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ABSTRACT
The area of Data Analytics on graphs deals with information
processing of data acquired on irregular but structured graph
domains. The focus of Part I of this monograph has been
on both the fundamental and higher-order graph properties,
graph topologies, and spectral representations of graphs.
Part I also establishes rigorous frameworks for vertex clus-
tering and graph segmentation, and illustrates the power of
graphs in various data association tasks. Part II embarks
on these concepts to address the algorithmic and practi-
cal issues related to data/signal processing on graphs, with
the focus on the analysis and estimation of both determin-
istic and random data on graphs. The fundamental ideas
related to graph signals are introduced through a simple and
intuitive, yet general enough case study of multisensor tem-
perature field estimation. The concept of systems on graph

Ljubiša Stanković, Danilo Mandic, Miloš Daković, Miloš Brajović, Bruno
Scalzo, Shengxi Li and Anthony G. Constantinides (2020), “Data Analytics on
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is defined using graph signal shift operators, which gener-
alize the corresponding principles from traditional learning
systems. At the core of the spectral domain representation
of graph signals and systems is the Graph Fourier Transform
(GFT), defined based on the eigendecomposition of both the
adjacency matrix and the graph Laplacian. Spectral domain
representations are then used as the basis to introduce graph
signal filtering concepts and address their design, including
Chebyshev series polynomial approximation. Ideas related to
the sampling of graph signals, and in particular the challeng-
ing topic of data dimensionality reduction through graph
subsampling, are presented and further linked with compres-
sive sensing. The principles of time-varying signals on graphs
and basic definitions related to random graph signals are
next reviewed. Localized graph signal analysis in the joint
vertex-spectral domain is referred to as the vertex-frequency
analysis, since it can be considered as an extension of clas-
sical time-frequency analysis to the graph serving as signal
domain. Important aspects of the local graph Fourier trans-
form (LGFT) are covered, together with its various forms
including the graph spectral and vertex domain windows
and the inversion conditions and relations. A link between
the LGFT with a varying spectral window and the spec-
tral graph wavelet transform (SGWT) is also established.
Realizations of the LGFT and SGWT using polynomial
(Chebyshev) approximations of the spectral functions are
further considered and supported by examples. Finally, en-
ergy versions of the vertex-frequency representations are
introduced, along with their relations with classical time-
frequency analysis, including a vertex-frequency distribution
that can satisfy the marginal properties. The material is
supported by illustrative examples.

Keywords: graph theory; random data on graphs; big data on graphs;
signal processing on graphs; machine learning on graphs; graph
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topology learning; systems on graphs; vertex-frequency estimation;
graph neural networks; graphs and tensors.
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1
Introduction

Graphs are structures, often irregular, constructed in a way to represent
the observed data and to account, in a natural way, the specific interre-
lationships between the data sources. However, traditional approaches
have been established outside Machine Learning and Signal Processing,
with which largely focus on analyzing the underlying graphs rather than
dealing with signals on graphs. Moreover, given the rapidly increasing
availability of multisensor and multinode measurements, likely recorded
on irregular or ad-hoc grids, it would be extremely advantageous to
analyze such structured data as “signals on graphs” and thus benefit
from the ability of graphs to account for spatial sensing awareness, phys-
ical intuition and sensor importance, together with the inherent “local
versus global” sensor association. The aim of Part II of this monograph
is therefore to establish a common language between graph signals which
are observed on irregular signal domains, and some of the fundamental
paradigms in Learning Systems, Signal Processing and Data Analytics,
such as spectral analysis, system transfer function, digital filter design,
parameter estimation, and optimal denoising.

In classical Data Analytics and Signal Processing, the signal domain
is determined by equidistant time instants or by a set of spatial sensing

4
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points on a uniform grid. However, increasingly the actual data sensing
domain may not even be related to the physical dimensions of time
and/or space, and it typically does exhibit various forms of irregularity,
as, for example, in social or web-related networks, where the sensing
points and their connectivity pertain to specific objects/nodes and ad-
hoc topology of their links. It should be noted that even for the data
acquired on well defined time and space domains, the introduction of
new relations between the signal samples, through graphs, may yield
new insights into the analysis and provide enhanced data processing (for
example, based on local similarity, through neighborhoods). We therefore
set out to demonstrate that the advantage of graphs over classical data
domains is that graphs account naturally and comprehensively for
irregular data relations in the problem definition, together with the
corresponding data connectivity in the analysis (Chen et al., 2014;
Ekambaram, 2014; Gavili and Zhang, 2017; Hamon et al., 2016; Moura,
2018; Sandryhaila and Moura, 2013; Shuman et al., 2013; Vetterli et al.,
2014).

To build up the intuition behind the fundamental ideas of sig-
nals/data on graphs, a simple yet general example of multisensor tem-
perature estimation is first considered in Section 2. Basic concepts
regarding the signals and systems on graphs are presented in Section 3,
including basic definitions, operations and transforms, which generalize
the foundations of traditional signal processing. Systems on graphs
are interpreted starting from a comprehensive account of the existing
and the introduction of a novel, isometric, graph signal shift operator.
Further, graph Fourier transform is defined based on both the adjacency
matrix and the graph Laplacian and it serves as the basis to introduce
graph signal filtering concepts. Various ideas related to the sampling of
graph signals, and particularly, the challenging topic of their subsam-
pling, are reviewed in Section 4. Sections 6 and 7 present the concepts
of time-varying signals on graphs and introduce basic definitions re-
lated to random graph signals. Localized graph signal behavior can be
simultaneously characterized in the vertex-frequency domain, which is
discussed in Section 8. This section also covers the important topics of
local graph Fourier transform, various forms of its inversion, relations
with the frames and links with the graph wavelet transform. Energy
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versions of the vertex-frequency representations are also considered,
along with their relations with classical time-frequency analysis.
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