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ABSTRACT

This monograph reviews a class of univariate piecewise poly-
nomial functions known as discrete splines, which share
properties analogous to the better-known class of spline
functions, but where continuity in derivatives is replaced by
(a suitable notion of) continuity in divided differences. As it
happens, discrete splines bear connections to a wide array
of developments in applied mathematics and statistics, from
divided differences and Newton interpolation (dating back
to over 300 years ago) to trend filtering (from the last 15
years). We survey these connections, and contribute some
new perspectives and new results along the way.

Ryan J. Tibshirani (2022), “Divided Differences, Falling Factorials, and Discrete
Splines: Another Look at Trend Filtering and Related Problems”, Foundations and
Trends® in Machine Learning: Vol. 15, No. 6, pp 694–846. DOI: 10.1561/2200000099.
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1
Introduction

Nonparametric regression is a fundamental problem in statistics, in
which we seek to flexibly estimate a smooth trend from data without
relying on specific assumptions about its form or shape. The standard
setup is to assume that data comes from a model (often called the
“signal-plus-noise” model):

yi = f0(xi) + ϵi, i = 1, . . . , n.

Here, f0 : X → R is an unknown function to be estimated, referred to
as the regression function; xi ∈ X , i = 1, . . . , n are design points, often
(though not always) treated as nonrandom; ϵi ∈ R, i = 1, . . . , n are
random errors, usually assumed to be i.i.d. (independent and identically
distributed) with zero mean; and yi ∈ R, i = 1, . . . , n are referred to
as response points. Unlike in a parametric problem, where we would
assume f0 takes a particular form (for example, a polynomial function)
that would confine it to some finite-dimensional function space, in a
nonparametric problem we make no such restriction, and instead assume
f0 satisfies some broader smoothness properties (for example, it has two
bounded derivatives) that give rise to an infinite-dimensional function
space.

2
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3

The modern nonparametric toolkit contains an impressive collection
of diverse methods, based on ideas like kernels, splines, and wavelets, to
name just a few. Many estimators of interest in nonparametric regression
can be formulated as the solutions to optimization problems based on
the observed data. At a high level, such optimization-based methods can
be divided into two camps. The first can be called the continuous-time
approach, where we optimize over a function f : X → R that balances
some notion of goodness-of-fit (to the data) with another notion of
smoothness. The second can be called the discrete-time approach, where
we optimize over function evaluations f(x1), . . . , f(xn) at the design
points, again to balance goodness-of-fit with smoothness.1

The main difference between these approaches lies in the optimiza-
tion variable: in the first it is a function f , and in the second it is a vector
θ = (f(x1), . . . , f(xn)) ∈ Rn. Each perspective comes with its advan-
tages. The discrete-time approach is often much simpler, conceptually
speaking, as it often requires only a fairly basic level of mathematics in
order to explain and understand the formulation at hand. Consider, for
example, a setting with X = [a, b] (the case of univariate design points),
where we assume without a loss of generality that x1 < x2 < · · · < xn,
and we define an estimator by the solution of the optimization problem:

minimize
θ

1
2

n∑
i=1

(yi − θi)2 + λ
n−1∑
i=1

|θi − θi+1|. (1.1)

In the above criterion, each θi plays the role of a function evaluation
f(xi); the first term measures the goodness-of-fit (via squared error
loss) of the evaluations to the responses; the second term measures the
jumpiness of the evaluations across neighboring design points, θi = f(xi)
and θi+1 = f(xi+1); and λ ≥ 0 is a tuning parameter determining the
relative importance of the two terms for the overall minimization, with a
larger λ translating into a higher importance on encouraging smoothness
(mitigating jumpiness).

