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ABSTRACT

Over the last decade or so, Approximate Message Passing
(AMP) algorithms have become extremely popular in various
structured high-dimensional statistical problems. Although
the origins of these techniques can be traced back to notions
of belief propagation in the statistical physics literature, our
goals in this work are to present the main ideas of AMP
from a statistical perspective and to illustrate the power
and flexibility of the AMP framework. Along the way, we
strengthen and unify many of the results in the existing
literature.

Oliver Y. Feng, Ramji Venkataramanan, Cynthia Rush and Richard J. Samworth
(2022), “A Unifying Tutorial on Approximate Message Passing”, Foundations and
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1
Introduction

Approximate Message Passing (AMP) refers to a class of iterative algo-
rithms that have been successfully applied to a number of statistical
estimation tasks such as linear regression (Bayati and Montanari, 2011;
Donoho et al., 2009; Krzakala et al., 2012), generalised linear mod-
els (Mondelli and Venkataramanan, 2020; Rangan, 2011; Schniter and
Rangan, 2014) and low-rank matrix estimation (Deshpande and Mon-
tanari, 2014; Deshpande et al., 2016; Kabashima et al., 2016; Lesieur
et al., 2017; Matsushita and Tanaka, 2013; Montanari and Richard, 2016;
Montanari and Venkataramanan, 2021; Rangan and Fletcher, 2018).
Moreover, these techniques are also popular and practical in a variety of
engineering and computer science applications such as imaging (Fletcher
and Rangan, 2014; Metzler et al., 2017; Vila et al., 2015), communica-
tions (Barbier and Krzakala, 2017; Jeon et al., 2015; Rush et al., 2017;
Schniter, 2011) and machine learning (El Alaoui et al., 2018; Emami
et al., 2020; Manoel et al., 2017; Pandit et al., 2020; Yang, 2019). AMP
algorithms have two features that make them particularly attractive.
First, they can easily be tailored to take advantage of prior information
on the structure of the signal, such as sparsity or other constraints.
Second, under suitable assumptions on a design or data matrix, AMP

2

Full text available at: http://dx.doi.org/10.1561/2200000092



3

theory provides precise asymptotic guarantees for statistical procedures
in the high-dimensional regime where the ratio of the number of observa-
tions n to dimensions p converges to a constant (Bayati and Montanari,
2012; Donoho and Montanari, 2016; Donoho et al., 2013; Sur et al.,
2017). More generally, AMP has been used to obtain lower bounds
on the estimation error of first-order methods (Celentano et al., 2020).
In generalised linear models, low-rank matrix estimation and neural
network models, it also plays a fundamental role in understanding the
performance gap between information-theoretically optimal and compu-
tationally feasible estimators (Aubin et al., 2019, 2020; Barbier et al.,
2019; Lelarge and Miolane, 2019; Reeves and Pfister, 2019). In these
settings, it is conjectured that AMP achieves the optimal asymptotic
estimation error among all polynomial-time algorithms (cf. Celentano
and Montanari, 2022).

The purpose of this tutorial is to give a comprehensive and rigorous
introduction to what AMP can offer, as well as to unify and formalise
the core concepts within the large body of recent work in the area. We
mention here that many of the original ideas of AMP were developed
in the physics and engineering literature, and involved notions such as
“loopy belief propagation” (e.g., Koller and Friedman, 2009, Section 11.3)
and the “replica method” (e.g., Guo and Verdú, 2005; Krzakala et al.,
2012; Mézard and Montanari, 2009; Tanaka, 2002; Rangan et al., 2009).
Our starting point, however, will be an abstract AMP recursion, whose
form depends on whether or not the data matrix is symmetric; we will
study the symmetric case in detail, and then present the asymmetric
version, which can be handled via a reduction argument. The striking
and crucial feature of this recursion is that when the dimension is large,
the empirical distribution of the coordinates of each iterate is approx-
imately Gaussian, with limiting variance given by a scalar iteration
called “state evolution”.

Rigorous formulations of the key AMP property are given in The-
orems 2.1 and 2.3 (for the symmetric case) and Theorem 2.5 (for the
asymmetric case), which can be found in Sections 2.1 and 2.2 respec-
tively. Here, we both strengthen earlier related results, and seek to make
the underlying arguments more transparent. These “master theorems”,
which can be viewed as asymptotic results on Gaussian random matrices,
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4 Introduction

can be adapted to analyse variants of the original AMP recursion that
are geared towards more statistical problems. In this aspect, we focus on
two canonical statistical settings, namely estimation of low-rank matri-
ces in Section 3, and estimation in generalised linear models (GLMs) in
Section 4. The former encompasses Sparse Principal Component Analy-
sis (Deshpande and Montanari, 2014; Gataric et al., 2020; Jolliffe et al.,
2003; Wang et al., 2016; Zou et al., 2006), submatrix detection (Ma
and Wu, 2015), hidden clique detection (Alon et al., 1998; Deshpande
and Montanari, 2015), spectral clustering (von Luxburg, 2007), matrix
completion (Candès and Recht, 2009; Zhu et al., 2019), topic modelling
(Blei et al., 2003) and collaborative filtering (Su and Khoshgoftaar,
2009). The latter provides a holistic approach to studying a suite of
popular modern statistical methods, including penalised M-estimators
such as the Lasso (Tibshirani, 1996) and SLOPE (Bogdan et al., 2015),
as well as more traditional techniques such as logistic regression. A
novel aspect of our presentation in Section 4 is that we formalise the
connection between AMP and a broad class of convex optimisation
problems, and then show how to systematically derive exact expressions
for the asymptotic risk of estimators in GLMs. We expect that our
general recipe can be applied to a wider class of GLMs than have been
studied in the AMP literature to date.

To preview the statistical content in this tutorial and highlight some
recurring themes, we now discuss two prototypical applications of AMP
that form the basis of Sections 3 and 4 respectively. First, suppose that
we wish to estimate an unknown signal v ∈ Rn based on an observation

A = λ

n
vv> +W,

where λ > 0 is fixed and W ∈ Rn×n is a symmetric Gaussian noise
matrix. In this so-called spiked Wigner model (see Section 3.1 and the
references therein), a popular and well-studied estimator of v is the
leading eigenvector ϕ̂ of A, which can be approximated via the power
method, with iterates

vk+1 = Avk

‖Avk‖
.
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An AMP algorithm in this context can be interpreted as a generalised
power method that produces a sequence of estimates v̂k of v via iterative
updates of the form

v̂k = gk(vk), vk+1 = Av̂k − bkv̂k−1

for k ∈ N0, where we emphasise the following two characteristic features:

(i) Each “denoising” function gk : R→ R is applied componentwise to
vectors, and can be chosen appropriately to exploit different types
of prior information about the structure of v (e.g., to encourage
v̂k to be sparse).

(ii) In the “memory” term −bkv̂k−1, which is called an “Onsager”
correction in the AMP literature (e.g., Bayati and Montanari,
2011; Donoho et al., 2009), the scalar bk is defined as a specific
function of vk to ensure that the iterates vk+1 have desirable
statistical properties; see (3.3).

