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ABSTRACT

A core problem in statistics and probabilistic machine learn-
ing is to compute probability distributions and expectations.
This is the fundamental problem of Bayesian statistics and
machine learning, which frames all inference as expectations
with respect to the posterior distribution. The key challenge is
to approximate these intractable expectations. In this tutorial,
we review sequential Monte Carlo (SMC), a random-sampling-
based class of methods for approximate inference. First, we
explain the basics of SMC, discuss practical issues, and review
theoretical results. We then examine two of the main user
design choices: the proposal distributions and the so called in-
termediate target distributions. We review recent results on how
variational inference and amortization can be used to learn
efficient proposals and target distributions. Next, we discuss
the SMC estimate of the normalizing constant, how this can be
used for pseudo-marginal inference and inference evaluation.
Throughout the tutorial we illustrate the use of SMC on various
models commonly used in machine learning, such as stochastic
recurrent neural networks, probabilistic graphical models, and
probabilistic programs.

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön (2019), Elements of Sequential
Monte Carlo, Foundations and Trends R© in Machine Learning: Vol. 12, No. 3, pp 187–306.
DOI: 10.1561/2200000074.
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1
Introduction

A key strategy in machine learning is to break down a problem into smaller
and more manageable parts, then process data or unknown variables re-
cursively. Well known examples of this are message passing algorithms for
graphical models and annealing for optimization or sampling. Sequential
Monte Carlo (SMC) is a class of methods that are tailored to solved statisti-
cal inference problems recursively. These methods have mostly received
attention in the signal processing and statistics communities. With well
over two decades of research in SMC, they have enabled inference in in-
creasingly complex and challenging models. Recently, there has been an
emergent interest in this class of algorithms from the machine learning
community. We have seen applications to probabilistic programming (Wood
et al., 2014), variational inference (VI) (Maddison et al., 2017; Naesseth
et al., 2018; Le et al., 2018), inference evaluation (Grosse et al., 2015;
Cusumano-Towner and Mansinghka, 2017), probabilistic graphical models
(PGMs) (Ihler and McAllester, 2009; Naesseth et al., 2014; Paige and Wood,
2016), Bayesian nonparametrics (Fearnhead, 2004) and many other areas.

We provide a unifying view of the SMC methods that have been devel-
oped since their conception in the early 1990s (Gordon et al., 1993; Stewart

2
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1.1. Historical Background 3

and McCarty, 1992; Kitagawa, 1993). In this introduction we provide rele-
vant background material, introduce a running example, and discuss the
use of code snippets throughout the tutorial.

1.1 Historical Background

SMC methods are generic tools for performing approximate (statistical) in-
ference, predominantly Bayesian inference. They use a weighted sample set
to iteratively approximate the posterior distribution of a probabilistic model.
Ever since the dawn of Monte Carlo methods (see e.g. Metropolis and Ulam
(1949) for an early discussion), random sample-based approximations have
been recognized as powerful tools for inference in complex probabilistic
models. Parallel to the development of Markov chain Monte Carlo (MCMC)
methods (Metropolis et al., 1953; Hastings, 1970), sequential importance
sampling (SIS) (Handschin and Mayne, 1969) and sampling/importance
resampling (Rubin, 1987) laid the foundations for what would one day
become SMC.

SMC methods where initially known as particle filters (Gordon et al.,
1993; Stewart and McCarty, 1992; Kitagawa, 1993). Particle filters where
conceived as algorithms for online inference in nonlinear state space models
(SSMs) (Cappé et al., 2005). Since then there has been a flurry of work
applying SMC and particle filters to perform approximate inference in ever
more complex models. While research in SMC initially focused on SSMs, we
will see that SMC can be a powerful tool in a much broader setting.

