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ABSTRACT

The objective in a traditional reinforcement learning (RL)
problem is to find a policy that optimizes the expected value
of a performance metric such as the infinite-horizon cumula-
tive discounted or long-run average cost/reward. In practice,
optimizing the expected value alone may not be satisfactory,
in that it may be desirable to incorporate the notion of risk
into the optimization problem formulation, either in the
objective or as a constraint. Various risk measures have
been proposed in the literature, e.g., exponential utility,
variance, percentile performance, chance constraints, value
at risk (quantile), conditional value-at-risk, prospect theory
and its later enhancement, cumulative prospect theory.

In this monograph, we consider risk-sensitive RL in two set-
tings: one where the goal is to find a policy that optimizes
the usual expected value objective while ensuring that a risk
constraint is satisfied, and the other where the risk measure
is the objective. We survey some of the recent work in this
area specifically where policy gradient search is the solution
approach. In the first risk-sensitive RL setting, we cover
popular risk measures based on variance, conditional value-
at-risk, and chance constraints, and present a template for

Prashanth L. A. and Michael C. Fu (2022), “Risk-Sensitive Reinforcement Learning
via Policy Gradient Search”, Foundations and Trends® in Machine Learning: Vol. 15,
No. 5, pp 536–692. DOI: 10.1561/2200000091.
©2022 Prashanth L. A. and M. C. Fu
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policy gradient-based risk-sensitive RL algorithms using a
Lagrangian formulation. For the setting where risk is incor-
porated directly into the objective function, we consider an
exponential utility formulation, cumulative prospect theory,
and coherent risk measures. This non-exhaustive survey
aims to give a flavor of the challenges involved in solving
risk-sensitive RL problems using policy gradient methods, as
well as outlining some potential future research directions.
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Preface

Reinforcement learning (RL) is one of the foundational pillars of ar-
tificial intelligence and machine learning. An important consideration
in any optimization or control problem is the notion of risk, but its
incorporation into RL has been a fairly recent development. This mono-
graph surveys research on risk-sensitive RL that uses policy gradient
search, i.e., policy optimization in a stochastic formulation, as opposed
to robust optimization approaches and methods that focus on the value
function.

We have tried to make the exposition completely self-contained but
also organized in a manner that allows expert readers to skip background
sections. In particular, those readers already familiar with Markov
decision processes (MDPs), risk measures, and stochastic gradient-
based search (specifically, stochastic approximation) can skip Sections
2, 3, and 4, respectively.

We have benefited from the feedback of many who read earlier drafts
of the manuscript. We begin by thanking Prof. Vivek Borkar, who gen-
erously offered valuable detailed comments regarding the content, and
provided material and references for the sections on the exponential
cost formulation. Next, we thank Prof. Shalabh Bhatnagar for helpful
discussions on the convergence analysis in the risk-as-constraint setting,
and Prof. Armand Makowski for critical observations. We’d also like
to thank two anonymous reviewers, whose comments and suggestions
helped us improve the exposition considerably. Lastly, we thank several
of our Ph.D. students — Xingyu Ren, Erfaun Noorani, Mehrdad Mohar-
rami, Nithia Vijayan, Yi Zhou, and Mengting Chao, who read through
various portions and stages of the manuscript and caught numerous
typos. Any remaining errors are of course our responsibility alone.

One final note: We have chosen to include references at the end of
the section in bibliographic remarks rather than cite them in the main
text, so as not to interrupt the expositional flow.
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Introduction

Markov decision processes (MDPs) provide a general framework for
modeling a wide range of problems involving sequential decision making
under uncertainty, which arise in many areas of applications, such
as transportation, computer/communication systems, manufacturing,
and supply chain management. MDPs transition from state to state
probabilistically over time due to chosen actions taken by the decision
maker, incurring state/action-dependent costs/rewards at each instant.
The goal is to find a policy (sequence of decision rules) for choosing
actions that optimizes a long-run objective function, e.g., the cumulative
sum of discounted costs or the long-run average cost.

