Data Analytics on Graphs
Part II: Signals on Graphs
Other titles in Foundations and Trends® in Machine Learning

Spectral Learning on Matrices and Tensors
Majid Janzamin, Rong Ge, Jean Kossaifi and Anima Anandkumar
ISBN: 978-1-68083-640-0

An Introduction to Variational Autoencoders
Diederik P. Kingma and Max Welling
ISBN: 978-1-68083-622-6

Elements of Sequential Monte Carlo
Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schon

Introduction to Multi-Armed Bandits
Aleksandrs Slivkins
Data Analytics on Graphs Part II: Signals on Graphs

Ljubiša Stanković
University of Montenegro
Montenegro
ljubisa@ucg.ac.me

Bruno Scalzo
Imperial College London
UK
bruno.scalzo-dees12@imperial.ac.uk

Danilo Mandic
Imperial College London
UK
d.mandic@imperial.ac.uk

Shengxi Li
Imperial College London
UK
shengxi.li17@imperial.ac.uk

Miloš Daković
University of Montenegro
Montenegro
milos@ucg.ac.me

Anthony G. Constantinides
Imperial College London
UK
a.constantinides@imperial.ac.uk

Miloš Brajović
University of Montenegro
Montenegro
milosb@ucg.ac.me

Full text available at: http://dx.doi.org/10.1561/2200000078-2
Editorial Scope

Topics

Foundations and Trends® in Machine Learning publishes survey and tutorial articles in the following topics:

- Adaptive control and signal processing
- Applications and case studies
- Behavioral, cognitive and neural learning
- Bayesian learning
- Classification and prediction
- Clustering
- Data mining
- Dimensionality reduction
- Evaluation
- Game theoretic learning
- Graphical models
- Independent component analysis
- Inductive logic programming
- Kernel methods
- Markov chain Monte Carlo
- Model choice
- Nonparametric methods
- Online learning
- Optimization
- Reinforcement learning
- Relational learning
- Robustness
- Spectral methods
- Statistical learning theory
- Variational inference
- Visualization

Information for Librarians

Foundations and Trends® in Machine Learning, 2020, Volume 13, 6 issues. ISSN paper version 1935-8237. ISSN online version 1935-8245. Also available as a combined paper and online subscription.
Contents

1 **Introduction** 4

2 **Problem Statement: An Illustrative Example** 7

3 **Signals and Systems on Graphs** 18
 3.1 Adjacency Matrix and Graph Signal Shift 21
 3.2 Systems Based on Graph Shifted Signals 23
 3.3 Graph Fourier Transform (GFT), Adjacency Matrix Based Definition 26
 3.4 System on a Graph in the GFT Domain 27
 3.5 Graph Signal Filtering in the Spectral Domain of the Adjacency Matrix 29
 3.6 Graph Fourier Transform Based on the Laplacian 41
 3.7 Ordering and Filtering in the Laplacian Spectral Domain . 42
 3.8 Systems on a Graph Defined Using the Graph Laplacian . 46
 3.9 Convolution of Signals on a Graph 49
 3.10 The z-Transform of a Signal on a Graph 52
 3.11 Shift Operator in the Spectral Domain 54
 3.12 Parseval’s Theorem on a Graph 55
 3.13 Optimal Denoising .. 55
 3.14 Summary of Shift Operators for Systems on a Graph 59

Full text available at: http://dx.doi.org/10.1561/2200000078-2
Subsampling, Compressed Sensing, and Reconstruction

4.1 Subsampling of Bandlimited Graph Signals 60
4.2 Subsampling of Sparse Graph Signals 64
4.3 Measurements as Linear Combinations of Samples 72
4.4 Aggregate Sampling .. 73
4.5 Random Sampling with Optimal Strategy 76

Filter Bank on a Graph

5 .. 81

Time-Varying Signals on Graphs

6.1 Diffusion on Graph and Low Pass Filtering 91
6.2 Taubin’s $\alpha - \beta$ Algorithm 92

Random Graph Signal Processing

7.1 Review of WSS and Related Properties for Random Signals in Standard Time Domain .. 97
7.2 Adjacency Matrix Based Definition of GWSS 98
7.3 Wiener Filter on a Graph ... 99
7.4 Spectral Domain Shift Based Definition of GWSS 100
7.5 Isometric Shift Operator .. 101

Vertex-Frequency Representations

8.1 Localized Graph Fourier Transform (LGFT) 104
8.2 Inversion of the LGFT .. 142
8.3 Uncertainty Principle for Graph Signals 147
8.4 Graph Spectrogram and Frames 149
8.5 Vertex-Frequency Energy Distributions 153

Conclusion

9 .. 164

References

References .. 166
Data Analytics on Graphs Part II: Signals on Graphs

Ljubiša Stanković¹, Danilo Mandic², Miloš Daković³, Miloš Brajović⁴, Bruno Scalzo⁵, Shengxi Li⁶ and Anthony G. Constantinides⁷

¹University of Montenegro, Montenegro; ljubisa@ucg.ac.me
²Imperial College London, UK; d.mandic@imperial.ac.uk
³University of Montenegro, Montenegro; milos@ucg.ac.me
⁴University of Montenegro, Montenegro; milosb@ucg.ac.me
⁵Imperial College London, UK; bruno.scalzo-dees12@imperial.ac.uk
⁶Imperial College London, UK; shengxi.li17@imperial.ac.uk
⁷Imperial College London, UK; a.constantinides@imperial.ac.uk