1.2 Probabilistic Models and Target Distributions

As mentioned above, SMC methods were originally developed as an approx-
imate solution to the so called filtering problem, which amounts to online
inference in dynamical models. Several overview and tutorial articles focus
on particle filters, i.e. the SMC algorithms specifically tailored to solve the
online filtering problem (Arulampalam et al., 2002; Doucet and Johansen,
2009; Fearnhead and Künsch, 2018). In this tutorial we will take a different
view and explain how SMC can be used to solve more general “offline”
problems. We shall see how this viewpoint opens up for many interesting
applications of SMC in machine learning that do not fall in the traditional

Full text available at: http://dx.doi.org/10.1561/2200000074



4 Introduction

filtering setup, and furthermore how it gives rise to new and interesting
design choices. For complementary review and tutorial articles that treat a
similar topic see also Del Moral et al. (2006a) and Doucet and Lee (2018).

We consider a generic probabilistic model given by a joint probability
distribution function (PDF) of latent variables x and observed data y,

p(x,y). (1.1)

We focus on Bayesian inference, where the key object is the posterior
distribution

p(x |y) =
p(x,y)
p(y)

, (1.2)

where p(y) is known as the marginal likelihood.
The target distributions are a sequence of probability distributions that

we recursively approximate using SMC. We define each target distribution
γt(x1:t) in the sequence as a joint PDF of latent variables x1:t = (x1, . . . , x t),
where t = 1, . . . , T . The PDF is denoted by

γt(x1:t) :=
1
Zt
eγt(x1:t), t = 1, . . . , T, (1.3)

where eγt is a positive integrable function and Zt is the normalization
constant, ensuring that γt is indeed a PDF.

We connect the target distributions to the probabilistic model through
a requirement on the final target distribution γT (x1:T ). We enforce the
condition that γT (x1:T ) is either equivalent to the posterior distribution, or
that it contains the posterior distribution as a marginal distribution. The
intermediate target distributions, i.e. γt(x1:t) for t < T , are useful only
insofar they help us approximate the final target γT (x1:T ). This approach
is distinct from most previous tutorials on particle filters and SMC that
traditionally focus on the intermediate targets, i.e. the filtering distributions.
We stress that it is not necessarily the case that x1:T (the latent variables of
the target distribution) is equal to x (the latent variables of the probabilistic
model of interest), as the former can include additional auxiliary variables.

Below we introduce a few examples of probabilistic models and some
straightforward choices of target distributions. We introduce and illustrate
our running example which will be used throughout. We will return to the
issue of choosing the sequence of intermediate targets in Section 3.2.

Full text available at: http://dx.doi.org/10.1561/2200000074



1.2. Probabilistic Models and Target Distributions 5

State Space Models The state space model (or hidden Markov model)
is a type of probabilistic models where the latent variables and data satisfy
a Markov property. For this model we typically have x = x1:T . Often the
measured data can also be split into a sequence of the same length (T) as
the latent variables, i.e. y= y1:T . The model is defined by a transition PDF

f and an observation PDF g,

x t | x t−1 ∼ f (· | x t−1), (1.4a)

yt | x t ∼ g(· | x t). (1.4b)

The joint PDF is

p(x,y) = p(x1)g(y1 | x1)
T
∏

t=2

f (x t | x t−1)g(yt | x t), (1.5)

where p(x1) is the prior on the initial state x1. This class of models is
especially common for data that has an inherent temporal structure such
as in the field of signal processing. A common choice is to let the target
distributions follow the same sequential structure as in Eq. (1.5):

eγt(x1:t) = p(x1)g(y1 | x1)
t
∏

k=2

f (xk | xk−1)g(yk | xk), (1.6)

which means that the final normalized target distribution satisfies γT (x1:T )
= p(x |y) as required. This is the model class and target distributions which
are studied in the classical filtering setup.

Non-Markovian Latent Variable Models The non-Markovian latent
variable models (LVMs) are characterized by either no, or higher order,
Markov structure between the latent variables x and/or data y. This can
be seen as a non-trivial extension of the SSM, see Eq. (1.4), which has
a Markov structure. Also for this class of models it is common to have
x= x1:T and y= y1:T .

