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ABSTRACT

We consider the vector embedding problem. We are given a
finite set of items, with the goal of assigning a representative
vector to each one, possibly under some constraints (such as
the collection of vectors being standardized, i.e., having zero
mean and unit covariance). We are given data indicating
that some pairs of items are similar, and optionally, some
other pairs are dissimilar. For pairs of similar items, we want
the corresponding vectors to be near each other, and for
dissimilar pairs, we want the vectors to not be near each
other, measured in Euclidean distance. We formalize this by
introducing distortion functions, defined for some pairs of
items. Our goal is to choose an embedding that minimizes
the total distortion, subject to the constraints. We call this
the minimum-distortion embedding (MDE) problem.

The MDE framework is simple but general. It includes a
wide variety of specific embedding methods, such as spectral
embedding, principal component analysis, multidimensional
scaling, Euclidean distance problems, dimensionality reduc-
tion methods (like Isomap and UMAP), semi-supervised
learning, sphere packing, force-directed layout, and others.
It also includes new embeddings, and provides principled
ways of validating or sanity-checking historical and new
embeddings alike.

Akshay Agrawal, Alnur Ali and Stephen Boyd (2021), “Minimum-Distortion Embed-
ding”, Foundations and Trends® in Machine Learning: Vol. 14, No. 3, pp 211-378.
DOI: 10.1561,/2200000090.
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In a few special cases, MDE problems can be solved exactly.
For others, we develop a projected quasi-Newton method
that approximately minimizes the distortion and scales to
very large data sets, while placing few assumptions on the
distortion functions and constraints. This monograph is ac-
companied by an open-source Python package, PyMDE, for
approximately solving MDE problems. Users can select from
a library of distortion functions and constraints or specify
custom ones, making it easy to rapidly experiment with new
embeddings. Because our algorithm is scalable, and because
PyMDE can exploit GPUs, our software scales to problems
with millions of items and tens of millions of distortion func-
tions. Additionally, PyMDE is competitive in runtime with
specialized implementations of specific embedding methods.
To demonstrate our method, we compute embeddings for
several real-world data sets, including images, an academic
co-author network, US county demographic data, and single-
cell mRNA transcriptomes.
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1

Introduction

An embedding of n items, labeled 1,...,n, is a function F mapping the
set of items into R™. We refer to z; = F'(i) as the embedding vector
associated with item 7. In applications, embeddings provide concrete
numerical representations of otherwise abstract items, for use in down-
stream tasks. For example, a biologist might look for subfamilies of
related cells by clustering embedding vectors associated with individual
cells, while a machine learning practitioner might use vector representa-
tions of words as features for a classification task. Embeddings are also
used for visualizing collections of items, with embedding dimension m
equal to one, two, or three.

For an embedding to be useful, it should be faithful to the known
relationships between items in some way. There are many ways to
define faithfulness. A working definition of a faithful embedding is the
following: if items ¢ and j are similar, their associated vectors z; and
xj should be near each other, as measured by the Euclidean distance
|zi —z||2; if items 7 and j are dissimilar, z; and x; should be distant, or
at least not close, in Euclidean distance. (Whether two items are similar
or dissimilar depends on the application. For example two biological
cells might be considered similar if some distance between their mRNA
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transcriptomes is small.) Many well-known embedding methods like
principal component analysis (PCA), spectral embedding (Chung and
Graham, 1997; Belkin and Niyogi, 2002), and multidimensional scaling
(Torgerson, 1952; Kruskal, 1964a) use this basic notion of faithfulness,
differing in how they make it precise.