1The use of the word “time” here is completely informal. In some applications,
the input x ∈ X might actually index time, and thus the names “continuous-time”
and “discrete-time” would take on a direct meaning; but in general, they are only to
be understood loosely, in reference to the distinction between modeling an entire
function, and modeling function evaluations, as in (1.2) and (1.1), respectively.
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4 Introduction

Reasoning about the discrete-time problem (1.1) can be done without
appealing to sophisticated mathematics, both conceptually and formally.
Arguably, this could be appropriate for an introductory course on
nonparametric statistical estimation. On the other hand, consider the
estimator defined by the solution of the optimization problem:2

minimize
f

1
2

n∑
i=1

(
yi − f(xi)

)2 + λ TV(f). (1.2)

The minimization is taken over functions (for which the criterion is
well-defined and finite); the first term measures the goodness-of-fit of the
evaluations to the response points, as before; the second term measures
the jumpiness of f , now using the total variation operator TV(·) acting
on univariate functions; and λ ≥ 0 is again a tuning parameter. Relative
to (1.1), the continuous-time problem (1.2) requires an appreciably
higher level of mathematical sophistication, in order to develop any
conceptual or formal understanding. However, problem (1.2) does have
the distinct advantage of delivering a function as its solution, call it f̂ :
this allows us to predict the value of the response at any point x ∈ [a, b],
via f̂(x).

From the solution in (1.1), call it θ̂, it is not immediately clear how
to predict the response value at an arbitrary point x ∈ [a, b]. This is
about choosing the “right” method for interpolating (or extrapolating,
on [a, x1) ∪ (xn, b]) a set of n function evaluations. To be fair, in the
particular case of problem (1.1), its solution is generically piecewise-
constant over its components θ̂i, i = 1, . . . , n, which suggests a natural
interpolant. In general, however, the task of interpolating the estimated
function evaluations from a discrete-time optimization problem into an
entire estimated function is far from clear-cut. Likely for this reason,
the statistics literature—which places a strong emphasis, both applied
and theoretical, on prediction at a new points x ∈ [a, b]—has focused
primarily on the continuous-time approach to optimization-based non-
parametric regression. While the discrete-time approach is popular in

2Here and throughout, we say “the solution” only for simplicity. Problem (1.2),
and more generally problem (1.7), need not admit unique solutions. The discrete-time
problems (1.1) and (1.3) do, however, always admit unique solutions, because their
criteria are strictly convex.
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1.1. Motivation 5

signal processing and econometrics, the lines of work on discrete- and
continuous-time smoothing seem to have evolved mostly in parallel,
with limited interplay.

The optimization problems in (1.1), (1.2) are not arbitrary examples
of the discrete- and continuous-time perspectives, respectively; they are
in fact deeply related to the main points of study in this monograph.
Interestingly, problems (1.1), (1.2) are equivalent in the sense that their
solutions, denoted θ̂, f̂ respectively, satisfy θ̂i = f̂(xi), i = 1, . . . , n. In
other words, the solution in (1.1) reproduces the evaluations of the
solution in (1.2) at the design points. The common estimator here is
well-known, called total variation denoising (Rudin et al., 1992) in some
parts of applied mathematics, and the fused lasso (Tibshirani et al.,
2005) in statistics.

The equivalence between (1.1), (1.2) is a special case of a more
general equivalence between classes of discrete- and continuous-time
optimization problems, in which the differences θi − θi+1 in (1.1) are
replaced by higher-order discrete derivatives (based on divided differ-
ences), and TV(f) in (1.2) is replaced by the total variation of a suitable
derivative of f . The key mathematical object powering this connection
is a linear space of univariate piecewise polynomials called discrete
splines, which is the central focus of this monograph. We dive into the
details, and explain the importance of such equivalences, in the next
subsection.

1.1 Motivation

The jumping-off point for the developments that follow is a general-
ization of the discrete-time total variation denoising problem (1.1),
proposed independently by Steidl et al. (2006) and Kim et al. (2009)
(though similar ideas were around earlier, see Section 2.6), defined for
an integer k ≥ 0 by:

minimize
θ

1
2∥y − θ∥2

2 + λ∥Ck+1
n θ∥1. (1.3)

Here, λ ≥ 0 is a tuning parameter, y = (y1, . . . , yn) ∈ Rn is the vector of
response points, Ck+1

n ∈ R(n−k−1)×n is an explicit banded matrix that
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6 Introduction

corresponds to a weighted (k + 1)st order discrete derivative operator
(this can be defined in terms of the (k + 1)st order divided difference
coefficients across the design points; see the construction in (6.1)–(6.5)),
and ∥ · ∥2 and ∥ · ∥1 are the standard ℓ2 and ℓ1 norms acting on vectors.