Unlike the SSM, the non-Markovian LVM in its most general setting
requires access to all previous latent variables x1:t−1 to generate x t , yt

x t | x1:t−1 ∼ ft(· | x1:t−1), (1.7a)

yt | x1:t ∼ gt(· | x1:t), (1.7b)

Full text available at: http://dx.doi.org/10.1561/2200000074



6 Introduction

where we again refer to ft and gt as the transition PDF and observation
PDF, respectively. The joint PDF is given by

p(x,y) = p(x1)g(y1 | x1)
T
∏

t=2

ft(x t | x1:t−1)gt(yt | x1:t), (1.8)

where p(x1) is again the prior on x1. A typical target distribution is given
by

eγt(x1:t) = eγt−1(x1:t−1) ft(x t | x1:t−1)gt(yt | x1:t), t > 1, (1.9)

with eγ1(x1) = p(x1)g1(y1 | x1). Another option is

eγ1(x1) = p(x1),

eγt(x1:t) = eγt−1(x1:t−1) ft(x t | x1:t−1), 1< t < T,

eγT (x1:T ) = eγT−1(x1:T−1) fT (xT | x1:T−1)
T
∏

t=1

gt(yt | x1:t).

For both these sequences of target distributions the final iteration T is the
posterior distribution, i.e. γT (x1:T ) = p(x1:T | y1:T ) = p(x |y). However, the
former one will often lead to more accurate inferences. This is because
we introduce information from the data at an earlier stage in the SMC

algorithm.
Throughout the monograph we will exemplify the different methods

using a Gaussian special case of Eq. (1.7), see Example 1.1. We let the
prior on x1:t , defined by the transition PDFs f1, . . . ft , be Markovian and
introduce the non-Markov property instead through the observation PDFs
g1, . . . , gt .

Example 1.1 (Non-Markovian Gaussian Sequence Model). As our run-
ning example for illustration purposes we use a non-Markovian Gaussian
sequence model. It is

x t | x1:t−1 ∼ ft(· | x t−1), yt | x1:t ∼ gt(· | x1:t), (1.10)

with observed variables yt (data), and where

ft(x t | x t−1) =N (x t |φx t−1, q) ,

gt(yt | x1:t) =N

�

yt |
t
∑

k=1

β t−k xk, r

�

,

Full text available at: http://dx.doi.org/10.1561/2200000074
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Figure 1.1: Five sample paths of y1:T from our running example for T = 100.

where N (x |µ,Σ) denotes a Gaussian distribution on x with mean µ and
(co)variance Σ. We let the prior at t = 1 be p(x1) =N (x1 |0, q). Artificial
data was generated using (φ, q,β , r) = (0.9,1,0.5,1). The distribution
of interest is the posterior distribution p(x1:T | y1:T ). We illustrate a few
sample paths of y1:T in Fig. 1.1 for T = 100.

We can adjust the strength of the dependence on previous latent vari-
ables in the observations, yt , through the parameter β ∈ [0,1]. If we set
β = 0 we obtain a linear Gaussian SSM, since the data depends only on the
most recent latent x t . On the other hand if we let β = 1, this signifies that
xk for k < t has equally strong effect on yt as does x t .

Another example of a non-Markovian LVM often encountered in machine
learning is the stochastic recurrent neural network (RNN) (Chung et al.,
2015; Bayer and Osendorfer, 2014; Fraccaro et al., 2016; Maddison et al.,
2017; Naesseth et al., 2018). We define the stochastic RNN below and will
return to it again in Chapter 3.

Example 1.2 (Stochastic Recurrent Neural Network). A stochastic RNN is a
non-Markovian LVM where the parameters of the transition and observation
models are defined by RNNs. A common example is using the conditional
Gaussian distribution to define the transition PDF

ft(x t | x1:t−1) =N (x t |µt(x1:t−1),Σt(x1:t−1)) ,

where the functions µt(·),Σt(·) are defined by RNNs.

Full text available at: http://dx.doi.org/10.1561/2200000074



8 Introduction

Conditionally independent models A common model in probabilistic
machine learning is to assume that the datapoints yk in the dataset y =
{yk}Kk=1 are conditionally independent given the latent x. This means that
the joint PDF is given by

p(x,y) = p(x)
K
∏

k=1

gk(yk |x)

︸ ︷︷ ︸

p(y |x)

, (1.11)

where p(y |x) is the likelihood. For this class of models it might not be
immediately apparent that we can define a useful sequence of target distri-
butions on latent variables x1:t . There is no obvious sequence structure as
in the SSM or the non-Markovian LVM. However, as we shall see, we can
make use of auxiliary variables to design target distributions that can help
with inference.