The literature on embeddings is both vast and old. PCA originated
over a century ago (Pearson, 1901), and it was further developed three
decades later in the field of psychology (Hotelling, 1933; Eckart and
Young, 1936). Multidimensional scaling, a family of methods for embed-
ding items given dissimilarity scores or distances between items, was
also developed in the field of psychology during the early-to-mid 20th
century (Richardson, 1938; Torgerson, 1952; Kruskal, 1964a). Methods
for embedding items that are vectors can be traced back to the early
1900s (Menger, 1928; Young and Householder, 1938), and more recently
developed methods use tools from convex optimization and convex anal-
ysis (Biswas and Ye, 2004; Hayden et al., 1991). In spectral clustering,
an embedding based on an eigenvector decomposition of the graph
Laplacian is used to cluster graph vertices (Pothen et al., 1990; von
Luxburg, 2007). During this century, dozens of embedding methods have
been developed for reducing the dimension of high-dimensional vector
data, including Laplacian eigenmaps (Belkin and Niyogi, 2002), Isomap
(Tenenbaum et al., 2000), locally-linear embedding (LLE) (Roweis and
Saul, 2000), stochastic neighborhood embedding (SNE) (Hinton and
Roweis, 2003), t-distributed stochastic neighbor embedding (t-SNE)
(Maaten and Hinton, 2008), LargeVis (Tang et al., 2016) and uniform
manifold approximation and projection (UMAP) (McInnes et al., 2018).
All these methods start with either weights describing the similarity of
a pair of items, or distances describing their dissimilarity.

In this monograph we present a general framework for faithful em-
bedding. The framework, which we call minimum-distortion embedding
(MDE), generalizes the common cases in which similarities between
items are described by weights or distances. It also includes most of
the embedding methods mentioned above as special cases. In our for-
mulation, for some pairs of items, we are given distortion functions
of the Euclidean distance between the associated embedding vectors.
Evaluating a distortion function at the Euclidean distance between
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the vectors gives the distortion of the embedding for a pair of items.
The goal is to find an embedding that minimizes the total or average
distortion, possibly subject to some constraints on the embedding. We
focus on three specific constraints: a centering constraint, which requires
the embedding to have mean zero, an anchoring constraint, which fixes
the positions of a subset of the embedding vectors, and a standardiza-
tion constraint, which requires the embedding to be centered and have
identity covariance.

MDE problems are in general intractable, admitting efficiently com-
putable (global) solutions only in a few special cases like PCA and
spectral embedding. In most other cases, MDE problems can only be
approximately solved, using heuristic methods. We develop one such
heuristic, a projected quasi-Newton method. The method we describe
works well for a variety of MDE problems.

This monograph is accompanied by an open-source implementation
for specifying MDE problems and computing low-distortion embeddings.
Our software package, PyMDE, makes it easy for practitioners to
experiment with different embeddings via different choices of distortion
functions and constraint sets. Our implementation scales to very large
datasets and to embedding dimensions that are much larger than two
or three. This means that our package can be used for both visualizing
large amounts of data and generating features for downstream tasks.
PyMDE supports GPU acceleration and automatic differentiation of
distortion functions by using PyTorch (Paszke et al., 2019) as the
numerical backend.

A preview of our framework. Here we give a brief preview of the
MDE framework, along with a simple example of an MDE problem. We
discuss the MDE problem at length in Chapter 2.

An embedding can be represented concretely by a matrix X € R™*"™,
whose rows x7,...,z1 € R™ are the embedding vectors. We use & to
denote the set of pairs, and f;; : Ry — R to denote the distortion

functions for (i,7) € £. Our goal is to find an embedding that minimizes
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the average distortion
1

EX) =g > fisldiy),
(1,5)e€
where d;; = ||z; — z;||2, subject to constraints on the embedding, ex-

pressed as X € X, where X C R™™ is the set of allowable embeddings.
Thus the MDE problem is

minimize E(X)
subject to X € X.

We solve this problem, sometimes approximately, to find an embedding.

An important example is the quadratic MDE problem with stan-
dardization constraint. In this problem the distortion functions are
quadratic fij (dm) = wz-jd?j,
larity (when w;; > 0) or dissimilarity (when w;; < 0) of items ¢ and j.
We constrain the embedding X to be standardized, i.e., it must satisfy
(1/n)XTX = I and XT1 = 0, which forces the embedding vectors to
spread out. While most MDE problems are intractable, the quadratic
MDE problem is an exception: it admits an analytical solution via

eigenvectors of a certain matrix. Many well-known embedding methods,

where w;; € R is a weight conveying simi-

including PCA, spectral embedding, and classical multidimensional
scaling, are instances of quadratic MDE problems, differing only in their
choice of pairs and weights. Quadratic MDE problems are discussed in
Chapter 3.