ABSTRACT

The area of Data Analytics on graphs deals with information processing of data acquired on irregular but structured graph domains. The focus of Part I of this monograph has been on both the fundamental and higher-order graph properties, graph topologies, and spectral representations of graphs. Part I also establishes rigorous frameworks for vertex clustering and graph segmentation, and illustrates the power of graphs in various data association tasks. Part II embarks on these concepts to address the algorithmic and practical issues related to data/signal processing on graphs, with the focus on the analysis and estimation of both deterministic and random data on graphs. The fundamental ideas related to graph signals are introduced through a simple and intuitive, yet general enough case study of multisensor temperature field estimation. The concept of systems on graph
is defined using graph signal shift operators, which generalize the corresponding principles from traditional learning systems. At the core of the spectral domain representation of graph signals and systems is the Graph Fourier Transform (GFT), defined based on the eigendecomposition of both the adjacency matrix and the graph Laplacian. Spectral domain representations are then used as the basis to introduce graph signal filtering concepts and address their design, including Chebyshev series polynomial approximation. Ideas related to the sampling of graph signals, and in particular the challenging topic of data dimensionality reduction through graph subsampling, are presented and further linked with compressive sensing. The principles of time-varying signals on graphs and basic definitions related to random graph signals are next reviewed. Localized graph signal analysis in the joint vertex-spectral domain is referred to as the vertex-frequency analysis, since it can be considered as an extension of classical time-frequency analysis to the graph serving as signal domain. Important aspects of the local graph Fourier transform (LGFT) are covered, together with its various forms including the graph spectral and vertex domain windows and the inversion conditions and relations. A link between the LGFT with a varying spectral window and the spectral graph wavelet transform (SGWT) is also established. Realizations of the LGFT and SGWT using polynomial (Chebyshev) approximations of the spectral functions are further considered and supported by examples. Finally, energy versions of the vertex-frequency representations are introduced, along with their relations with classical time-frequency analysis, including a vertex-frequency distribution that can satisfy the marginal properties. The material is supported by illustrative examples.

Keywords: graph theory; random data on graphs; big data on graphs; signal processing on graphs; machine learning on graphs; graph
topology learning; systems on graphs; vertex-frequency estimation; graph neural networks; graphs and tensors.
Graphs are structures, often irregular, constructed in a way to represent the observed data and to account, in a natural way, the specific interrelationships between the data sources. However, traditional approaches have been established outside Machine Learning and Signal Processing, with which largely focus on analyzing the underlying graphs rather than dealing with signals on graphs. Moreover, given the rapidly increasing availability of multisensor and multinode measurements, likely recorded on irregular or ad-hoc grids, it would be extremely advantageous to analyze such structured data as “signals on graphs” and thus benefit from the ability of graphs to account for spatial sensing awareness, physical intuition and sensor importance, together with the inherent “local versus global” sensor association. The aim of Part II of this monograph is therefore to establish a common language between graph signals which are observed on irregular signal domains, and some of the fundamental paradigms in Learning Systems, Signal Processing and Data Analytics, such as spectral analysis, system transfer function, digital filter design, parameter estimation, and optimal denoising.

In classical Data Analytics and Signal Processing, the signal domain is determined by equidistant time instants or by a set of spatial sensing
points on a uniform grid. However, increasingly the actual data sensing domain may not even be related to the physical dimensions of time and/or space, and it typically does exhibit various forms of irregularity, as, for example, in social or web-related networks, where the sensing points and their connectivity pertain to specific objects/nodes and ad-hoc topology of their links. It should be noted that even for the data acquired on well defined time and space domains, the introduction of new relations between the signal samples, through graphs, may yield new insights into the analysis and provide enhanced data processing (for example, based on local similarity, through neighborhoods). We therefore set out to demonstrate that the advantage of graphs over classical data domains is that graphs account naturally and comprehensively for irregular data relations in the problem definition, together with the corresponding data connectivity in the analysis (Chen et al., 2014; Ekambaram, 2014; Gavili and Zhang, 2017; Hamon et al., 2016; Moura, 2018; Sandryhaila and Moura, 2013; Shuman et al., 2013; Vetterli et al., 2014).

To build up the intuition behind the fundamental ideas of signals/data on graphs, a simple yet general example of multisensor temperature estimation is first considered in Section 2. Basic concepts regarding the signals and systems on graphs are presented in Section 3, including basic definitions, operations and transforms, which generalize the foundations of traditional signal processing. Systems on graphs are interpreted starting from a comprehensive account of the existing and the introduction of a novel, isometric, graph signal shift operator. Further, graph Fourier transform is defined based on both the adjacency matrix and the graph Laplacian and it serves as the basis to introduce graph signal filtering concepts. Various ideas related to the sampling of graph signals, and particularly, the challenging topic of their subsampling, are reviewed in Section 4. Sections 6 and 7 present the concepts of time-varying signals on graphs and introduce basic definitions related to random graph signals. Localized graph signal behavior can be simultaneously characterized in the vertex-frequency domain, which is discussed in Section 8. This section also covers the important topics of local graph Fourier transform, various forms of its inversion, relations with the frames and links with the graph wavelet transform. Energy
versions of the vertex-frequency representations are also considered, along with their relations with classical time-frequency analysis.

References