We will discuss two approaches to design the sequence of target distri-
butions: using data tempering and likelihood tempering, respectively. Both
of these will make use of an auxiliary variable technique, where each x t is
a random variable on the same space as x.

Data tempering: Using data tempering we add the data yk to the target
distribution one by one. In this case the data index k coincides with the
target index t. We define the target distribution

eγt(x1:t) = p(x t)
t
∏

k=1

gk(yk | x t) ·
t−1
∏

k=1

sk(xk | xk+1), (1.12)

where the distributions sk(xk | xk+1) are a design choice, known as backward
kernels (Chopin, 2002; Del Moral et al., 2006b). With this choice, we
have that the marginal distribution of xT at the final iteration is exactly
the posterior distribution, i.e. γT (xT ) = p(x |y). In fact, at each step we
have that the marginal target distribution is a partial posterior γt(x t) =
p(x | y1:t).

Likelihood tempering: With likelihood tempering, instead of adding the
data one by one, we change the likelihood p(y |x) through a sequence of
positive variables. We define the target distribution

eγt(x1:t) = p(x t)p(y | x t)
τt ·

t−1
∏

k=1

sk(xk | xk+1), (1.13)
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1.3. Applications 9

where 0 = τ1 < . . .< τT = 1, and again make use of user chosen backward
kernels sk(xk | xk+1) (Chopin, 2002; Del Moral et al., 2006b). In this setting
all data is considered at each iteration. Since τT = 1, we have that the final
marginal target distribution is again equal to the posterior γT (xT ) = p(x |y).

Applying SMC methods to tempered (and similar) target distributions
has been studied by e.g. Chopin (2002) and Del Moral et al. (2006b). If
the proposal qk+1(xk+1 | xk) is a Markov kernel with stationary distribution
γk+1(xk+1), then a commonly used backward kernel is sk(xk | xk+1) =
γk+1(xk)qk+1(xk+1 | xk)

γk+1(xk+1)
. We refer to the works of Chopin (2002) and Del Moral

et al. (2006b) for a thorough discussion on the choice of backward kernels
sk(xk | xk+1). Another well known example is annealed importance sampling
by Neal (2001), which uses the backward kernel example above to define
the target distributions, but relies on SIS instead of SMC for inference.

Models and Targets We have seen several probabilistic models with
examples of corresponding target distributions. While not limited to these,
this illustrates the wide range of the applicability of SMC. In fact, as long
as we can design a sequence of target distributions such that γT coincides
with the distribution of interest, we can leverage SMC for inference.

1.3 Applications

Sequential Monte Carlo and importance sampling methods have already
seen a plethora of applications to machine learning and statistical inference
problems. Before we turn to the fundamentals of the various algorithms
it can be helpful to understand some of these applications. We present
and discuss a few select examples of applications of SMC and importance
sampling (IS) to probabilistic graphical models, Bayesian nonparametric
models, probabilistic programming, and inference evaluation.

Probabilistic Graphical Models Probabilistic graphical models (PGM;
see e.g. Koller et al. (2009) and Wainwright and Jordan (2008)) are proba-
bilistic models where the conditional independencies in the joint PDF are
described by edges in a graph. The graph structure allows for easy and
strong control on the type of prior information that the user can express.

Full text available at: http://dx.doi.org/10.1561/2200000074



10 Introduction

The main limitation of the PGM is that exact inference is often intractable
and approximate inference is challenging.

The PGM is a probabilistic model where the PDF factorizes according to
an underlying graph described by a set of cliques C ∈ C , i.e. fully connected
subsets of the vertices V ∈ V where V contains all individual components
of x and y. The undirected graphical model can be denoted by

p(x,y) =
1
Z

∏

C∈C
ψC(xC), (1.14)

where xC includes all elements of x and y in the clique C , and Z is a
normalization constant ensuring that the right hand side is a proper PDF.

