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ABSTRACT

Multi-armed bandits a simple but very powerful framework
for algorithms that make decisions over time under uncer-
tainty. An enormous body of work has accumulated over
the years, covered in several books and surveys. This book
provides a more introductory, textbook-like treatment of
the subject. Each chapter tackles a particular line of work,
providing a self-contained, teachable technical introduction
and a brief review of the further developments.
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Preface

Multi-armed bandits is a rich, multi-disciplinary area studied since
Thompson (1933), with a big surge of activity in the past 10-15 years.
An enormous body of work has accumulated over the years. While
various subsets of this work have been covered in depth in several books
and surveys (Berry and Fristedt, 1985; Cesa-Bianchi and Lugosi, 2006;
Bergemann and Välimäki, 2006; Gittins et al., 2011; Bubeck and Cesa-
Bianchi, 2012), this book provides a more textbook-like treatment of
the subject.

The organizing principles for this book can be summarized as follows.
The work on multi-armed bandits can be partitioned into a dozen or
so lines of work. Each chapter tackles one line of work, providing a
self-contained introduction and pointers for further reading. We favor
fundamental ideas and elementary, teachable proofs over the strongest
possible results. We emphasize accessibility of the material: while ex-
posure to machine learning and probability/statistics would certainly
help, a standard undergraduate course on algorithms, e.g., one based
on Kleinberg and Tardos (2005), should suffice for background. With
the above principles in mind, the choice specific topics and results is
based on the author’s subjective understanding of what is important

2
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Preface 3

and “teachable” (i.e., presentable in a relatively simple manner). Many
important results has been deemed too technical or advanced to be
presented in detail.

This book is based on a graduate course at University of Maryland,
College Park, taught by the author in Fall 2016. Each chapter corre-
sponds to a week of the course, and is based on the lecture notes. Five
chapters were used in a similar course at Columbia University, co-taught
by the author in Fall 2017.

To keep the book manageable, and also more accessible, we chose
not to dwell on the deep connections to online convex optimization.
A modern treatment of this fascinating subject can be found, e.g., in the
recent textbook by Hazan (2015). Likewise, we chose not venture into a
much more general problem space of reinforcement learning, a subject
of many graduate courses and textbooks such as Sutton and Barto
(1998) and Szepesvári (2010). A course based on this book would be
complementary to graduate-level courses on online convex optimization
and reinforcement learning. Also, we do not discuss MDP-based models
of multi-armed bandits and the Gittins algorithm; this direction is
covered in Gittins et al. (2011).

The book is structured as follows. The first four chapters are on IID
rewards, from the basic model to impossibility results to Bayesian priors
to Lipschitz rewards. The next three chapters are on adversarial rewards,
from the full-feedback version to adversarial bandits to extensions with
linear rewards and combinatorially structured actions. Chapter 8 is on
contextual bandits, a middle ground between IID and adversarial bandits
in which the change in reward distributions is completely explained
by observable contexts. The remaining chapters cover connections to
economics, from learning in repeated games to a (generalization of)
dynamic pricing with limited supply to exploration in the presence of
incentives. Each chapter contains a section on bibliographic notes and
further directions. Many of the chapters conclude with some exercises.
Appendix A provides a self-sufficient background on concentration
inequalities.

On a final note, the author encourages colleagues to use this book
in their courses. A brief email regarding which chapters have been used,
along with any feedback, would be appreciated.
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4 Preface

An excellent book on multi-armed bandits, Lattimore and Szepesvári
(2019), will appear later this year. This book is much larger than ours;
it provides a deeper treatment for a number of topics, and omits a
few others. Evolving simultaneously and independently over the past
2-3 years, our books reflect the authors’ somewhat differing tastes and
presentation styles, and, I believe, are complementary to one another.
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Introduction: Scope and Motivation

Multi-armed bandits is a simple but very powerful framework for algo-
rithms that make decisions over time under uncertainty. Let us outline
some of the problems that fall under this framework.

We start with three running examples, concrete albeit very stylized:

News website When a new user arrives, a website site picks an article
header to show, observes whether the user clicks on this header.
The site’s goal is maximize the total number of clicks.

Dynamic pricing A store is selling a digital good, e.g., an app or
a song. When a new customer arrives, the store chooses a price
offered to this customer. The customer buys (or not) and leaves
forever. The store’s goal is to maximize the total profit.