The traditional MDP setting assumes that (i) the transition dy-
namics (probabilities) and costs/rewards are fully specified/known, and
(ii) the objective function and constraints involve standard expected
value criteria. However, in a myriad of settings of practical interest,
neither of these conditions holds, i.e., only samples of transitions (and
costs/rewards) can be observed (e.g., in a black-box simulation model or
an actual system) and/or performance measures that incorporate risk
really need to be considered in the problem. In the case of the former,
reinforcement learning (RL) techniques can be employed, and in the

4
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latter setting, risk-sensitive approaches are appropriate. Although there
is abundant research on both of these settings dating back decades,
the work combining both aspects is more recent. Furthermore, the
two settings have been predominantly pursued independently by dif-
ferent research communities, with RL a focus of CS/AI researchers
and risk-sensitive MDPs a focus of stochastic control and operations
research/management science/mathematical finance researchers.

Why risk? (Avoid merely expectations?)

The focus of this monograph is not on why risk is important nor on
what is the best way to incorporate it into decision making but rather
on finding good risk-sensitive policies via RL policy gradient algorithms.
However, to provide some motivation for incorporating risk into decision
making, we briefly describe two everyday illustrative examples. The
first example has to do with financial investments, where the primary
objective is generally to maximize expected return. Clearly, this is not
sufficient for most decision makers, who would very much like to take
into consideration the “risk” of the investments, in this case taken to
mean mitigating the potential downside losses. The second example
is your daily commute to work. In this case, your primary objective
is likely to minimize expected travel time. However, if you have an
important early morning meeting, you might want to reduce the “risk”
of being late by choosing an alternative that has a higher expected
travel time but is unlikely to suffer a huge delay from an unexpected
but rare event such as an overturned tractor-trailer. A colleague of ours
avoids taking the highway to/from work for this very reason (along with
safety considerations). In other words, most decision makers consider
more than merely expectations. Both of these examples also serve to
illustrate the more general observation that real-world decisions involve
multiple objectives, where at least one of them involves the notion of
risk, extending beyond the usual expected value performance measures
considered in standard MDP and RL models (including commonly used
metrics for analysis purposes such as expected regret in multi-armed
bandit models).

Full text available at: http://dx.doi.org/10.1561/2200000091



6 Introduction

Types of risk and ways to incorporate risk

As in any multi-objective optimization problem, there are many ways
to incorporate risk. Again, our focus is not on advocating for one
formulation over another, but to provide several different alternatives,
with a solution approach for each of them. Which formulation is “better”
will depend on both the problem and the problem solver(s). We illustrate
this concept by revisiting our two examples.

One way to address risk in the investment problem is to minimize
some measure of volatility, which could take the form of putting an
upper bound on the variance of return. Thus, the decision problem
becomes a constrained optimization of maximizing the objective of
expected return subject to a constraint on the variance of return. This is
the classic mean-variance portfolio optimization problem in finance for
which Harry Markowitz was awarded the 1990 Nobel Prize in Economics.

It can be easily argued that variance is not the best measure of
risk for this problem, since it also penalizes excessive upside moves, so
maybe focusing on one tail (the downside risk) is more appropriate. One
way to address this would be to limit the probability of a high loss to
some acceptable level such as 5% or 1% or even smaller. This is known
as a chance constraint. Conversely, one might have an upper bound on
the amount of loss that might occur at a certain low probability, i.e.,
putting a constraint on a quantile of the loss distribution, which the
financial industry defines as value-at-risk (VaR). A more sophisticated
extension of VaR is conditional value-at-risk (CVaR), which also has
some other nice properties that VaR does not, most notably that it is a
coherent risk measure. Exponential utility is another way of capturing
risk preferences and implicitly capturing higher moments beyond the
second moment. Section 3 provides a more formal review of all of these
risk concepts and metrics.

Similarly, revisiting risk in the commuting problem where the ob-
jective is to minimize travel time, a constrained optimization problem
formulation would be to minimize expected travel time subject to an
upper bound on the variability of travel time, or alternatively, one could
instead employ a chance constraint by specifying the probability of the
travel time exceeding an acceptable threshold, e.g., requiring that at
least 99% of the time the travel time will be less than an hour.

Full text available at: http://dx.doi.org/10.1561/2200000091
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Realistic problems may involve multiple constraints that need to be
satisfied concurrently, such as bounds on both the variability and the
probability of a rare event. In our setting, this can be easily handled,
but for the sake of simplicity we will only explicitly consider the case of
a single constraint, as the extension using the policy gradient approach
would just involve additional Lagrange multiplier gradient estimates,
but the general approach would be the same.