SMC methods have recently been successfully applied to the task of
inference in general PGMs, see e.g. MacEachern et al. (1999), Chopin
(2002), Del Moral et al. (2006b), Ihler and McAllester (2009), Naesseth
et al. (2014), Paige and Wood (2016), Lindsten et al. (2017), and Lindsten
et al. (2018) for representative examples.

Probabilistic Programming Probabilistic programming languages are
programming languages designed to describe probabilistic models and to
automate the process of doing inference in those models. We can think
of probabilistic programming as that of automating statistical inference,
particularly Bayesian inference, using tools from computer science and
computational statistics. Developing a syntax and semantics to describe and
denote probabilistic models and the inference problems we are interested
in solving is key to the probabilistic programming language. To define what
separates a probabilistic programming language from a standard program-
ming language we quote Gordon et al. (2014): “Probabilistic programs
are usual functional or imperative programs with two added constructs:
(1) the ability to draw values at random from distributions, and (2) the
ability to condition values of variables in a program via observations.” This
aligns very well with the notion of Bayesian inference through the posterior
distribution Eq. (1.2); through the syntax of the language we define x to be
the random values we sample and y our observations that we condition on
through the use of Bayes rule. The probabilistic program then essentially
defines our joint probabilistic model p(x,y).
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One of the main challenges of probabilistic programming is to develop
algorithms that are general enough to enable inference for any model (prob-
abilistic program) that we could conceivably write down using the language.
Recently Wood et al. (2014) have shown that SMC-based approaches can
be used as inference back-ends in probabilistic programs.

For a more thorough treatment of probabilistic programming we refer
the interested reader to the recent tutorial by Meent et al. (2018) and the
survey by Gordon et al. (2014).

Bayesian nonparametric models Nonparametric models are character-
ized by having a complexity which grows with the amount of available
data. In a Bayesian context this implies that the usual latent random vari-
ables (i.e., parameters) of the model are replaced by latent stochastic
processes. Examples include Gaussian processes, Dirichlet processes, and
Beta processes; see e.g. Hjort et al. (2010) for a general introduction.

Sampling from these latent stochastic processes, conditionally on ob-
served data, can be done using SMC. To give a concrete example, consider
the Dirichlet process mixture model, which is a clustering model that can
handle an unknown and conceptually infinite number of mixture compo-
nents. Let yt , t = 1,2, . . . be a stream of data. Let x t , t = 1,2, . . . be a
sequence of latent integer-valued random variables, such that x t is the in-
dex of the mixture component to which datapoint yt belongs. A generative
representation of the mixture assignment variables is given by

p(x t+1 = j | x1:t) =

¨ nt, j
t+α for j = 1, . . . , Jt ,
α

t+α for j = Jt + 1,

where Jt := max{x1:t} is the number of distinct mixture components
represented by the first t datapoints, and nt, j :=

∑t
k=1 I{xk = j} is the

number of datapoints among y1:t that belong to the jth component.
The model is completed by specifying the distribution of the data,

conditionally on the mixture assignment variables:

θk ∼ F(θ ), k = 1,2, . . .

p(yt | x t , {θk}k≥1) = G(yt | θx t
),

where G( · | θ ) is an emission probability distribution parameterized by θ
and F(θ ) is a prior distribution over the mixture parameters θ .
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Note that the mixture assignment variables x t , t = 1,2, . . . evolve
according to a latent stochastic process. Solving the clustering problem
amounts to computing the posterior distribution of this stochastic process,
conditionally on the observed data. One way to address this problem is to
use SMC; see Fearnhead (2004) for an efficient implementation tailored to
the discrete nature of the problem.

Inference Evaluation An important problem when performing approxi-
mate Bayesian inference is to figure out when our approximation is “good
enough”? Is it possible to give practical guarantees on the approximation
we obtain? We need ways to evaluate how accurate our approximate infer-
ence algorithms are when compared to the true target distribution that we
are trying to approximate. We will refer to the process of evaluating and
validating approximate inference methods as inference evaluation.