One way to incorporate additional structural information on v into
the spiked model is to assume that its entries are drawn independently
from some prior distribution π on R; for example, we can enforce
sparsity through priors that place strictly positive mass at 0. Then
under appropriate conditions, AMP theory guarantees that, for each
k, the components of the estimate v̂k have approximately the same
empirical distribution as those of gk(µkv + σkξ); here, ξ ∼ Nn(0, In)
is a “noise” vector that is independent of the signal v ∈ Rn, and the
“signal” and “noise” parameters µk ∈ R, σk > 0 are determined by
a scalar state evolution recursion that depends on (gk) and the prior
distribution π; see (3.6). This distributional characterisation effectively
reduces the analysis of the high-dimensional v̂k to a much simpler
univariate denoising problem, where the aim is to reconstruct V ∼ π

based on a single corrupted observation of the form µkV + σkG with
G ∼ N(0, 1) representing independent Gaussian noise. The functions
gk can then be chosen in such a way that the “effective signal-to-noise
ratios” (µk/σk)2 are large and gk(µkV + σkG) accurately estimates V .
This ensures that the resulting AMP estimates v̂k = gk(vk) have low
asymptotic estimation error as n→∞.
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6 Introduction

Figure 1.1: Asymptotic mean-squared error plots for estimation of a signal v ∈ Rn
with i.i.d. U{−1, 1} entries in the rank-one spiked model, based on an AMP algorithm
with denoising functions gk : x 7→ tanh(µkx/σ2

k) and spectral initialisation (v0 = ϕ̂

and v̂−1 = λ−1ϕ̂ with ‖ϕ̂‖ =
√
nλ2(λ2 − 1)+). See Sections 3.2–3.3, where we also

discuss how to consistently estimate λ when it is unknown (Remark 3.12).
Left: Plot of AMSEk(λ) := limn→∞ ‖v̂k − v‖2/n against the iteration number k for
the AMP estimates v̂k ≡ v̂kλ(n), when λ = 1.7. AMSEk(λ) decreases monotonically
to some AMSE∞(λ) as k →∞; see Theorem 3.10(c). Right: Plots of AMSE−1(λ) =
1∧λ−2 for the pilot spectral estimator v̂−1 and AMSE∞(λ) for AMP, with λ ∈ [0, 3].
The spectral estimator undergoes the so-called BBP phase transition at λ = 1; see
Section 3.1.

For instance, suppose that the entries of v are drawn uniformly at
random from {−1, 1}. Then provided we initialise the AMP algorithm
with v0 = ϕ̂ and v̂−1 = λ−1ϕ̂, where ‖ϕ̂‖ =

√
nλ2(λ2 − 1)+, it turns

out that the asymptotic mean squared error (MSE) of v̂k is minimised
by choosing gk to be the function x 7→ tanh(µkx/σ2

k); see Section 3.3.
Figure 1.1 illustrates that the limiting MSE of the AMP estimates
v̂k decreases with the iteration number k, and in particular that they
improve on the pilot spectral estimator v̂−1 (which is agnostic to the
structure of v).

As a second example, consider the linear model y = Xβ + ε, where
β ∈ Rp is the target of inference, ε ∈ Rn is a noise vector, and X ∈ Rn×p

is a random design matrix with independent N(0, 1/n) entries. In high-
dimensional regimes where p is comparable in magnitude to, or even
much larger than n, a popular (sparse) estimator is the Lasso (Tibshirani,
1996), which for λ > 0 is defined by

β̂L,λ ∈ argmin
β̃∈Rp

{1
2‖y −Xβ̃‖

2 + λ‖β̃‖1
}
.
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In the literature on high-dimensional estimation, upper bounds on
the prediction and estimation error of the Lasso have been obtained
under suitable conditions on the design matrix X, such as the restricted
isometry property or compatibility conditions (e.g., Bühlmann and van
de Geer, 2011). AMP offers complementary guarantees by providing
exact formulae for the asymptotic risk in the “large system limit” where
n, p → ∞ with n/p → δ ∈ (0,∞), and with the components of β
drawn independently from a prior distribution on R. To motivate the
form of the AMP algorithm in this setting, first consider the iterative
soft thresholding algorithm (ISTA) for solving the Lasso optimisation
problem, whose update steps can be written as

r̂k = y−Xβ̂k, β̂k+1 = STληk(β̂k + ηkX
>r̂k) for k ∈ N0; (1.1)

here, r̂k is the current residual, ηk > 0 is a deterministic step size, and
for t > 0, the soft-thresholding function STt : w 7→ sgn(w)(|w| − t)+ is
applied componentwise to vectors. This is an instance of the general-
purpose proximal gradient method (Parikh and Boyd, 2013, Sections 4.2
and 4.3). An “accelerated” version of (1.1) called FISTA (Beck and
Teboulle, 2009) bears a closer resemblance to an AMP algorithm, where
the iterates of the latter are given by

r̂k = y−Xβ̂k + ‖β̂
k‖0
n

r̂k−1, β̂k+1 = STtk+1(β̂k +X>r̂k) for k ∈ N0.

(1.2)
Here, each tk > 0 is a deterministic threshold and ‖β̂k‖0 denotes the
number of non-zero entries of β̂k ∈ Rp. By comparison with (1.1), we
observe that r̂k in (1.2) is a corrected residual, whose definition includes
an additional memory term that is crucial for ensuring that the empirical
distribution of the iterates can be characterised exactly. Indeed, for each
fixed k ∈ N, the entries of the AMP estimate β̂k of β have approximately
the same empirical distribution as those of STtk(β + σkξ) when p is
large; here ξ ∼ Np(0, Ip) is a noise vector that is independent of β, the
noise level σk > 0 is determined by the state evolution recursion defined
in (4.41) below, and the scalar denoising function STtk induces sparsity.

Bayati and Montanari (2012) proved that in the asymptotic regime
above, the AMP iterates (r̂k, β̂k) converge in a suitable sense to a fixed
point (r̂∗, β̂∗), and a key property of (1.2) is that for any such fixed point,
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8 Introduction

β̂∗ is a Lasso solution; see (4.42) below. It follows that the performance
of the Lasso is precisely characterised by a fixed point of the state
evolution recursion (4.41); see Theorem 4.5. Since the above properties
are proved under a Gaussian design, the main utility of AMP in this
setting is not so much as an efficient Lasso computational algorithm,
but rather as a device for gaining insight into the statistical properties
of the estimator. In Section 4, the above theory is developed as part
of an overarching AMP framework for linear models and generalised
linear models (GLMs).

Note that in both of the examples above, the limiting empirical
distributions of the entries of the AMP iterates can be decomposed into
independent “signal” and “noise” components, and the effective signal
strength and noise level are determined by a state evolution recursion.
In Sections 3 and 4, we show how to derive these asymptotic guarantees
by applying the master theorems in Section 2 to suitable abstract
recursions, which track the evolution of the asymptotically Gaussian
“noise” components of the AMP iterates. We discuss various extensions
in Section 5, and provide proofs in the Appendix (Section A), with
supplementary mathematical background deferred to Section B. As a
guide to the reader, we remark that rigorous formulations of the results
in this monograph require a number of technical conditions. While
we take care to state these precisely, and discuss them at appropriate
places, we emphasise that these should generally be regarded as mild.
We therefore recommend that the reader initially focuses on the main
conclusions of the results.

The statistical roots of AMP lie in compressed sensing (Donoho et al.,
2009, 2013). A reader approaching the subject from this perspective
can consult Montanari (2012), Tramel et al. (2014) and Schniter (2020)
for accessible expositions of the motivating ideas and the connections
with message passing algorithms on dense graphs. Alternatively, for
comprehensive reviews of AMP from a statistical physics perspective,
see Zdeborová and Krzakala (2016), Krzakala et al. (2012) and Lesieur
et al. (2017).