Finally, rather than formulating the problem with risk as a constraint,
another approach is to try and include it in the objective function.
Perhaps the simplest way would be as a weighted combination of the
multiple objectives. While we don’t address the weighed objectives
formulation explicitly, it should be clear how it could also be handled
as an easy special case using the techniques of this monograph. Instead,
we consider more general formulations: the use of expected utility (an
exponential cost formulation), which modifies the output performance
measure (corresponding to investment return or travel time in the two
examples), and a risk measure called cumulative prospect theory (CPT)
that “distorts” the perceived probabilities due to the decision maker’s
view of the world. Demonstrating that prospect theory and CPT are
able to model certain aspects of actual observed human behavior that
utility theory was unable to capture was a key contribution for which
(behavioral psychologist) Daniel Kahneman was awarded the 2002 Nobel
Prize in Economics. Our treatment also extends the CPT formulation
to a framework encompassing general coherent risk measures.

Objectives of this monograph
The main purpose of this monograph is to introduce and survey re-
search results on policy gradient methods for reinforcement learning
with risk-sensitive criteria, as well as to outline some promising av-
enues for future research following the risk-sensitive RL framework. We
consider both constrained formulations where the traditional expected
value performance measure is augmented with a risk constraint and
problem formulations where the risk measure is explicitly in the ob-
jective function being optimized. Some well-known examples of risk
measures to be considered as constraints, most of which were illustrated

Full text available at: http://dx.doi.org/10.1561/2200000091



8 Introduction

by the two earlier examples, include variance (or higher moments), prob-
abilities (in the form of chance constraints), quantiles or value-at-risk
(VaR), and conditional value-at-risk (CVaR). As also mentioned in the
examples, risk measures used explicitly as the objective function include
exponential utility and some very recent work on using CPT with RL.

To be specific, the constrained risk-sensitive RL problem will be an
optimization problem of the following general form:

min
θ∈Θ

J(θ) ≜ E [D(θ)] subject to G(θ) ≤ κ, (1.1)

where θ denotes the policy parameter, Θ represents the policy space,
D(θ) is a (stochastic) cost function, G(θ) is a risk measure, and κ denotes
the acceptable risk level. In the MDP setting, the quantities may also
depend on the initial state of the MDP, which is not indicated here. The
most common choices for D(θ) in the MDP setting include the infinite-
horizon cumulative discounted cost, total cost in a stochastic shortest
path problem, and the long-run average cost. Note that we will be
minimizing cost (as in the commuting example), which is more common
in MDP formulations than in the RL setting, which often focuses on
maximizing reward (as in the investment example). The classic “risk-
neutral” formulation simply minimizes J(·) without the risk constraint
in (1.1). Also, in contrast to the traditional setting of risk-sensitive
control where J and G functions are analytically available in the MDP
model, in the RL setting, J and G are unknown or cannot be calculated
directly, but noisy estimates of J and G are available, e.g., samples
of D could provide an unbiased estimator of J . Thus, as in the usual
RL setting, traditional MDP techniques cannot be applied, whereas
RL algorithms suitably adapted provide one avenue to attack such
risk-sensitive MDPs, i.e., a setting when the MDP model is unknown
and all the information about the system is obtained from samples
resulting from the decision maker’s interaction with the environment.

We propose to solve the constrained optimization problem (1.1) by
performing gradient descent search on the Lagrangian objective function.
As depicted in Figure 1.1, the risk-sensitive policy gradient algorithm
requires estimators ∇̂J(θ), ∇̂G(θ) and Ĝ(θ) of ∇J(θ), ∇G(θ) and
G(θ), respectively. Then, two-timescale gradient-based search algorithms

Full text available at: http://dx.doi.org/10.1561/2200000091
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θn, λn

Using policy µθn,

sample/simulate

underlying system

Data Collection

Estimate ∇J(θ)

Policy Gradient

Estimate G(θ)

Risk Estimation

Estimate ∇G(θ)

Risk Gradient

Update θn

Update λn

Policy Update

θn+1, λn+1

Figure 1.1: Schematic of risk-sensitive policy gradient algorithm for constrained
optimization (underlying system could be a simulation model or a real system).

taking the following form will be developed (where λ is the Lagrange
multiplier to be optimized along with the policy parameter θ):

λn+1 =
[
λn + ζ1(n)

(
Ĝ(θn)− κ

)]+
,

θn+1 = Γ
[
θn − ζ2(n)

(
∇̂J(θn) + λn∇̂G(θn)

)]
,

where [x]+ = max(0, x), Γ is a projection into Θ, and {ζ1(n), ζ2(n)}
are step-size sequences selected such that the θ update is on the faster
timescale and the λ update is on the slower timescale (see Section 5.2
for details).