Inference evaluation is mainly concerned with measuring how close
our approximation is to the true object we are trying to estimate, often a
posterior distribution. For simulated data, Grosse et al. (2015) and Grosse
et al. (2016) have shown that we can make use of SMC and IS to bound the
symmetrized Kullback-Leibler (KL) divergence between our approximate
posterior and the true posterior. In another related work Cusumano-Towner
and Mansinghka (2017) have shown that SMC-based methods show promise
in estimating the symmetric KL divergence between the approximate poste-
rior and a gold standard algorithm.

1.4 Example Code

We will be making use of inline Python code snippets throughout the
manuscript to illustrate the algorithms and methods. Below we summarize
the modules that are necessary to import to run the code snippets:

1 import numpy as np
2 import numpy . random as npr
3 from scipy .misc import logsumexp
4 from scipy .stats import norm

Example Code 1.1: Necessary imports for Python code examples.
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1.5 Outline

The remainder of this tutorial is organized as follows. In Chapter 2, we first
introduce IS, a foundational building block for SMC. Then, we discuss the
limitations of IS and how SMC resolves these. Finally, the section concludes
with discussing some practical issues and theoretical results relevant to
SMC methods.

Chapter 3 is focused on the two key design choices of SMC: the proposal
and target distributions. Initially we focus on the proposal, discussing
various ways of adapting and learning good proposals that will make the
approximation more accurate. Then we discuss the sequence of target
distributions; how we can learn intermediate distributions that help us
when we try to approximate the posterior.

Chapter 4 focuses on pseudo marginal (PM) methods and other SMC

methods that rely on a concept known as proper weights. First, we provide
a simple and straightforward proof of the unbiasedness property of the
SMC normalization constant estimate. Then, we describe and illustrate the
combination of MCMC and SMC methods through PM algorithms. We move
on to detail properly weighted SMC, a concept that unites and extends
the random weights and nested SMC algorithms. Finally, we conclude the
chapter by considering a few approaches for distributed and parallel SMC.

In Chapter 5 we introduce conditional sequential Monte Carlo (CSMC),
and related methods for simulating from and computing expectations with
respect to a target distribution. First, we introduce the basic CSMC algorithm
and provide a straightforward proof of the unbiasedness of the inverse
normalization constant estimate. Then, we show how SMC and CSMC can
be combined to leverage multi-core and parallel computing architectures
in the interacting particle Markov chain Monte Carlo (IPMCMC) algorithm.
Finally, we discuss recent applications of CSMC for evaluating approximate
inference methods. The tutorial concludes with a discussion and outlook
in Chapter 6.

Full text available at: http://dx.doi.org/10.1561/2200000074



References

Aksan, E. and O. Hilliges (2019). “STCN: Stochastic temporal convolutional
networks”. In: International Conference on Learning Representations
(ICLR). New Orleans, LA, USA.

Anderson, B. and J. Moore (1979). Optimal Filtering. Englewood Cliffs, NJ:
Prentice-Hall.

Andrieu, C., A. Doucet, and R. Holenstein (2010). “Particle Markov chain
Monte Carlo methods”. Journal of the Royal Statistical Society: Series B
(Statistical Methodology). 72(3): 269–342.

Andrieu, C. and G. O. Roberts (2009). “The pseudo-marginal approach for
efficient Monte Carlo computations”. The Annals of Statistics. 37(2):
697–725.

Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp (2002). “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking”.
IEEE Transactions on signal processing. 50(2): 174–188.

Bai, S., J. Z. Kolter, and V. Koltun (2018). “An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence Modeling”.
arXiv:1803.01271.

Bayer, J. and C. Osendorfer (2014). “Learning Stochastic Recurrent Net-
works”. arXiv:1411.7610.

111

Full text available at: http://dx.doi.org/10.1561/2200000074



112 References

Bengtsson, T., P. Bickel, and B. Li (2008). “Curse-of-dimensionality revisited:
Collapse of the particle filter in very large scale systems”. In: Probability
and Statistics: Essays in Honor of David A. Freedman. Ed. by D. Nolan and
T. Speed. Vol. Volume 2. Collections. Institute of Mathematical Statistics.
316–334.