The estimator defined by solving problem (1.3) is known as kth
order trend filtering. A important aspect to highlight right away is
computational: since Ck+1

n is a banded matrix (with bandwidth k + 2),
the trend filtering problem (1.3) can be solved efficiently using various
convex optimization techniques that take advantage of this structure
(see, for example, Kim et al. (2009), Arnold and Tibshirani (2016), and
Ramdas and Tibshirani (2016)). The original papers on trend filtering
Steidl et al. (2006) and Kim et al. (2009) considered the special case of
evenly-spaced design points, xi+1 − xi = v > 0, i = 1, . . . , n − 1, where
the penalty term in (1.3) takes a perhaps more familiar form:

∥Ck+1
n θ∥1 =



1
v

n−1∑
i=1

|θi − θi+1| if k = 0

1
v2

n−2∑
i=1

|θi − 2θi+1 + θi+2| if k = 1

1
v3

n−3∑
i=1

|θi − 3θi+1 + 3θi+2 − θi+3| if k = 2,

(1.4)

and so forth, where for a general k ≥ 0, the penalty is a 1/vk+1 times a
sum of absolute (k + 1)st forward differences. (The factor of 1/vk+1 can
always be absorbed into the tuning parameter λ; and so we can see that
(1.3) reduces to (1.1) for k = 0, modulo a rescaling of λ). The extension
of trend filtering to arbitrary (unevenly-spaced) design points is due
to Tibshirani (2014). The continuous-time (functional) perspective on
trend filtering is also due to Tibshirani (2014), which we describe next.

Connections to continuous-time. To motivate the continuous-time
view, consider Ck+1

n θ, the vector of (weighted) (k + 1)st discrete deriva-
tives of θ across the design points: since discrete differentiation is based
on iterated differencing, we can equivalently interpret Ck+1

n θ as a vector
of differences of kth discrete derivatives of θ at adjacent design points.
By the sparsity-inducing property of the ℓ1 norm, the penalty in problem
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Figure 1.1: (Adapted from Tibshirani (2014).) Example trend filtering estimates
for k = 0, k = 1, and k = 2, exhibiting piecewise constant, piecewise linear, and
piecewise quadratic behavior, respectively. In each panel, the n = 100 design points
are marked by ticks on the horizontal axis (note that they are not evenly-spaced).

(1.3) thus drives the kth discrete derivatives of θ to be equal at adjacent
design points, and the trend filtering solution θ̂ generically takes on
the structure of a kth degree piecewise polynomial (as its kth discrete
derivative will be piecewise constant), with adaptively-chosen knots
(points at which the kth discrete derivative changes). This intuition is
readily confirmed by empirical examples; see Figure 1.1.

These ideas were formalized in Tibshirani (2014), and then developed
further in Wang et al. (2014). These papers introduced what were called
kth degree falling factorial basis, a set of functions defined as

hk
j (x) = 1

(j − 1)!

j−1∏
ℓ=1

(x − xℓ), j = 1, . . . , k + 1,

hk
j (x) = 1

k!

j−1∏
ℓ=j−k

(x − xℓ) · 1{x > xj−1}, j = k + 2, . . . , n.

(1.5)

(Note that this basis depends on the design points x1, . . . , xn, though
this is notationally suppressed.) The functions in (1.5) are kth degree
piecewise polynomials, with knots at xk+1, . . . , xn−1. Here and through-
out, we interpret the empty product to be equal to 1, for convenience
(that is,

∏0
i=1 ai = 1). Note the similarity of the above basis and the

standard truncated power basis for splines, with knots at xk+1, . . . , xn−1
(see (2.5)); in fact, when k = 0 or k = 1, the two bases are equal,
and the above falling factorial functions are exactly splines; but when
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k ≥ 2, this is no longer true—the above falling factorial functions are
piecewise polynomials with discontinuities in their derivatives of orders
1, . . . , k − 1 (see (4.1), (4.2)), and thus span a different space than that
of kth degree splines.