Investment Each morning, you choose one stock to invest into, and
invest $1. In the end of the day, you observe the change in value
for each stock. The goal is to maximize the total wealth.

Multi-armed bandits unifies these examples (and many others). In the
basic version, an algorithm has K possible actions to choose from, a.k.a.
arms, and T rounds. In each round, the algorithm chooses an arm and

5
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6 Introduction: Scope and Motivation

collects a reward for this arm. The reward is drawn independently from
some distribution which is fixed (i.e., depends only on the chosen arm),
but not known to the algorithm. Going back to the running examples:

Example Action Reward
News website an article to display 1 if clicked, 0 otherwise
Dynamic pricing a price to offer p if sale, 0 otherwise
Investment a stock to invest into change in value

In the basic model, an algorithm observes the reward for the chosen
arm after each round, but not for the other arms that could have
been chosen. Therefore, the algorithm typically needs to explore: try
out different arms to acquire new information. Indeed, if an algorithm
always chooses arm 1, how would it know if arm 2 is better? Thus, we
have a tradeoff between exploration and exploitation: making optimal
near-term decisions based on the available information. This tradeoff,
which arises in numerous application scenarios, is essential in multi-
armed bandits. Essentially, the algorithm strives to learn which arms
are best (perhaps approximately so), while not spending too much time
exploring.

The term “multi-armed bandits” comes from a stylized gambling
scenario in which a gambler faces several slot machines, a.k.a. one-armed
bandits, that appear identical, but yield different payoffs.

Multi-dimensional problem space

Multi-armed bandits is a huge problem space, with many “dimensions”
along which the models can be made more expressive and closer to
reality. We discuss some of these modeling dimensions below. Each
dimension gave rise to a prominent line of work, discussed later in this
book.

Auxiliary feedback. What feedback is available to the algorithm
after each round, other than the reward for the chosen arm? Does the
algorithm observe rewards for the other arms? Let’s check our examples:

Full text available at: http://dx.doi.org/10.1561/2200000068



Introduction: Scope and Motivation 7

Example Auxiliary feedback Rewards for any other arms?
News website N/A no (bandit feedback).
Dynamic pricing sale ⇒ sale yes, for some arms,

at any lower price, but not for all arms
no sale ⇒ no sale (partial feedback).
at any higher price

Investment change in value yes, for all arms
for all other stocks (full feedback).

We distinguish three types of feedback: bandit feedback, when the
algorithm observes the reward for the chosen arm, and no other feedback;
full feedback, when the algorithm observes the rewards for all arms that
could have been chosen; and partial feedback, when some information is
revealed, in addition to the reward of the chosen arm, but it does not
always amount to full feedback.

This book mainly focuses on problems with bandit feedback. We
also cover some of the fundamental results on full feedback, which
are essential for developing subsequent bandit results. Partial feedback
sometimes arises in extensions and special cases, and can be used to
improve performance.

Rewards model. Where do the rewards come from? Several alterna-
tives has been studied:

• IID rewards: the reward for each arm is drawn independently
from a fixed distribution that depends on the arm but not on the
round t.

• Adversarial rewards: rewards can be arbitrary, as if they are chosen
by an “adversary” that tries to fool the algorithm.

• Constrained adversary: rewards are chosen by an adversary that
is subject to some constraints, e.g., reward of each arm cannot
change much from one round to another, or the reward of each
arm can change at most a few times, or the total change in rewards
is upper-bounded.

• Stochastic rewards (beyond IID): rewards evolves over time as a
random process, e.g., a random walk.

Full text available at: http://dx.doi.org/10.1561/2200000068



8 Introduction: Scope and Motivation

Contexts. In each round, an algorithm may observe some context
before choosing an action. Such context often comprises the known
properties of the current user, and allows for personalized actions.

Example Context
News website user location and demographics
Dynamic pricing customer’s device, location, demographics
Investment current state of the economy.

The algorithm has a different high-level objective. It is no longer inter-
ested in learning one good arm, since any one arm may be great for
some contexts, and terrible for some others. Instead, it strives to learn
the best policy which maps contexts to arms (while not spending too
much time exploring).

Bayesian priors. Each problem can be studied under a Bayesian
approach, whereby the problem instance comes from a known distri-
bution (called Bayesian prior). One is typically interested in provable
guarantees in expectation over this distribution.