In spin glass theory, an AMP algorithm was proposed as an iterative
scheme for solving the Thouless–Anderson–Palmer (TAP) equations
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1.1. Notation and Preliminaries 9

corresponding to a Sherrington–Kirkpatrick model with specific param-
eters (Bolthausen, 2014; Mézard and Montanari, 2009; Mézard et al.,
1987; Talagrand, 2011). The estimation problem here is equivalent
to one of reconstructing a symmetric rank-one matrix in a Gaussian
spiked model. Bolthausen (2014) proved a rigorous state evolution re-
sult for AMP in this specific setting, by introducing a conditioning
argument that became an essential ingredient in subsequent analyses of
AMP (Bayati and Montanari, 2011; Berthier et al., 2020; Javanmard and
Montanari, 2013; Fan, 2022). See Section A.2 for a detailed discussion
of this proof technique.

In this tutorial, we restrict our focus to AMP recursions in which the
random matrices are Gaussian. However, as we discuss in Section 5, sev-
eral recent works have extended AMP and its state evolution recursion
to more general non-Gaussian settings. For matrices with independent
sub-Gaussian entries, results on the “universality” of AMP were first es-
tablished by Bayati et al. (2015) and later in greater generality by Chen
and Lam (2021). In addition, to accommodate the class of rotationally
invariant random matrices, a number of extensions of the original AMP
framework have recently been proposed, including Orthogonal AMP (Ma
and Ping, 2017; Takeuchi, 2020) and Vector AMP (Schniter et al., 2016;
Rangan et al., 2019b), as well as the general iterative schemes of Opper
et al. (2016), Çakmak and Opper (2019) and Fan (2022). Some of these
are closely related to expectation propagation (Opper and Winther,
2005; Kabashima and Vehkaperä, 2014). In all of the above variants of
AMP, the recursion is tailored to the spectrum of the random matrix.

1.1 Notation and Preliminaries

Here, we introduce some notation used throughout this tutorial, and
present basic properties of Wasserstein distances, pseudo-Lipschitz
functions, as well as the complete convergence of random sequences.

General notation: For n ∈ N, let e1, . . . , en be the standard basis
vectors in Rn. For r ∈ [1,∞], we write ‖x‖r for the `r norm of x ≡
(x1, . . . , xn) ∈ Rn, so that ‖x‖r = (

∑n
i=1 |xi|r)1/r when r ∈ [1,∞)

and ‖x‖∞ = max1≤i≤n |xi|. We also define ‖x‖n,r := n−1/r‖x‖r =
(n−1∑n

i=1 |xi|r)1/r for r ∈ (1,∞). Let 〈· , ·〉 and ‖·‖ := ‖·‖2 be the
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10 Introduction

standard Euclidean inner product and norm on Rn respectively, and
define 〈· , ·〉n to be the scaled Euclidean inner product on Rn given by
〈x, y〉n := n−1〈x, y〉 for x, y ∈ Rn, which induces the norm ‖·‖n := ‖·‖n,2.
We denote by 1n := (1, . . . , 1) ∈ Rn the all-ones vector and write
〈x〉n := 〈x,1n〉n = n−1∑n

i=1 xi for each x ∈ Rn.
For D ∈ N and x1, . . . , xD ∈ Rn, we denote by νn(x1, . . . , xD) :=

n−1∑n
i=1 δ(x1

i ,...,x
D
i ) the joint empirical distribution of their components,

and for a function f : RD → R, write f(x1, . . . , xD) := (f(x1
i , . . . , x

D
i ):

1 ≤ i ≤ n) ∈ Rn for the row-wise application of f to (x1 · · · xD).
By a Euclidean space (E, ‖·‖E) we mean a finite-dimensional inner

product space over R, equipped with the norm induced by its inner
product; examples include (Rn, ‖·‖) for n ∈ N and (Rk×`, ‖·‖F) for
k, ` ∈ N, where ‖·‖F is the Frobenius norm induced by the trace inner
product (A,B) 7→ tr(A>B).

Gaussian orthogonal ensemble: We write W ∼ GOE(n) if W =
(Wij)1≤i,j≤n takes values in the space of all symmetric n× n matrices,
and has the property that (Wij)1≤i≤j≤n are independent, with Wij ∼
N(0, 1/n) for 1 ≤ i < j ≤ n and Wii ∼ N(0, 2/n) for i = 1, . . . , n.
Writing On for the set of all n × n orthogonal matrices, we note the
orthogonal invariance property of the GOE(n) distribution: if Q ∈ On

and W ∼ GOE(n), then Q>WQ ∼ GOE(n).
Complete convergence of random sequences: The asymptotic

results below are formulated in terms of the notion of complete conver-
gence (e.g., Hsu and Robbins, 1947; Serfling, 1980, Chapter 1.3). This
is a stronger mode of stochastic convergence than almost sure conver-
gence, and is denoted throughout using the symbol c→. In Definition 1.1
and Proposition 1.2 below, we give two equivalent characterisations
of complete convergence and introduce some associated stochastic O
symbols.

Definition 1.1. Let (Xn) be a sequence of random elements taking val-
ues in a Euclidean space (E, ‖·‖E). We say that Xn converges completely
to a deterministic limit x ∈ E, and write Xn

c→ x or c-limn→∞Xn = x,
if Yn → x almost surely for any sequence of E-valued random elements
(Yn) with Yn

d= Xn for all n.
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We write Xn = oc(1) if Xn
c→ 0, and write Xn = Oc(1) if Yn =

Oa.s.(1) (i.e., lim supn→∞ ‖Yn‖E <∞ almost surely) for any sequence
of E-valued random elements (Yn) with Yn

d= Xn for all n.

Proposition 1.2. For a sequence (Xn) of random elements taking values
in a Euclidean space (E, ‖·‖E), we have

(a) Xn = oc(1) if and only if
∑
n P(‖Xn‖E > ε) <∞ for all ε > 0;

(b) Xn = Oc(1) if and only if there exists C > 0 such that
∑
n P(‖Xn‖E

> C) <∞.

For a deterministic x ∈ E, we see that Xn
c→ x if and only if∑

n P(‖Xn − x‖E > ε) < ∞ for all ε > 0. Moreover, if Xn
c→ x, then

Xn = Oc(1). The proof of Proposition 1.2, along with various other
properties of complete convergence and a calculus for oc(1) and Oc(1)
notation, is given in Section B.1; see also Remark A.1.