In addition to the risk-constrained problem (1.1), we also consider a
risk-sensitive problem where the risk measure is explicitly incorporated
into the objective function, i.e., the following optimization problem:

min
θ∈Θ

G(θ), (1.2)

where G is a risk objective function involving exponential utility, CPT,
or a coherent risk measure. For solving the problem (1.2), we propose
a policy gradient algorithm that incorporates the following iterative
update:

Full text available at: http://dx.doi.org/10.1561/2200000091



10 Introduction

θn+1 = Γ
[
θn − ζ(n)∇̂G(θn)

]
,

where {ζ(n)} is a step-size sequence, ∇̂G(θn) is an estimate of ∇G(θn),
and Γ is a projection operator that keeps the iterate θn bounded within
the set Θ as in the case of the risk-constrained policy gradient algorithm
above (see Section 5.1 for details).

Challenges in risk-sensitive RL

Risk-sensitive RL is generally more challenging than its risk-neutral
counterpart. For instance, for a discounted-cost MDP, there exists a
Bellman equation for the variance of the return, but the underlying
Bellman operator is not necessarily monotone, so that policy iteration
is no longer guaranteed to lead to an optimal policy. Moreover, finding
a globally mean-variance optimal policy in a discounted-cost MDP is
NP-hard, even in the classic MDP setting where the transition model is
known. Average-cost MDP problems also are generally NP-hard, e.g.,
consider a risk measure that is not the plain variance of the average
cost and instead is a variance of a quantity that measures the deviation
of the single-stage cost from the average cost. Finally, in comparison
to variance/CVaR, CPT is a non-coherent and non-convex measure,
ruling out the usual Bellman equation-based dynamic programming
(DP) approaches when optimizing the MDP CPT-value.

The computational complexity results summarized in the previous
paragraph imply that finding guaranteed global optima of risk-sensitive
MDP formulations described by (1.1) or (1.2) is not computation-
ally practical, motivating the need for algorithms that approximately
solve such MDP formulations. In this monograph, we focus on policy
gradient-type learning algorithms where the policies are parameterized
in a continuous space, and an iterative search for a better policy occurs
through a gradient-descent update. Actor-critic methods are a popular
subclass of policy gradient methods and were among the earliest to be
investigated in RL. They are comprised of an Actor that improves the
current policy via gradient descent (as in policy gradient schemes) and
a Critic that incorporates feature-based representations to approximate

Full text available at: http://dx.doi.org/10.1561/2200000091
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the value function. The latter approximation is necessary to handle the
curse of dimensionality. Regular policy gradient schemes usually rely on
Monte Carlo methods for policy evaluation, an approach that suffers
from high variance as compared to actor-critic schemes. On the other
hand, function approximation introduces a bias in the policy evaluation.
A policy gradient/actor-critic scheme with provable convergence to
a locally risk-optimal policy would require careful synthesis of tech-
niques from stochastic approximation, stochastic gradient estimation
approaches, and importance sampling.

Several of the constituent solution pieces require significant research
for various risk measures. For example, consider the “policy evaluation”
part of the overall algorithm in a risk-sensitive MDP, which requires
estimating J(θ) and G(θ), given samples obtained by simulating the
MDP with policy θ. If J(θ) is one of the usual MDP optimization
objectives such as discounted total cost, long-run average cost, or total
cost (in a finite-horizon MDP), then estimating J(θ) can be performed
using one of the existing algorithms. Temporal difference (TD) learning is
a well-known algorithm that can learn the objective value along a sample
path for a given θ. However, estimating G(θ) using TD-type learning
algorithms is infeasible in many cases. For instance, consider variance
as the risk measure in a discounted-cost MDP. In this case, even though
there is a Bellman equation, the operator underlying this equation is
not monotone, ruling out a TD-type learning algorithm. More recently,
CVaR-constrained MDPs have been considered, though a variance-
reduced CVaR estimation algorithm is still needed. In other words, there
is no algorithm in an RL context that incorporates a variance reduction
technique such as importance sampling and is provably convergent. Note
that variance reduction is necessary, because CVaR is based on the tail
of the distribution.

