods naturally provide evi-
dence for their decisions by exhibiting the nearest neighbors found in
the data. A practitioner can use the nearest neighbors found to diagnose
whether the feature space and distance function chosen are adequate for
the application of interest. For example, if on validation data, a nearest
neighbor method is making incorrect predictions, we can look at the
nearest neighbors of each validation data point to see why they tend
to have incorrect labels. This often gives clues to the practitioner as to
how to choose a better feature space or distance function. Alternatively,
if the nearest neighbor method is producing accurate predictions, the
nearest neighbors found tell us which training data points are driving
the prediction for any particular validation or test point. This inter-
pretability is vital in applications such as healthcare that demand a
high burden of proof before letting software influence potentially costly
decisions that affect people’s well-being.

Full text available at: http://dx.doi.org/10.1561/2200000064



8 Introduction

1.2 Nearest Neighbor Methods in Theory

Although nearest neighbor methods for prediction have remained popu-
lar, only recently has a thorough theory been developed to characterize
the error rate of these methods in fairly general settings. Roughly a
millennium after the appearance of nearest neighbor classification in
Alhazen’s Book of Optics, Chaudhuri and Dasgupta (2014) established
arguably the most general performance guarantee to date, stating how
many training data and how to choose the number of nearest neighbors
to achieve a user-specified error tolerance, when the data reside in a
metric space.3 This flavor of result is “nonasymptotic” in that it can be
phrased in a way that gives the probability of misclassification for any
training data set size; we do not need an asymptotic assumption that
the amount of training data goes to infinity. Chaudhuri and Dasgupta’s
result subsumes or matches classical results by Fix and Hodges (1951),
Devroye et al. (1994), Cérou and Guyader (2006), and Audibert and
Tsybakov (2007), while providing a perhaps more intuitive explanation
for when nearest neighbor classification works, accounting for the metric
used and the distribution from which the data are sampled. Moreover,
we show that their analysis can be translated to the regression setting,
yielding theoretical guarantees that nearly match the best of existing
regression results.

However, while the general theory for both nearest neighbor classifi-
cation and regression has largely been fleshed out, a major criticism is
that they do not give “user-friendly” error bounds that can readily be
computed from available training data (Kontorovich and Weiss, 2015).
For example, Chaudhuri and Dasgupta’s result for nearest neighbor
classification depends on the probability of landing near the true deci-
sion boundary. Meanwhile, nearest neighbor regression results depend
on smoothness of the function being estimated, usually in terms of
Lipschitz or more generally Hölder continuity parameters. In practice,

3Within the same year a few months after Chaudhuri and Dasgupta’s paper
appeared on arXiv, Gadat et al. posted on arXiv the most general theory to date for
nearest neighbor classification in the more restricted setting of finite dimensional
spaces, which was finally published two years later in Annals of Statistics (Gadat
et al., 2016).
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1.3. The Scope of This Monograph 9

these quantities are typically difficult to estimate for a real dataset.
Unfortunately, this also makes the theory hard to use by practitioners,
who often are interested in understanding how many training data they
should acquire to achieve a certain level of accuracy, preferably in terms
of interpretable application-specific structure rather than, for instance,
Hölder continuity parameters (e.g., in healthcare, each training data
point could correspond to a patient, and the cost of conducting a study
may scale with the number of patients; being able to relate how many
patients should be in the study in terms of specific disease or treatment
quantities that clinicians can estimate would be beneficial).

Rather than providing results in as general a setting as possible,
a recent trilogy of papers instead shows how clustering structure that
is present in data enables enables nearest neighbor prediction to suc-
ceed at time series forecasting, recommending products to people, and
finding human organs in medical images (Chen et al., 2013; Bresler
et al., 2014; Chen et al., 2015). These papers establish nonasymptotic
theoretical guarantees that trade off between the training data size and
the prediction accuracy as a function of the number of clusters and
the amount of noise present. The theory here depends on the clusters
being separated enough so that noise is unlikely to cause too many
points to appear to come from a wrong cluster. Prediction succeeds
when, for a test point, its nearest neighbors found in the training data
are predominantly from the same cluster as the test point. That these
theoretical guarantees are about clustering is appealing because clusters
can often be estimated from data and interpreted by practitioners.

1.3 The Scope of This Monograph

This monograph aims to explain the success of nearest neighbor meth-
ods in prediction, covering both theory and practice. Our exposition
intentionally strives to be as accessible as possible to theoreticians
and practitioners alike. As the number of prediction methods that rely
on nearest neighbor analysis and the amount of literature studying
these methods are both enormous, our coverage is carefully curated and
inexhaustive.