Wasserstein distances and pseudo-Lipschitz functions: For
D ∈ N and r ∈ [1,∞), we write P(r) ≡ PD(r) for the set of all
Borel probability measures P on RD with

∫
RD ‖x‖r dP (x) < ∞. For

P,Q ∈ PD(r), the r-Wasserstein distance between P and Q is defined
by

dr(P,Q) := inf
(X,Y )

E(‖X − Y ‖r)1/r,

where the infimum is taken over all pairs of random vectors (X,Y )
defined on a common probability space with X ∼ P and Y ∼ Q.
For P, P1, P2, . . . ∈ PD(r), we have dr(Pn, P ) → 0 if and only if both∫
RD ‖x‖r dPn(x) →

∫
RD ‖x‖r dP (x) and Pn → P weakly (e.g., Villani,

2003, Theorem 7.12). Furthermore, for L > 0, we write PLD(r, L) for
the set of functions ψ : RD → R such that

|ψ(x)− ψ(y)| ≤ L‖x− y‖ (1 + ‖x‖r−1 + ‖y‖r−1) (1.3)

for all x, y ∈ RD, and denote by PLD(r) :=
⋃
L>0 PLD(r, L) the class of

pseudo-Lipschitz functions f : RD → R of order r. Note that PLD(1, L)
is precisely the class of all (3L)-Lipschitz functions on RD, and that
PLD(s) ⊆ PLD(r) for any 1 ≤ s ≤ r. Moreover, for any probability
measure P ∈ PD(r), we have |

∫
Rd ψ dP | ≤ L

∫
RD(‖x‖+ ‖x‖r) dP (x) +

Full text available at: http://dx.doi.org/10.1561/2200000092
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|ψ(0)| <∞ for all ψ ∈ PLD(r, L). Now for P,Q ∈ PD(r), we define

d̃r(P,Q) := sup
ψ∈PLD(r,1)

∣∣∣∣ ∫
RD

ψ dP −
∫

RD
ψ dQ

∣∣∣∣. (1.4)

In Section B.4, we show (among other things) that d̃r, dr are metrics
on PD(r) that induce the same topology (Remark B.18).

Full text available at: http://dx.doi.org/10.1561/2200000092



References

Advani, M. S., A. M. Saxe, and H. Sompolinsky (2020). “High-dimen-
sional dynamics of generalization error in neural networks”. Neural
Netw. 132: 428–446.

Agresti, A. (2015). Foundations of Linear and Generalized Linear Models.
New Jersey: Wiley.

Albert, A. and J. A. Anderson (1984). “On the existence of maximum
likelihood estimates in logistic regression models”. Biometrika. 71:
1–10.

Aliprantis, C. D. and O. Burkinshaw (1998). Principles of Real Analysis.
3rd edn. San Diego: Academic Press.

Alon, N., M. Krivelevich, and B. Sudakov (1998). “Finding a large
hidden clique in a random graph”. Random Struct. Algorithms. 13:
457–466.

Anderson, G., A. Guionnet, and O. Zeitouni (2010). An Introduction to
Random Matrices. Cambridge: Cambridge University Press.

Aubin, B., B. Loureiro, A. Maillard, F. Krzakala, and L. Zdeborová
(2020). “The spiked matrix model with generative priors”. IEEE
Trans. Inf. Theory. 67: 1156–1181.

Aubin, B., A. Maillard, J. Barbier, F. Krzakala, N. Macris, and L.
Zdeborová (2019). “The committee machine: Computational to
statistical gaps in learning a two-layers neural network”. J. Stat.
Mech. Theory Exp. 124023.

188

Full text available at: http://dx.doi.org/10.1561/2200000092



References 189

Bai, Z. and J. Silverstein (2010). Spectral Analysis of Large Dimensional
Random Matrices. 2nd edn. New York: Springer.

Baik, J., G. Ben Arous, and S. Péché (2005). “Phase transition of the
largest eigenvalue for nonnull complex sample covariance matrices”.
Ann. Probab. 33: 1643–1697.

Baik, J. and J. W. Silverstein (2006). “Eigenvalues of large sample
covariance matrices of spiked population models”. J. Multivariate
Anal. 97: 1382–1408.

Bakhshizadeh, M., A. Maleki, and V. H. de la Pena (2020). “Sharp
concentration results for heavy-tailed distributions”. url: https://
arxiv.org/pdf/2003.13819.pdf.

Barata, J. C. A. and M. S. Hussein (2012). “The Moore–Penrose pseu-
doinverse: A tutorial review of the theory”. Braz. J. Phys. 42: 146–
165.

Barbier, J., M. Dia, N. Macris, F. Krzakala, T. Lesieur, and L. Zde-
borová (2016). “Mutual information for symmetric rank-one matrix
estimation: A proof of the replica formula”. Advances in Neural
Information Processing Systems. 29: 424–432.

Barbier, J. and F. Krzakala (2017). “Approximate message-passing
decoder and capacity achieving sparse superposition codes”. IEEE
Trans. Inf. Theory. 63: 4894–4927.

Barbier, J., F. Krzakala, N. Macris, L. Miolane, and L. Zdeborová
(2019). “Optimal errors and phase transitions in high-dimensional
generalized linear models”. Proc. Natl. Acad. Sci. U.S.A. 116: 5451–
5460.

Barbier, J., N. Macris, and C. Rush (2020). “All-or-nothing statisti-
cal and computational phase transitions in sparse spiked matrix
estimation”. url: https://arxiv.org/pdf/2006.07971.pdf.

Bartlett, P. L., P. M. Long, G. Lugosi, and A. Tsigler (2020). “Benign
overfitting in linear regression”. Proc. Natl. Acad. Sci. U.S.A. 117:
30063–30070.

Bayati, M., M. Lelarge, and A. Montanari (2015). “Universality in
polytope phase transitions and message passing algorithms”. Ann.
Appl. Probab. 25: 753–822.

Full text available at: http://dx.doi.org/10.1561/2200000092

https://arxiv.org/pdf/2003.13819.pdf
https://arxiv.org/pdf/2003.13819.pdf
https://arxiv.org/pdf/2006.07971.pdf


190 References

Bayati, M. and A. Montanari (2011). “The dynamics of message passing
on dense graphs, with applications to compressed sensing”. IEEE
Trans. Inf. Theory. 57: 764–785.

Bayati, M. and A. Montanari (2012). “The LASSO risk for Gaussian
matrices”. IEEE Trans. Inf. Theory. 58: 1997–2017.

Beck, A. and M. Teboulle (2009). “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems”. SIAM J. Imaging Sci. 2: 183–
202.

Belkin, M., D. Hsu, S. Ma, and S. Mandal (2019). “Reconciling modern
machine-learning practice and the classical bias-variance trade-off”.
Proc. Natl. Acad. Sci. U.S.A. 116: 15849–15854.

Belkin, M., D. Hsu, and J. Xu (2020). “Two models of double descent
for weak features”. SIAM J. Math. Data Sci. 2: 1167–1180.

Bellec, P. C., G. Lecué, and A. B. Tsybakov (2018). “SLOPE meets
LASSO: Improved oracle bounds and optimality”. Ann. Statist. 46:
3603–3642.

Benaych-Georges, F. and R. R. Nadakuditi (2011). “The eigenvalues
and eigenvectors of finite, low rank perturbations of large random
matrices”. Adv. Math. 227: 494–521.

Berthier, R., A. Montanari, and P.-M. Nguyen (2020). “State evolution
for approximate message passing with non-separable functions”. Inf.
Inference. 9: 33–79.

Blei, D. M., A. Y. Ng, and M. I. Jordan (2003). “Latent Dirichlet
allocation”. J. Mach. Learn. Res. 3: 993–1022.

Bogdan, M., E. van den Berg, C. Sabatti, W. Su, and E. Candès (2015).
“SLOPE—Adaptive variable selection via convex optimization”. Ann.
Appl. Stat. 9: 1103–1140.

Bolthausen, E. (2014). “An iterative construction of solutions of the
TAP equations for the Sherrington–Kirkpatrick model”. Comm.
Math. Phys. 325: 333–366.

Boucheron, S., G. Lugosi, and P. Massart (2013). Concentration Inequal-
ities: A Nonasymptotic Theory of Independence. Oxford: Oxford
University Press.

Full text available at: http://dx.doi.org/10.1561/2200000092



References 191

Boyd, S., N. Parikh, E. Chu, B. Peleato, and J. Eckstein (2011). “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers”. Found. Trends Mach. Learn. 3:
1–122.