Going beyond the prediction problem, designing policy gradient algo-
rithms is challenging for a risk-sensitive MDP, as it requires estimating
the (policy) gradient of the risk measure considered, a nontrivial task
in the RL context. For instance, in a discounted-cost MDP context, the
policy gradient theorem variant that accounts for the variance of the
cumulative discounted cost does not lend itself to an RL algorithm. An
alternative is to apply a finite differences method such as simultaneous
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12 Introduction

perturbation stochastic approximation (SPSA), which amounts to treat-
ing the MDP as a black box, and such an approach would ignore the
underlying Markovian structure of the problem, which is the case with
the existing policy gradient algorithms for optimizing the CPT-value in
any of the MDP settings.

Outline of the remaining sections

Section 2 provides an overview of MDPs and outlines the standard
formulations for discounted-cost and average-cost MDPs and stochastic
shortest path total-cost MDP problems. Examples and basic theoretical
results are included for the benefit of readers less familiar with MDPs.
Section 3 introduces all of the risk measures used in the monograph,
namely exponential cost, variance, CVaR, coherent risk measures, chance
constraints, and CPT. Section 4 provides an introduction to temporal
difference learning and two gradient estimation techniques, namely
simultaneous perturbation (stochastic approximation) and the likelihood
ratio method. Section 5 presents two templates for risk-sensitive policy
gradient algorithms, one for the setting where the risk measure is the
objective, and the other for the setting where the risk measure is featured
in the constraint. This chapter also presents a convergence analysis of
the template algorithms for both settings. Section 6 develops policy
gradient algorithms for four special cases of risk-sensitive MDPs for the
constrained optimization problem posed in (1.1), with variance, CVaR,
and a chance constraint used as the risk measure constraint. Section
7 develops policy gradient algorithms for three risk-sensitive MDP
formulations in the unconstrained optimization setting of (1.2) with risk
explicitly as the objective: exponential cost, CPT, and coherent risk
measures. Finally, Section 8 provides concluding remarks and identifies
some interesting future research directions.

A brief note on notation

Throughout the monograph, the functions J , G, and D may show one,
two, or no arguments, depending on the context. Specifically, the two
possible arguments would be θ, the policy parameter, as in (1.1) or (1.2),
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or a state of the MDP (e.g., x0, x, i, j), as described in Section 2. This is
particularly relevant to Sections 5, 6, and 7. The same “convention” is
used for other analogous counterparts such as the variance and squared
versions of these quantities. On the other hand, dependence on an
entire MDP policy µ is represented as subscript, e.g., Jµ. Gradients
represented by ∇ are assumed to be with respect to θ unless otherwise
indicated, e.g., ∇λ denoting a gradient with respect to the Lagrange
multiplier λ. Finally, all vectors will be assumed to be column vectors,
and superscript “T” will be used to denote the matrix/vector transpose
operation.

Bibliographic remarks

MDPs have a long history dating back to the work of Richard E.
Bellman. For a rigorous introduction, the reader is referred to the
books by Puterman (1994) and Bertsekas (2007), and for reinforcement
learning, the books by Bertsekas and Tsitsiklis (1996), Sutton and Barto
(2018), and Szepesvári (2011). Material in this book drawn from our
own research includes Prashanth and Ghavamzadeh (2013), Prashanth
and Ghavamzadeh (2016), Prashanth (2014), Prashanth et al. (2016),
and Gopalan et al. (2017). Cumulative prospect theory (CPT) was
introduced by Tversky and Kahneman (1992) as a successor to prospect
theory, which was one of the central contributions cited for Daniel
Kahneman receiving the Nobel Memorial Prize in Economic Sciences in
2002.