Beskos, A., D. Crisan, and A. Jasra (2014). “On the stability of sequen-
tial Monte Carlo methods in high dimensions”. The Annals of Applied
Probability. 24(4): 1396–1445.

Beskos, A., O. Papaspiliopoulos, G. O. Roberts, and P. Fearnhead (2006).
“Exact and computationally efficient likelihood-based estimation for
discretely observed diffusion processes (with discussion)”. Journal of
the Royal Statistical Society: Series B (Statistical Methodology). 68(3):
333–382.

Bickel, P., B. Li, and T. Bengtsson (2008). “Sharp failure rates for the
bootstrap particle filter in high dimensions”. In: Pushing the Limits of
Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh.
Ed. by B. Clarke and S. Ghosal. Vol. Volume 3. Collections. Institute of
Mathematical Statistics. 318–329.

Blei, D. M., A. Kucukelbir, and J. D. McAuliffe (2017). “Variational inference:
A review for statisticians”. Journal of the American Statistical Association.
112(518): 859–877.

Briggs, J., M. Dowd, and R. Meyer (2013). “Data assimilation for large-scale
spatio-temporal systems using a location particle smoother”. Environ-
metrics. 24(2): 81–97.

Buchholz, A., N. Chopin, and P. E. Jacob (2018). “Adaptive Tuning Of Hamil-
tonian Monte Carlo Within Sequential Monte Carlo”. arXiv:1808.07730.

Cappé, O., E. Moulines, and T. Rydén (2005). Inference in Hidden Markov
Models. Springer-Verlag New York.

Carpenter, J., P. Clifford, and P. Fearnhead (1999). “Improved particle filter
for nonlinear problems”. IEE Proceedings-Radar, Sonar and Navigation.
146(1): 2–7.

Chopin, N. (2002). “A sequential particle filter method for static models”.
Biometrika. 89(3): 539–552.

Chopin, N. (2004). “Central limit theorem for sequential Monte Carlo meth-
ods and its application to Bayesian inference”. The Annals of Statistics.
32: 2385–2411.

Full text available at: http://dx.doi.org/10.1561/2200000074



References 113

Chopin, N., P. E. Jacob, and O. Papaspiliopoulos (2013). “SMC2: an efficient
algorithm for sequential analysis of state-space models”. Journal of
the Royal Statistical Society: Series B (Statistical Methodology). 75(3):
397–426.

Chung, J., K. Kastner, L. Dinh, K. Goel, A. Courville, and Y. Bengio (2015).
“A Recurrent Latent Variable Model for Sequential Data”. In: Advances
in Neural Information Processing Systems.

Cornebise, J., É. Moulines, and J. Olsson (2008). “Adaptive methods for
sequential importance sampling with application to state space models”.
Statistics and Computing. 18(4): 461–480.

Cusumano-Towner, M. F. and V. K. Mansinghka (2017). “AIDE: An algorithm
for measuring the accuracy of probabilistic inference algorithms”. In:
Advances in Neural Information Processing Systems. 3004–3014.

Dahlin, J., F. Lindsten, J. Kronander, and T. B. Schön (2015). “Acceler-
ating pseudo-marginal Metropolis-Hastings by correlating auxiliary
variables”. arXiv:1511.05483.

Del Moral, P., A. Doucet, and A. Jasra (2006a). “Sequential Monte Carlo
methods for Bayesian Computation”. Bayesian Statistics 8.

Del Moral, P. (2004). Feynman-Kac formulae: genealogical and interacting
particle systems with applications. Springer Verlag.

Del Moral, P., A. Doucet, and A. Jasra (2006b). “Sequential Monte Carlo
samplers”. Journal of the Royal Statistical Society: Series B (Statistical
Methodology). 68(3): 411–436.

Del Moral, P. and A. Guionnet (2001). “On the stability of interacting
processes with applications to filtering and genetic algorithms”. In:
Annales de l’IHP Probabilités et statistiques. Vol. 37. No. 2. 155–194.

Deligiannidis, G., A. Doucet, and M. K. Pitt (2018). “The correlated pseudo-
marginal method”. Journal of the Royal Statistical Society: Series B
(Statistical Methodology). 80(5): 839–870.
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