Brown, L. D. and R. Purves (1973). “Measurable selections of extrema”.
Ann. Statist. 1: 902–912.

Bu, Z., J. Klusowski, C. Rush, and W. Su (2021). “Algorithmic analy-
sis and statistical estimation of SLOPE via approximate message
passing”. IEEE Trans. Inf. Theory. 67: 506–537.

Bühlmann, P. and S. van de Geer (2011). Statistics for High-Dimensional
Data: Methods, Theory and Applications. Berlin: Springer.

Çakmak, B. and M. Opper (2019). “Memory-free dynamics for the
Thouless–Anderson–Palmer equations of Ising models with arbitrary
rotation-invariant ensembles of random coupling matrices”. Phys.
Rev. E. 99: 062140.

Candès, E. J. and B. Recht (2009). “Exact matrix completion via convex
optimization”. Found. Comput. Math. 9: 717–772.

Candès, E. J. and P. Sur (2020). “The phase transition for the existence
of the maximum likelihood estimate in high-dimensional logistic
regression”. Ann. Statist. 48: 27–42.

Capitaine, M., C. Donati-Martin, and D. Féral (2009). “The largest
eigenvalues of finite rank deformation of large Wigner matrices:
Convergence and nonuniversality of the fluctuations”. Ann. Probab.
37: 1–47.

Celentano, M. and A. Montanari (2022). “Fundamental barriers to
high-dimensional regression with convex penalties”. Ann. Statist. 50:
170–196.

Celentano, M., A. Montanari, and Y. Wu (2020). “The estimation error
of general first order methods”. Proc. Mach. Learn. Res. 125: 1–64.

Chen, W.-K. and W.-K. Lam (2021). “Universality of approximate
message passing algorithms”. Electron. J. Probab. 26: 1–44.

Dar, Y., V. Muthukumar, and R. Baraniuk (2021). “A farewell to the
bias-variance tradeoff? An overview of the theory of overparameter-
ized machine learning”. url: https://arxiv.org/pdf/2109.02355.pdf.

Full text available at: http://dx.doi.org/10.1561/2200000092

https://arxiv.org/pdf/2109.02355.pdf


192 References

d’Ascoli, S., M. Refinetti, G. Biroli, and F. Krzakala (2020). “Double
trouble in double descent: Bias and variance(s) in the lazy regime”.
Proc. Mach. Learn. Res. 119: 2280–2290.

Deng, Z., A. Kammoun, and C. Thrampoulidis (2019). “A model of
double descent for high-dimensional binary linear classification”.
url: https://arxiv.org/pdf/1911.05822.pdf.

Deshpande, Y., E. Abbe, and A. Montanari (2016). “Asymptotic mutual
information for the balanced binary stochastic block model”. Inf.
Inference. 6: 125–170.

Deshpande, Y. and A. Montanari (2014). “Information-theoretically
optimal sparse PCA”. In: 2014 IEEE International Symposium on
Information Theory. 2197–2201.

Deshpande, Y. and A. Montanari (2015). “Finding hidden cliques of size√
N/e in nearly linear time”. Found. Comput. Math. 15: 1069–1128.

Donoho, D. L., A. Javanmard, and A. Montanari (2013). “Information-
theoretically optimal compressed sensing via spatial coupling and
approximate message passing”. IEEE Trans. Inf. Theory. 59: 7434–
7464.

Donoho, D. L. and I. M. Johnstone (1994). “Minimax risk over lp balls
for lq error”. Prob. Theory Related Fields. 99: 277–303.

Donoho, D. L. and I. M. Johnstone (1998). “Minimax estimation via
wavelet shrinkage”. Ann. Statist. 26: 879–921.

Donoho, D. L., A. Maleki, and A. Montanari (2009). “Message-passing
algorithms for compressed sensing”. Proc. Natl. Acad. Sci. U.S.A.
106: 18914–18919.

Donoho, D. and A. Montanari (2015). “Variance breakdown of Huber
(M)-estimators: n/p → m ∈ (1,∞)”. url: https://arxiv.org/pdf/
1503.02106.pdf.

Donoho, D. and A. Montanari (2016). “High dimensional robust M-
estimation: Asymptotic variance via approximate message passing”.
Probab. Theory Related Fields. 166: 935–969.

Dudley, R. M. (2002). Real Analysis and Probability. 2nd edn. Cambridge:
Cambridge University Press.

Dümbgen, L., R. J. Samworth, and J. A. Wellner (2021). “Bounding
distributional errors via density ratios”. Bernoulli. 27: 818–852.

Full text available at: http://dx.doi.org/10.1561/2200000092

https://arxiv.org/pdf/1911.05822.pdf
https://arxiv.org/pdf/1503.02106.pdf
https://arxiv.org/pdf/1503.02106.pdf


References 193

Dümbgen, L., R. Samworth, and D. Schuhmacher (2011). “Approxima-
tion by log-concave distributions, with applications to regression”.
Ann. Statist. 39: 702–730.

Efron, B. (2011). “Tweedie’s formula and selection bias”. J. Amer.
Statist. Assoc. 106: 1602–1614.

El Alaoui, A., A. Ramdas, F. Krzakala, Zdeborová, and M. I. Jordan
(2018). “Decoding from pooled data: Phase transitions of message
passing”. IEEE Trans. Inf. Theory. 65: 572–585.

Emami, M., M. Sahraee-Ardakan, P. Pandit, S. Rangan, and A. K.
Fletcher (2020). “Generalization error of generalized linear models
in high dimensions”. Proc. Mach. Learn. Res. 119: 2892–2901.

Fan, Z. (2022). “Approximate message passing algorithms for rotation-
ally invariant matrices”. Ann. Statist. 50: 197–224.

Federer, H. (1996). Geometric Measure Theory. New York: Springer-
Verlag.

Féral, D. and S. Péché (2007). “The largest eigenvalue of rank one
deformation of large Wigner matrices”. Comm. Math. Phys. 272:
185–228.

Fletcher, A. K. and S. Rangan (2014). “Scalable inference for neuronal
connectivity from calcium imaging”. Advances in Neural Information
Processing Systems. 27: 2843–2851.

Fletcher, A. K., S. Rangan, and P. Schniter (2018). “Inference in deep
networks in high dimensions”. In: 2018 IEEE International Sympo-
sium on Information Theory. 1884–1888.

Fourdrinier, D., W. E. Strawderman, and M. T. Wells (2018). Shrinkage
Estimation. New York: Springer.

Gataric, M., T. Wang, and R. J. Samworth (2020). “Sparse principal
component analysis via axis-aligned random projections”. J. Roy.
Statist. Soc., Ser. B. 82: 329–359.

Geiger, M., A. Jacot, S. Spigler, F. Gabriel, L. Sagun, S. d’Ascoli, G.
Biroli, C. Hongler, and M. Wyart (2019). “Scaling description of
generalization with number of parameters in deep learning”. url:
https://arxiv.org/pdf/1901.01608.pdf.

Gerbelot, C., A. Abbara, and F. Krzakala (2020a). “Asymptotic errors
for convex penalized linear regression beyond Gaussian matrices”.
Proc. Mach. Learn. Res. 125: 1682–1713.

Full text available at: http://dx.doi.org/10.1561/2200000092

https://arxiv.org/pdf/1901.01608.pdf


194 References

Gerbelot, C., A. Abbara, and F. Krzakala (2020b). “Asymptotic errors
for teacher-student convex generalized linear models (or: How to
prove Kabashima’s replica formula)”. url: https://arxiv.org/pdf/
2006.06581.pdf.