References for the various risk measures include the following: mean-
variance tradeoff (Markowitz, 1952), exponential utility (Arrow, 1971;
Howard and Matheson, 1972), the percentile performance (Filar et
al., 1995), the use of chance constraints (Prekopa, 2003), stochastic
dominance constraints (Dentcheva and Ruszczynski, 2003), value at risk
(VaR), and conditional value-at-risk (CVaR) (Rockafellar and Uryasev,
2000; Ruszczyński, 2010; Shen et al., 2013). The concept of a coherent
risk measure was introduced by Artzner et al. (1999), see also Föllmer
and Schied (2004), with the extension to multi-period settings treated
in Riedel (2004), Ruszczyński and Shapiro (2006), Ruszczyński (2010),
Cavus and Ruszczynski (2014), Tallec (2007), and Choi (2009).
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The large body of literature utilizing the exponential utility formu-
lation includes the classic formulation by Howard and Matheson (1972);
related work includes Whittle (1990), Browne (1995), Fleming and
McEneaney (1995), Hernández-Hernández and Marcus (1996), Marcus
et al. (1997), Fernández-Gaucherand and Marcus (1997), Hernández-
Hernández and Marcus (1999), Coraluppi and Marcus (1999a), Coraluppi
and Marcus (1999b), Coraluppi and Marcus (2000), Borkar and Meyn
(2002), and Bäuerle and Rieder (2014). For a survey of risk-sensitive
RL under the exponential utility formulation, the reader is referred to
Borkar (2010).

Another approach to risk/uncertainty is the robust optimization
approach. In the setting of Markov decision processes, Iyengar (2005)
is an early seminal work in this area, where a robust optimal policy is
defined relative to uncertainty in the underlying transition probabilities.
We do not pursue the robust approach in this monograph.

The existence of a Bellman equation for the variance of the return,
where the underlying Bellman operator is not necessarily monotone,
can be found in Sobel (1982). The result that finding a globally mean-
variance optimal policy in a discounted-cost MDP is NP-hard can be
found in Mannor and Tsitsiklis (2013). The use of variance of a quantity
that measures the deviation of the single-stage cost from the average
cost can be found in Filar et al. (1989). The result that solving an
average-cost MDP under this notion of variance is NP-hard is shown in
Filar et al. (1989).

Actor-critic methods investigated in RL are found in Barto et al.
(1983) and Sutton (1984). Temporal difference (TD) learning can be
found in Sutton (1988). More recently, CVaR-constrained MDPs have
been considered in Borkar and Jain (2010), Prashanth (2014), and
Tamar et al. (2014a), though a variance-reduced CVaR estimation
algorithm is still needed.

The application of simultaneous perturbation stochastic approxima-
tion (SPSA) to policy gradient search for mean-variance optimization
in discounted-cost MDPs is considered in Prashanth and Ghavamzadeh
(2016) and for optimizing CPT-value in Prashanth et al. (2016).

Prospect theory (PT) was introduced in Kahneman and Tversky
(1979), and cumulative prospect theory (CPT) in Tversky and Kahne-
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man (1992), with experiments on humans reported in Starmer (2000)
and Tversky and Kahneman (1992). More work adopting this approach
includes Lin (2013), Lin and Marcus (2013b), Lin and Marcus (2013a),
and Lin et al. (2018); see also Cavus and Ruszczynski (2014).

Variance as a risk measure in a discounted-cost and average-cost
MDP, respectively, are based on Prashanth and Ghavamzadeh (2013)
and Prashanth and Ghavamzadeh (2016). CVaR as a risk measure
is based on Prashanth (2014). CPT as the risk measure is based on
Prashanth et al. (2016) and Jie et al. (2018).

A sampling but nowhere near exhaustive list of other risk-sensitive
RL work includes the following. In Tamar et al. (2012), variance as risk
is considered in a stochastic shortest path context, and a policy gradient
algorithm using the likelihood ratio method is provided. In Mihatsch and
Neuneier (2002), a modified temporal differences algorithm is proposed
and connected to the exponential utility approach. A general policy
gradient algorithm that handles a class of risk measures that includes
CVaR is presented in Tamar et al. (2015b). An early work that considers
a constrained MDP setting similar to that in (1.1) is Borkar (2005),
where the objective is average cost and the constraint is also an average-
cost function different from the objective function. A modification of
this formulation to a discounted-cost MDP, incorporating function
approximation, was treated in Bhatnagar (2010). CVaR optimization
in a constrained MDP setup was also explored in Borkar and Jain
(2010), but the algorithm proposed there requires that the single-stage
cost be separable. Optimization of risk measures that include CVaR
in an unconstrained MDP setting using RL algorithms with function
approximation can be found in Jiang and Powell (2017).
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