Full text available at: http://dx.doi.org/10.1561/2200000064



10 Introduction

On the theoretical side, our goal is to provide some of the most
general nonasymptotic results and give a flavor of the proof techniques
involved. All key theoretical guarantees we cover are stated in the form
of how many training data and what algorithm parameters ensure that
a nearest neighbor prediction method achieves a user-specified error
tolerance.

On the more practical side, we cover some examples of how nearest
neighbor methods are used as part of a larger prediction system (rec-
ommending products to people in the problem of online collaborative
filtering, and delineating where a human organ is in medical images in
the problem of patch-based image segmentation). We also discuss a vari-
ety of approximate nearest neighbor search and related methods which
have been pivotal to scaling nearest neighbor prediction to massive,
even ever-growing datasets.

Our coverage is as follows, transitioning from theory to practice as
we progress through the monograph:

• Background (Chapter 2).We anchor notation and terminology
used throughout the monograph. Specifically we define the basic
prediction tasks of classification and regression, and then present
the three basic algorithms of k-nearest neighbor, fixed-radius near
neighbor, and kernel regression. These regression methods can in
turn be translated into classification methods.

• Regression (Chapter 3). We present theoretical guarantees
for k-nearest neighbor, fixed-radius near neighbor, and kernel
regression where the data reside in a metric space. The proofs
borrow heavily from the work by Chaudhuri and Dasgupta (2014)
with some influence from the work by Gadat et al. (2016). These
authors actually focus on classification, but proof ideas translate
over to the regression setting.

• Classification (Chapter 4). We show how the theoretical guar-
antees for regression can readily be converted to ones for classi-
fication. However, it turns out that we can obtain classification
guarantees using weaker conditions. We explain how Chaudhuri

Full text available at: http://dx.doi.org/10.1561/2200000064



1.3. The Scope of This Monograph 11

and Dasgupta (2014) achieve this for k-nearest neighbor classifi-
cation and how the basic idea readily generalizes to fixed-radius
near neighbor and kernel classification.

• Prediction Guarantees in Three Contemporary Applica-
tions (Chapter 5).We present theoretical guarantees for nearest
neighbor prediction in time series forecasting (Chen et al., 2013),
online collaborative filtering (Bresler et al., 2014), and patch-based
image segmentation (Chen et al., 2015). Despite these applica-
tions seeming disparate and unrelated, the theoretical guarantees
for them turn out to be quite similar. In all three, clustering
structure enables successful prediction. We remark that the in-
dependence assumptions on training data and where clustering
structure appears are both application-specific.

• Computation (Chapter 6). We provide an overview of effi-
cient data structures for exact and approximate nearest neighbor
search that are used in practice. We focus on motifs these methods
share rather than expounding on theoretical guarantees, which
many of these methods lack. Our starting point is the classical
k-d tree data structure for exact nearest neighbor search (Bent-
ley, 1979), which works extremely well for low-dimensional data
but suffers from the “curse of dimensionality” due to an expo-
nential dependence on dimension when executing a search query.
To handle exact high-dimensional nearest neighbor search, more
recent approaches such as the cover tree data structure exploit
the idea that high-dimensional data often have low-dimensional
structure (Beygelzimer et al., 2006). As such approaches can still
be computationally expensive in practice, we turn toward ap-
proximate nearest neighbor search. We describe locality-sensitive
hashing (LSH) (Indyk and Motwani, 1998), which forms the foun-
dation of many approximate nearest neighbor search methods
that come with theoretical guarantees. We also discuss empirically
successful approaches with partial or no theoretical guarantees:
random projection or partition trees inspired by k-d trees, and the
recently proposed boundary forest.

Full text available at: http://dx.doi.org/10.1561/2200000064



12 Introduction

• Adaptive Nearest Neighbors and Far Away Neighbors
(Chapter 7). We end with remarks on distance learning with a
focus on decision trees and various ensemble methods that turn
out to be nearest neighbor methods, and then turn toward a new
class of nearest neighbor methods that in some sense can take
advantage of far away neighbors.

For readers seeking a more “theory-forward” exposition albeit with-
out coverage of Chaudhuri and Dasgupta’s classification and related
regression results, there are recent books by Devroye et al. (2013) (on
classification) and Biau and Devroye (2015) (on nearest neighbor meth-
ods with sparse discussion on kernel regression and classification), and
earlier books by Györfi et al. (2002) (on nonparametric regression)
and Tsybakov (2009) (on nonparametric estimation). Unlike the other
books mentioned, Tsybakov’s regression coverage emphasizes fixed de-
sign (corresponding to the training feature vectors having a deterministic
structure, such as being evenly spaced in a feature space), which is
beyond the scope of this monograph. As for theory on nearest neighbor
search algorithms, there is a survey by Clarkson (2006) that goes into
substantially more detail than our overview in Chapter 6. However, this
survey does not cover a number of very recent advances in approximate
nearest neighbor search that we discuss.
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