Gordon, L. (1994). “A stochastic approach to the gamma function”.
Am. Math. Mon. 101: 858–865.

Guo, D. and S. Verdú (2005). “Randomly spread CDMA: Asymptotics
via statistical physics”. IEEE Trans. Inf. Theory. 51: 1983–2010.

Han, Q. (2022). “Noisy linear inverse problems under convex constraints:
Exact risk asymptotics in high dimensions”. url: https://arxiv.org/
pdf/2201.08435.pdf.

Hastie, T., A. Montanari, S. Rosset, and R. J. Tibshirani (2022). “Sur-
prises in high-dimensional ridgeless least squares interpolation”. Ann.
Statist. 50: 949–986.

Hopkins, S. B., J. Shi, and D. Steurer (2015). “Tensor principal com-
ponent analysis via sum-of-square proofs”. Proc. Mach. Learn. Res.
40: 956–1006.

Hsu, P. L. and H. Robbins (1947). “Complete convergence and the law
of large numbers”. Proc. Natl. Acad. Sci. U.S.A. 33: 25–31.

Huber, P. J. (1964). “Robust estimation of a location parameter”. Ann.
Math. Statist. 35: 73–101.

Huber, P. J. (1973). “Robust regression: Asymptotics, conjectures and
Monte Carlo”. Ann. Statist. 1: 799–821.

Huber, P. J. and E. Ronchetti (2009). Robust Statistics. 2nd edn. New
York: Wiley.

Javanmard, A. and A. Montanari (2013). “State evolution for general
approximate message passing algorithms, with applications to spatial
coupling”. Inf. Inference. 2: 115–144.

Jeon, C., R. Ghods, A. Maleki, and C. Studer (2015). “Optimality of
large MIMO detection via approximate message passing”. In: 2015
IEEE International Symposium on Information Theory. 1227–1231.

Johnstone, I. M. (2006). “High dimensional statistical inference and
random matrices”. In: Proceedings of the International Congress of
Mathematicians, Madrid 2006. 307–333.

Full text available at: http://dx.doi.org/10.1561/2200000092

https://arxiv.org/pdf/2006.06581.pdf
https://arxiv.org/pdf/2006.06581.pdf
https://arxiv.org/pdf/2201.08435.pdf
https://arxiv.org/pdf/2201.08435.pdf


References 195

Johnstone, I. M. and A. Y. Lu (2009). “On consistency and sparsity for
principal components analysis in high dimensions”. J. Amer. Statist.
Assoc. 104: 682–693.

Johnstone, I. M. and D. Paul (2018). “PCA in high dimensions: An
orientation”. Proc. IEEE. 106: 1277–1292.

Jolliffe, I. T., N. T. Trendafilov, and M. Uddin (2003). “A modified
principal component technique based on the LASSO”. J. Comput.
Graph. Statist. 12: 531–547.

Kabashima, Y., F. Krzakala, M. Mézard, A. Sakata, and L. Zdeborová
(2016). “Phase transitions and sample complexity in Bayes optimal
matrix factorization”. IEEE Trans. Inf. Theory. 62: 4228–4265.

Kabashima, Y. and M. Vehkaperä (2014). “Signal recovery using expec-
tation consistent approximation for linear observations”. In: 2014
IEEE International Symposium on Information Theory. 226–230.

Kallenberg, O. (1997). Foundations of Modern Probability. New York:
Springer–Verlag.

Kini, G. R. and C. Thrampoulidis (2020). “Analytic study of double
descent in binary classification: The impact of loss”. In: 2020 IEEE
International Symposium on Information Theory. 2527–2532.

Knowles, A. and J. Yin (2013). “The isotropic semicircle law and
deformation of Wigner matrices”. Comm. Pure Appl. Math. 66:
1663–1749.

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models:
Principles and Techniques. Cambridge, Massachusetts: MIT Press.

Krzakala, F., M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová (2012).
“Probabilistic reconstruction in compressed sensing: Algorithms,
phase diagrams, and threshold achieving matrices”. J. Stat. Mech.
Theory Exp. P08009.

Kuchibhotla, A. and A. Chakrabortty (2018). “Moving beyond sub-
Gaussianity in high-dimensional statistics: Applications in covariance
estimation and linear regression”. url: https ://arxiv .org/pdf /
1804.02605.pdf.

Lelarge, M. and L. Miolane (2019). “Fundamental limits of symmetric
low-rank matrix estimation”. Probab. Theory Related Fields. 173:
859–929.

Full text available at: http://dx.doi.org/10.1561/2200000092

https://arxiv.org/pdf/1804.02605.pdf
https://arxiv.org/pdf/1804.02605.pdf


196 References

Lesieur, T., F. Krzakala, and L. Zdeborová (2017). “Constrained low-
rank matrix estimation: Phase transitions, approximate message
passing and applications”. J. Stat. Mech. Theory Exp. 073403.

Li, Y. and Y. Wei (2021). “Minimum `1-norm interpolators: Precise
asymptotics and multiple descent”. url: https://arxiv.org/pdf/
2110.09502.pdf.

Liang, T. and A. Rakhlin (2020). “Just interpolate: Kernel ‘ridgeless’
regression can generalize”. Ann. Statist. 48: 1329–1347.

Liang, T. and P. Sur (2022). “A precise high-dimensional asymptotic
theory for boosting and minimum-`1-norm interpolated classifiers”.
Ann. Statist. to appear.

Liu, L., S. Huang, and B. M. Kurkoski (2021). “Memory approximate
message passing”. In: 2021 IEEE International Symposium on In-
formation Theory. 1379–1384.

Ma, J. and L. Ping (2017). “Orthogonal AMP”. IEEE Access. 5: 2020–
2033.

Ma, J., J. Xu, and A. Maleki (2019a). “Optimization-based AMP for
phase retrieval: The impact of initialization and `2 regularization”.
IEEE Trans. Inf. Theory. 65: 3600–3629.

Ma, J., J. Xu, and A. Maleki (2021). “Impact of the sensing spectrum on
signal recovery in generalized linear models”. url: https://arxiv.org/
pdf/2111.03237.pdf.

Ma, Y., C. Rush, and D. Baron (2019b). “Analysis of approximate
message passing with non-separable denoisers and Markov random
field priors”. IEEE Trans. Inf. Theory. 65: 7367–7389.

Ma, Z. and Y. Wu (2015). “Computational barriers in minimax subma-
trix detection”. Ann. Statist. 43: 1089–1116.

Manoel, A., F. Krzakala, M. Mézard, and L. Zdeborová (2017). “Multi-
layer generalized linear estimation”. In: 2017 IEEE International
Symposium on Information Theory. 2098–2102.

Matsushita, R. and T. Tanaka (2013). “Low-rank matrix reconstruc-
tion and clustering via approximate message passing”. Advances in
Neural Information Processing Systems. 26: 917–925.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. 2nd
edn. Boca Raton: Chapman & Hall/CRC.

Mehta, M. L. (2004). Random Matrices. 3rd edn. San Diego: Elsevier.

Full text available at: http://dx.doi.org/10.1561/2200000092

https://arxiv.org/pdf/2110.09502.pdf
https://arxiv.org/pdf/2110.09502.pdf
https://arxiv.org/pdf/2111.03237.pdf
https://arxiv.org/pdf/2111.03237.pdf


References 197

Mei, S. and A. Montanari (2020). “The generalization error of random
features regression: Precise asymptotics and double descent curve”.
Comm. Pure Appl. Math. 75: 667–766.