Why the Euclidean norm? A natural question is why we use the
Euclidean norm as our distance measure between embedding vectors.
First, when we are embedding into R? or R? for the purpose of vi-
sualization or discovery, the Euclidean distance corresponds to actual
physical distance, making it a natural choice. Second, it is traditional,
and follows a large number of known embedding methods like PCA
and spectral embedding that also use Euclidean distance. Third, the
standardization constraint we consider in this monograph has a natural
interpretation when we use the Fuclidean distance, but would make
little sense if we used another metric. Finally, we mention that the
local optimization methods described in this monograph can be easily
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extended to the case where distances between embedding vectors are
measured with a non-Euclidean metric.

1.1 Contributions

The main contributions of this monograph are the following:

1. We present a simple framework, MDE, that unifies and generalizes
many different embedding methods, both classical and modern.
This framework makes it easier to interpret existing embedding
methods and to create new ones. It also provides principled ways
to validate, or at least sanity-check, embeddings.

2. We develop an algorithm for approximately solving MDE problems
(i.e., for computing embeddings) that places very few assumptions
on the distortion functions and constraints. This algorithm reliably
produces good embeddings in practice and scales to large problems.

3. We provide open-source software that makes it easy for users to
solve their own MDE problems and obtain custom embeddings.
Our implementation of our solution method is competitive in
runtime to specialized algorithms for specific embedding methods.

1.2 Outline

This monograph is divided into three parts, I Minimum-Distortion
Embedding, 11 Algorithms, and 111 Examples.

Part I: Minimum-distortion embedding. We begin Part I by describing
the MDE problem and some of its properties in Chapter 2. We introduce
the notion of anchored embeddings, in which some of the embedding
vectors are fixed, and standardized embeddings, in which the embedding
vectors are constrained to have zero mean and identity covariance.
Standardized embeddings are favorably scaled for many tasks, such as
for use as features for supervised learning.

In Chapter 3 we study MDE problems with quadratic distortion,
focusing on the problems with a standardization constraint. This class
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of problems has an analytical solution via an eigenvector decomposition
of a certain matrix. We show that many existing embedding methods,
including spectral embedding, PCA, Isomap, kernel PCA, and others,
reduce to solving instances of the quadratic MDE problem.

In Chapter 4 we describe examples of distortion functions, showing
how different notions of faithfulness of an embedding can be captured by
different distortion functions. Some choices of the distortion functions
(and constraints) lead to MDE problems solved by well-known methods,
while others yield MDE problems that, to the best of our knowledge,
have not appeared elsewhere in the literature.

Part Il: Algorithms. In Part II, we describe algorithms for computing
embeddings. We begin by presenting stationarity conditions for the
MDE problem in Chapter 5, which are necessary but not sufficient for
an embedding to be optimal. The stationarity conditions have a simple
form: the gradient of the average distortion, projected onto the set of
tangents of the constraint set at the current point, is zero. This condition
guides our development of algorithms for computing embeddings.

In Chapter 6, we present a projected quasi-Newton algorithm for
approximately solving MDE problems. For very large problems, we addi-
tionally develop a stochastic proximal algorithm that uses the projected
quasi-Newton algorithm to solve a sequence of smaller regularized MDE
problems. Our algorithms can be applied to MDE problems with differ-
entiable average distortion, and any constraint set for which there exists
an efficient projection onto the set and an efficient projection onto the
set of tangents of the constraint set at the current point. This includes
MDE problems with centering, anchor, or standardization constraints.

In Chapter 7, we present numerical examples demonstrating the per-
formance of our algorithms. We also describe a software implementation
of these methods, and briefly describe our open-source implementation
PyMDE.

Part Ill: Examples. In Part III, we use PyMDE to approximately
solve many MDE problems involving real datasets, including images
(Chapter 8), co-authorship networks (Chapter 9), United States county
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demographics (Chapter 10), population genetics (Chapter 11), and
single-cell mRNA transcriptomes (Chapter 12).

1.3 Related work

Dimensionality reduction. In many applications, the original items
are associated with high-dimensional vectors, and we can interpret the
embedding into the smaller dimensional space as dimensionality reduc-
tion. Dimensionality reduction can be used to reduce the computational
burden of numerical tasks, compared to carrying them out with the
original high-dimensional vectors. When the embedding dimension is
two or three, dimension reduction can also be used to visualize the orig-
inal high-dimensional data and facilitate exploratory data analysis. For
example, visualization is an important first step in studying single-cell
mRNA transcriptomes, a relatively new type of data in which each cell
is represented by a high-dimensional vector encoding gene expression
(Sandberg, 2014; Kobak and Berens, 2019).