Structured rewards. Rewards may have a known structure, e.g., arms
correspond to points in Rd, and in each round the reward is a linear
(resp., concave or Lipschitz) function of the chosen arm.

Global constraints. The algorithm can be subject to global constraints
that bind across arms and across rounds. For example, in dynamic
pricing there may be a limited inventory of items for sale.

Structured actions. An algorithm may need to make several decisions
at once, e.g., a news website may need to pick a slate of articles, and a
seller may need to choose prices for the entire slate of offerings.

Application domains

Multi-armed bandit problems arise in a variety of application domains.
The original application has been the design of “ethical” medical trials,
so as to attain useful scientific data while minimizing harm to the
patients. Prominent modern applications concern the Web: from tuning
the look and feel of a website, to choosing which content to highlight, to
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Introduction: Scope and Motivation 9

optimizing web search results, to placing ads on webpages. Recommender
systems can use exploration to improve its recommendations for movies,
restaurants, hotels, and so forth. Another cluster of applications pertains
to economics: a seller can optimize its prices and offerings; likewise, a
frequent buyer such as a procurement agency can optimize its bids; an
auctioneer can adjust its auction over time; a crowdsourcing platform
can improve the assignment of tasks, workers and prices. In computer
systems, one can experiment and learn, rather than rely on a rigid
design, so as to optimize datacenters and networking protocols. Finally,
one can teach a robot to better perform its tasks.

Application Action (e.g.) Reward (e.g.)
medical trials which drug to prescribe healthy/not.
web design font color or page layout #clicks.
web content items/articles to emphasize #clicks.
web search search results given a query #happy users.
advertisement which ad to display ad revenue.
recommender which movie to watch #recommendations
systems followed.

sales which products to offer revenue.
at which prices

procurement which items to buy #items
at which prices procured.

auctions which reserve price to use revenue
crowdsourcing which tasks to give to which

workers, and at which prices
#completed tasks.

datacenters server to route the job to completion time.
Internet which TCP settings to use connection quality.
smart radios radio frequency to use #transmitted

messages.
robot control a “strategy” for a given task completion time.

Full text available at: http://dx.doi.org/10.1561/2200000068



10 Introduction: Scope and Motivation

(Brief) bibliographic notes

Medical trials has a major motivation for introducing multi-armed
bandits and exploration-exploitation tradeoff (Thompson, 1933; Git-
tins, 1979). Bandit-like designs for medical trials belong to the realm
of adaptive medical trials (Chow and Chang, 2008), which can also
include other “adaptive” features such as early stopping, sample size
re-estimation, and changing the dosage.

Applications to the Web trace back to Pandey et al. (2007a), Pandey
et al. (2007b), and Langford and Zhang (2007) for ad placement, Li
et al. (2010) and Li et al. (2011) for news optimization, and Radlinski
et al. (2008) for web search. A survey of the more recent literature in
this direction is beyond our scope.

Bandit algorithms tailored to recommendation systems are studied,
e.g., in Bresler et al. (2014), Li et al. (2016), and Bresler et al. (2016).

Applications to problems in economics comprise many aspects: op-
timizing seller’s prices, a.k.a. dynamic pricing (Boer, 2015, a survey);
optimizing seller’s product offerings, a.k.a. dynamic assortment (e.g.,
Sauré and Zeevi, 2013; Agrawal et al., 2016a); optimizing buyers prices,
a.k.a. dynamic procurement (e.g., Badanidiyuru et al., 2012; Badani-
diyuru et al., 2018); design of auctions (e.g., Bergemann and Said,
2011; Cesa-Bianchi et al., 2013; Babaioff et al., 2015b); design of incen-
tives and information structures (Slivkins, 2017, a survey); design of
crowdsourcing platforms (Slivkins and Vaughan, 2013, a survey).

A growing line of work on applications to Internet routing and
congestion control includes Dong et al. (2015), Dong et al. (2018), Jiang
et al. (2016), and Jiang et al. (2017). Early theoretical work on bandits
with the same motivation is in Awerbuch and Kleinberg (2008) and
Awerbuch et al. (2005). Bandit problems directly motivated by radio
networks have been studied starting from Lai et al. (2008), Liu and
Zhao (2010), and Anandkumar et al. (2011).
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