Metzler, C., A. Mousavi, and R. Baraniuk (2017). “Learned D-AMP:
Principled neural network based compressive image recovery”. Ad-
vances in Neural Information Processing Systems. 30: 1772–1783.

Mézard, M. and M. Montanari (2009). Information, Physics, and Com-
putation. Oxford: Oxford University Press.

Mézard, M., G. Parisi, and M. A. Virasoro (1987). Spin Glass Theory
and Beyond. Vol. 9. World Scientific Lecture Notes in Physics.

Miolane, L. and A. Montanari (2021). “The distribution of the Lasso:
Uniform control over sparse balls and adaptive parameter tuning”.
Ann. Statist. 49: 2313–2335.

Mondelli, M., C. Thrampoulidis, and R. Venkataramanan (2021). “Op-
timal combination of linear and spectral estimators for generalized
linear models”. Found. Comput. Math. 2021.

Mondelli, M. and R. Venkataramanan (2020). “Approximate message
passing with spectral initialization for generalized linear models”.
Proc. Mach. Learn. Res. 130: 397–405.

Mondelli, M. and R. Venkataramanan (2021). “PCA initialization for
approximate message passing in rotationally invariant models”. url:
https://arxiv.org/pdf/2106.02356.pdf.

Montanari, A. (2012). “Graphical models concepts in compressed sens-
ing”. In: Compressed Sensing: Theory and Applications. Ed. by Y.
Eldar and G. Kutyniok. Cambridge: Cambridge University Press.

Montanari, A. and E. Richard (2014). “A statistical model for tensor
PCA”. Advances in Neural Information Processing Systems. 27:
2897–2905.

Montanari, A. and E. Richard (2016). “Non-negative principal compo-
nent analysis: Message passing algorithms and sharp asymptotics”.
IEEE Trans. Inf. Theory. 62: 1458–1484.

Montanari, A. and R. Venkataramanan (2021). “Estimation of low-rank
matrices via approximate message passing”. Ann. Statist. 49: 321–
345.

Full text available at: http://dx.doi.org/10.1561/2200000092

https://arxiv.org/pdf/2106.02356.pdf


198 References

Mousavi, A., A. Maleki, and R. G. Baraniuk (2018). “Consistent pa-
rameter estimation for LASSO and approximate message passing”.
Ann. Statist. 46: 119–148.

Nakkiran, P., G. Kaplun, Y. Bansal, T. Yang, B. Barak, and I. Sutskever
(2021). “Deep double descent: Where bigger models and more data
hurt”. J. Stat. Mech. Theory Exp. 124003.

Opper, M., B. Çakmak, and O. Winther (2016). “A theory of solving
TAP equations for Ising models with general invariant random
matrices”. J. Phys. A. 49: 114002.

Opper, M. and O. Winther (2005). “Expectation consistent approximate
inference”. J. Mach. Learn. Res. 6: 2177–2204.

Pace, L. and A. Salvan (1997). Principles of Statistical Inference: From
a Neo-Fisherian Perspective. Singapore: World Scientific.

Panaretos, V. M. and Y. Zemel (2020). An Invitation to Statistics in
Wasserstein Space. New York: Springer–Verlag.

Pandit, P., M. Sahraee-Ardakan, S. Rangan, P. Schniter, and A. K.
Fletcher (2020). “Inference with deep generative priors in high
dimensions”. IEEE J. Sel. Areas Inf. Theory. 1: 336–347.

Parikh, N. and S. Boyd (2013). “Proximal algorithms”. Found. Trends
Optim. 1: 123–231.

Parker, J. T., P. Schniter, and V. Cevher (2014a). “Bilinear generalized
approximate message passing—Part I: Derivation”. IEEE Trans.
Signal Process. 62: 5839–5853.

Parker, J. T., P. Schniter, and V. Cevher (2014b). “Bilinear generalized
approximate message passing—Part II: Applications”. IEEE Trans.
Signal Process. 62: 5854–5867.

Paul, D. (2007). “Asymptotics of sample eigenstructure for a large
dimensional spiked covariance model”. Statist. Sinica. 17: 1617–
1642.

Peng, M. (2012). “Eigenvalues of deformed random matrices”. url:
https://arxiv.org/pdf/1205.0572.pdf.

Perry, A., A. S. Wein, A. S. Bandeira, and A. Moitra (2018). “Optimality
and sub-optimality of PCA I: Spiked random matrix models”. Ann.
Statist. 46: 2416–2451.

Full text available at: http://dx.doi.org/10.1561/2200000092

https://arxiv.org/pdf/1205.0572.pdf


References 199

Portnoy, S. (1984). “Asymptotic behavior ofM -estimators of p regression
parameters when p2/n is large. I. Consistency”. Ann. Statist. 12:
1298–1309.

Portnoy, S. (1985). “Asymptotic behavior ofM -estimators of p regression
parameters when p2/n is large; II. Normal approximation”. Ann.
Statist. 13: 1403–1417.

Portnoy, S. (1988). “Asymptotic behavior of likelihood methods for ex-
ponential families when the number of parameters tends to infinity”.
Ann. Statist. 16: 356–366.

Prékopa, A. (1980). “Logarithmic concave measures and related topics”.
In: Stochastic Programming (Proc. Internat. Conf., Univ. Oxford,
Oxford, 1974, M. A. H. Dempster ed.) London: Academic Press.
63–82.

Rangan, S. (2011). “Generalized approximate message passing for esti-
mation with random linear mixing”. In: 2011 IEEE International
Symposium on Information Theory. 2168–2172.

Rangan, S. and A. K. Fletcher (2012). “Iterative estimation of con-
strained rank-one matrices in noise”. In: 2012 IEEE International
Symposium on Information Theory. 1246–1250.

Rangan, S. and A. K. Fletcher (2018). “Iterative reconstruction of
rank-one matrices in noise”. Inf. Inference. 7: 1246–1250.

Rangan, S., A. K. Fletcher, and V. K. Goyal (2009). “Asymptotic
analysis of MAP estimation via the replica method and applications
to compressed sensing”. Advances in Neural Information Processing
Systems. 22: 1545–1553.

Rangan, S., P. Schniter, and A. K. Fletcher (2019b). “Vector approxi-
mate message passing”. IEEE Trans. Inf. Theory. 65: 6664–6684.

Rangan, S., P. Schniter, A. K. Fletcher, and S. Sarkar (2019a). “On
the convergence of approximate message passing with arbitrary
matrices”. IEEE Trans. Inf. Theory. 65: 5339–5351.

Rangan, S., P. Schniter, E. Riegler, A. K. Fletcher, and V. Cevher
(2016). “Fixed points of generalized approximate message passing
with arbitrary matrices”. IEEE Trans. Inf. Theory. 62: 7464–7474.

Reeves, G. and H. D. Pfister (2019). “The replica-symmetric prediction
for random linear estimation with Gaussian matrices is exact”. IEEE
Trans. Inf. Theory. 65: 2252–2283.

Full text available at: http://dx.doi.org/10.1561/2200000092



200 References

Robbins, H. (1956). “An empirical Bayes approach to statistics”. Proc.
Third Berkeley Symp. Math. Statist. Prob. 1: 157–163.

Rockafellar, R. T. (1997). Convex Analysis. Princeton: Princeton Uni-
versity Press.