Dozens of methods have been developed for dimensionality reduc-
tion. PCA, the Laplacian eigenmap (Belkin and Niyogi, 2002), Isomap
(Tenenbaum et al., 2000), LLE (Roweis and Saul, 2000), maximum vari-
ance unfolding (Weinberger and Saul, 2004), t-SNE (Maaten and Hinton,
2008), LargeVis (Tang et al., 2016), UMAP (Mclnnes et al., 2018), and
the latent variable model (LVM) from (Saul, 2020) are all dimensionality
reduction methods. With the exception of t-SNE and the LVM, these
methods can be interpreted as solving different MDE problems, as we
will see in Chapters 3 and 4. We exclude t-SNE because its objective func-
tion is not separable in the embedding distances; however, methods like
LargeVis and UMAP have been observed to produce embeddings that are
similar to t-SNE embeddings (Bohm et al., 2020). We exclude the LVM
because it fits some additional parameters, in addition to the embedding.

Dimensionality reduction is sometimes called manifold learning in
the machine learning community, since some of these methods can be
motivated by a hypothesis that the original data lie in a low-dimensional
manifold, which the dimensionality reduction method seeks to recover
(Ma and Fu, 2011; Cayton, 2005; Lin and Zha, 2008; Wilson et al., 2014;
Nickel and Kiela, 2017).
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Finally, we note that dimensionality reduction methods have been
studied under general frameworks other than MDE (Ham et al., 2004;
Yan et al., 2006; Kokiopoulou et al., 2011; Lawrence, 2011; Wang et al.,
2020).

Metric embedding. Another well-studied class of embeddings are
those that embed one finite metric space into another one. There are
many ways to define the distortion of such an embedding. One common
definition is the maximum fractional error between the embedding dis-
tances and original distances, across all pairs of items. (This can be done
by insisting that the embedding be non-contractive, i.e., the embedding
distances are at least the original distances, and then minimizing the
maximum ratio of embedding distance to original distance.)

An important result in metric embedding is the Johnson-Lindenstrauss
Lemma, which states that a linear map can be used to reduce the dimen-
sion of vector data, scaling distances by no more than (1 4 ¢€), when the
target dimension m is O(logn/e?) (Johnson and Lindenstrauss, 1984).
Another important result is due to Bourgain, who showed that any finite
metric can be embedded in Euclidean space with at most a logarithmic
distortion (Bourgain, 1985). A constructive method via semidefinite
programming was later developed (Linial et al., 1995). Several other
results, including impossibility results, have been discovered (Indyk
et al., 2017), and some recent research has focused on embedding into
non-Euclidean spaces, such as hyperbolic space (Sala et al., 2018).

In this monograph, for some of the problems we consider, all that is
required is to place similar items near each other, and dissimilar items
not near each other; in such applications we may not even have origi-
nal distances to preserve. In other problems we do start with original
distances. In all cases we are interested in minimizing an average of dis-
tortion functions (not maximum), which is more relevant in applications,
especially since real-world data is noisy and may contain outliers.

Force-directed layout. Force-directed methods are algorithms for
drawing graphs in the plane in an aesthetically pleasing way. In a
force-directed layout problem, the vertices of the graph are considered
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to be nodes connected by springs. Each spring exerts attractive or repul-
sive forces on the two nodes it connects, with the magnitude of the forces
depending on the Euclidean distance between the nodes. Force-directed
methods move the nodes until a static equilibrium is reached, with zero
net force on each node, yielding an embedding of the vertices into R?.
Force-directed methods, which are also called spring embedders, can be
considered as MDE problems in which the distortion functions give the
potential energy associated with the springs. Force-directed layout is
a decades-old subject (Tutte, 1963; Eades, 1984; Kamada and Kawai,
1989), with early applications in VLSI layout (Fisk et al., 1967; Quinn
and Breuer, 1979) and continuing modern interest (Kobourov, 2012).