Rush, C., A. Greig, and R. Venkataramanan (2017). “Capacity-achieving
sparse superposition codes via approximate message passing decod-
ing”. IEEE Trans. Inf. Theory. 63: 1476–1500.

Rush, C. and R. Venkataramanan (2018). “Finite sample analysis of
approximate message passing algorithms”. IEEE Trans. Inf. Theory.
64: 7264–7286.

Schniter, P. (2011). “A message-passing receiver for BICM-OFDM
over unknown clustered-sparse channels”. IEEE J. Sel. Top. Signal
Process. 5: 1462–1474.

Schniter, P. (2020). “A simple derivation of AMP and its state evolution
via first-order cancellation”. IEEE Trans. Signal Process. 68: 4283–
4292.

Schniter, P. and S. Rangan (2014). “Compressive phase retrieval via
generalized approximate message passing”. IEEE Trans. Signal
Process. 63: 1043–1055.

Schniter, P., S. Rangan, and A. K. Fletcher (2016). “Vector approximate
message passing for the generalized linear model”. In: 50th Asilomar
Conference on Signals, Systems and Computers. 1525–1529.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statis-
tics. New York: Wiley.

Su, W., M. Bogdan, and E. Candès (2017). “False discoveries occur
early on the LASSO path”. Ann. Statist. 45: 2133–2150.

Su, W. and E. Candès (2016). “SLOPE is adaptive to unknown sparsity
and asymptotically minimax”. Ann. Statist. 44: 1038–1068.

Su, X. and T. M. Khoshgoftaar (2009). “A survey of collaborative
filtering techniques”. Adv. Artif. Intelligence. 2009: 1–19.

Sur, P. and E. J. Candès (2019a). “A modern maximum-likelihood
theory for high-dimensional logistic regression”. Proc. Natl. Acad.
Sci. U.S.A. 116: 14516–14525.

Full text available at: http://dx.doi.org/10.1561/2200000092



References 201

Sur, P. and E. J. Candès (2019b). “Additional supplementary materials
for ‘A modern maximum-likelihood theory for high-dimensional
logistic regression’”. url: https://sites.fas.harvard.edu/~prs499/
papers/proofs_LogisticAMP.pdf.

Sur, P., Y. Chen, and E. J. Candès (2017). “The likelihood ratio test
in high-dimensional logistic regression is asymptotically a rescaled
chi-square”. Probab. Theory Related Fields. 175: 487–558.

Takeuchi, K. (2021a). “Bayes-optimal convolutional AMP”. IEEE Trans.
Inf. Theory. 67: 4405–4428.

Takeuchi, K. (2021b). “On the convergence of orthogonal/vector AMP:
Long-memory message-passing strategy”. url: https://arxiv.org/
pdf/2111.05522.pdf.

Takeuchi, K. (2020). “Rigorous dynamics of expectation-propagation-
based signal recovery from unitarily invariant measurements”. IEEE
Trans. Inf. Theory. 66: 368–386.

Talagrand, M. (2011). Mean Field Models for Spin Glasses, Vol I: Basic
Examples. New York: Springer.

Tanaka, T. (2002). “A statistical-mechanics approach to large-system
analysis of CDMA multiuser detectors”. IEEE Trans. Inf. Theory.
48: 2888–2910.

Thrampoulidis, C., E. Abbasi, and B. Hassibi (2018). “Precise error
analysis of regularized M -estimators in high dimensions”. IEEE
Trans. Inf. Theory. 64: 5592–5628.

Thrampoulidis, C., S. Oymak, and B. Hassibi (2015). “Regularized
linear regression: A precise analysis of the estimation error”. Proc.
Mach. Learn. Res. 40: 1683–1709.

Tian, F., L. Liu, and X. Chen (2021). “Generalized memory approximate
message passing”. url: https://arxiv.org/pdf/2110.06069.pdf.

Tibshirani, R. (1996). “Regression shrinkage and selection via the Lasso”.
J. Roy. Statist. Soc., Ser. B. 58: 267–288.

Tramel, E. W., S. Kumar, A. Giurgiu, and A. Montanari (2014). “Sta-
tistical estimation: From denoising to sparse regression and hidden
cliques”. url: https://arxiv.org/pdf/1409.5557.pdf.

Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. New
York: Springer–Verlag.

Full text available at: http://dx.doi.org/10.1561/2200000092

https://sites.fas.harvard.edu/~prs499/papers/proofs_LogisticAMP.pdf
https://sites.fas.harvard.edu/~prs499/papers/proofs_LogisticAMP.pdf
https://arxiv.org/pdf/2111.05522.pdf
https://arxiv.org/pdf/2111.05522.pdf
https://arxiv.org/pdf/2110.06069.pdf
https://arxiv.org/pdf/1409.5557.pdf


202 References

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge: Cam-
bridge University Press.

Venkataramanan, R., K. Kögler, and M. Mondelli (2021). “Estimation
in rotationally invariant generalized linear models via approximate
message passing”. url: https://arxiv.org/pdf/2112.04330.pdf.

Vila, J., P. Schniter, and J. Meola (2015). “Hyperspectral unmixing via
turbo bilinear approximate message passing”. IEEE Trans. Comput.
Imaging. 1: 143–158.

Villani, C. (2003). Topics in Optimal Transportation. Graduate Studies
in Mathematics. Providence, RI: American Mathematical Society.

Villani, C. (2009). Optimal Transport, Old and New. New York: Springer–
Verlag.

von Luxburg, U. (2007). “A tutorial on spectral clustering”. Statist.
Comput. 17: 395–416.

Vu, V. Q. and J. Lei (2013). “Minimax sparse principal subspace esti-
mation in high dimensions”. Ann. Statist. 41: 2905–2947.

Wang, T., Q. Berthet, and R. J. Samworth (2016). “Statistical and com-
putational trade-offs in estimation of sparse principal components”.
Ann. Statist. 44: 1896–1930.

Wein, A. S., A. El Alaoui, and C. Moore (2019). “The Kikuchi hierarchy
and tensor PCA”. In: 2019 IEEE Annual Symposium on Foundations
of Computer Science. 1446–1468.

Yang, G. (2019). “Scaling limits of wide neural networks with weight
sharing: Gaussian process behavior, gradient independence, and
neural tangent kernel derivation”. url: https ://arxiv .org/pdf /
1902.04760.pdf.

Zdeborová, L. and F. Krzakala (2016). “Statistical physics of inference:
Thresholds and algorithms”. Adv. Phys. 65: 453–552.

Zhong, X., T. Wang, and Z. Fan (2021). “Approximate message passing
for orthogonally invariant ensembles: Multivariate non-linearities and
spectral initialization”. url: https://arxiv.org/pdf/2110.02318.pdf.

Zhu, Z., T. Wang, and R. J. Samworth (2019). “High-dimensional
principal component analysis with heterogeneous missingness”. url:
https://arxiv.org/pdf/1906.12125.pdf.

Zou, H., T. Hastie, and R. Tibshirani (2006). “Sparse principal compo-
nent analysis”. J. Comput. Graph. Statist. 15: 265–286.

Full text available at: http://dx.doi.org/10.1561/2200000092

https://arxiv.org/pdf/2112.04330.pdf
https://arxiv.org/pdf/1902.04760.pdf
https://arxiv.org/pdf/1902.04760.pdf
https://arxiv.org/pdf/2110.02318.pdf
https://arxiv.org/pdf/1906.12125.pdf