Low-rank models. A low-rank model approximates a matrix by one
of lower rank, typically factored as the product of a tall and a wide
matrix. These factors can be interpreted as embeddings of the rows
and columns of the original matrix. Well-known examples of low-rank
models include PCA and non-negative matrix factorization (Lee and
Seung, 1999); there are many others (Udell et al., 2016, §3.2). PCA (and
its kernelized version) can be interpreted as solving an MDE problem,
as we show in §3.2.

X2vec. Embeddings are frequently used to produce features for down-
stream machine learning tasks. Embeddings for this purpose were popu-
larized with the publication of word2vec in 2013, an embedding method
in which the items are words (Mikolov et al., 2013). Since then, dozens
of embeddings for different types of items have been proposed, such
as doc2vec (Le and Mikolov, 2014), node2vec (Grover and Leskovec,
2016) and related methods (Perozzi et al., 2014; Tang et al., 2015),
graph2vec (Narayanan et al., 2017), role2vec (Ahmed et al., 2020),
(batter-pitcher)2vec (Alcorn, 2016), BioVec, ProtVec, and GeneVec (As-
gari and Mofrad, 2015), dna2vec (Ng, 2017), and many others. Some
of these methods resemble MDE problems, but most of them do not.
Nonetheless MDE problems generically can be used to produce such
X2vec-style embeddings, where X describes the type of items.
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Neural networks. Neural networks are commonly used to generate
embeddings for use in downstream machine learning tasks. One generic
neural network based embedding method is the auto-encoder, which
starts by representing items by (usually large dimensional) input vectors,
such as one-hot vectors. These vectors are fed into an encoder neural
network, whose output is fed into a decoder network. The output of the
encoder has low dimension, and will give our embedding. The decoder
attempts to reconstruct the original input from this low-dimensional
intermediate vector. The encoder and decoder are both trained so
the decoder can, at least approximately, reproduce the original input
(Goodfellow et al., 2016, §14).

More generally, a neural network may be trained to predict some
relevant quantity, and the trained network’s output (or an intermediate
activation) can be used as the input’s embedding. For example, neural
networks for embedding words (or sequences of words) are often trained
to predict masked words in a sentence; this is the basic principle under-
lying word2vec and BERT, two well-known word embedding methods
(Mikolov et al., 2013; Devlin et al., 2019). Similarly, intermediate ac-
tivations of convolutional neural networks like residual networks (He
et al., 2016), trained to classify images, are often used as embeddings of
images. Neural networks have also been used for embedding single-cell
mRNA transcriptomes (Szubert et al., 2019).

Software. There are several open-source software libraries for spe-
cific embedding methods. The widely used Python library sci-kit learn
(Pedregosa et al., 2011) includes implementations of PCA, spectral em-
bedding, Isomap, locally linear embedding, multi-dimensional scaling,
and t-SNE, among others. The umap-learn package implements UMAP
(McInnes, 2020b), the openTSNE package provides a more scalable vari-
ant of t-SNE (Policar et al., 2019), and GraphVite (which can exploit
multiple CPUs and GPUs) implements a number of embedding methods
(Zhu et al., 2019). Embeddings for words and documents are available in
gensim (Rehtifek and Sojka, 2010), Embeddings.jl (White and Ellison,
2019), HuggingFace transformers (HuggingFace, 2020), and BERT (De-
vlin, 2020). Force-directed layout methods are implemented in graphviz
(Gansner and North, 2000), NetworkX (Hagberg et al., 2008), qgraph
(Epskamp et al., 2012), and NetworkLayout.jl (NetworkLayout.jl 2020).
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There are also several software libraries for approximately solving
optimization problems with orthogonality constraints (which the MDE
problem with standardization constraint has). Some examples include
Manopt (and its related packages PyManopt and Manopt.jl) (Boumal
et al., 2014; Townsend et al., 2016; Bergmann, 2020), Geoopt (Kochurov
et al., 2020), and McTorch (Meghwanshi et al., 2018). More generally,
problems with differentiable objective and constraint functions can be
approximately solved using solvers for nonlinear programming, such
as SNOPT (Gill et al., 2002) (which is based on sequential quadratic
programming) and IPOPT (Wéchter and Biegler, 2006) (which is based

on an interior-point method).
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