The key result connecting (1.5) and (1.3) was given in Lemma 5 of
Tibshirani (2014) (see also Lemma 2 of Wang et al. (2014)), and can be
explained as follows. For each θ ∈ Rn, there is a function in the span
of the falling factorial basis, f ∈ span{hk

1, . . . , hk
n}, with two properties:

first, f interpolates each θi at xi, which we write as θ = f(x1:n), where
f(x1:n) = (f(x1), . . . , f(xn)) ∈ Rn denotes the vector of evaluations of
f at the design points; and second

TV(Dkf) =
∥∥Ck+1

n f(x1:n)
∥∥

1. (1.6)

On the right-hand side is the trend filtering penalty, which, recall, we
can interpret as a sum of absolute differences of kth discrete derivatives
of f over the design points, and therefore as a type of total variation
penalty on the kth discrete derivative. On the left-hand side above, we
denote by Dkf the kth derivative of f (which we take to mean the kth
left derivative when this does not exist), and by TV(·) the usual total
variation operator on functions. Hence, taking total variation of the kth
derivative as our smoothness measure, the property in (1.6) says that
the interpolant f of θ is exactly as smooth in continuous-time as θ is in
discrete-time.

Reflecting on this result, the first property—that f interpolates θi

at xi, for i = 1, . . . , n—is of course not special in it of itself. Any rich
enough function class, of dimension at least n, will admit such a function.
However, paired with the second property (1.6), the result becomes
interesting, and even somewhat surprising. Said differently, any function
f lying in the span of the kth degree falling factorial basis has the prop-
erty that its discretization to the design points is lossless with respect to
the total variation smoothness functional TV(Dkf): this information is
exactly preserved by θ = f(x1:n). Denoting by Hk

n = span{hk
1, . . . , hk

n}
the span of falling factorial functions, we thus see that the trend filtering
problem (1.3) is equivalent to the variational problem:

minimize
f∈Hk

n

1
2

n∑
i=1

(
yi − f(xi)

)2 + λ TV(Dkf), (1.7)
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in the sense that at the solutions θ̂, f̂ in problems (1.3), (1.7), respec-
tively, we have θ̂ = f̂(x1:n). Moreover, it turns out that forming f̂ from
θ̂ is straightforward: starting with the falling factorial basis expansion
f̂ =

∑n
j=1 α̂jhk

j , and then writing the coefficient vector in block form
α̂ = (â, b̂) ∈ Rk+1 × Rn−k−1, the piecewise polynomial basis coefficients
are given by b̂ = Ck+1

n θ̂, and the polynomial basis coefficients â can also
be expressed simply in terms of lower-order discrete derivatives. This
shows that f̂ is a kth degree piecewise polynomial, with knots occur-
ring at the nonzeros of Ck+1

n θ̂, that is, at changes in the kth discrete
derivative of θ̂, formally justifying the intuition about the structure of
θ̂ given above.

Reflections on the equivalence. One might say that the developments
outlined above bring trend filtering closer to the “statistical mainstream”:
we move from being able to estimate the values of the regression function
f0 at the design points x1, . . . , xn to being able to estimate f0 itself. This
has several uses: practical—we can use the interpolant f̂ to estimate
f0(x) at unseen values of x; conceptual—we can better understand
what kinds of “shapes” trend filtering is inclined to produce, via the
representation in terms of falling factorial functions; and theoretical—
we can tie (1.7) to an unconstrained variational problem, where we
minimize the same criterion over all functions f (for which the criterion
is well-defined and finite):

minimize
f

1
2

n∑
i=1

(
yi − f(xi)

)2 + λ TV(Dkf). (1.8)

This minimization is in general computationally difficult, but its solution,
called the locally adaptive regression spline estimator (Mammen and
Geer, 1997) has favorable theoretical properties, in terms of its rate of
estimation of f0 (see Section 2.5 for a review). By showing that the
falling factorial functions are “close” to certain splines, Tibshirani (2014)
and Wang et al. (2014) showed that the solution in (1.7) is “close” to
that in (1.8), and thus trend filtering inherits the favorable estimation
guarantees of the locally adaptive regression spline (which is important
because trend filtering is computationally easier; for more, see Sections
2.5 and 2.6).
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The critical device in all of this were the falling factorial basis
functions (1.5), which provide the bridge between the discrete and
continuous worlds. This now brings us to the motivation for the current
monograph. One has to wonder: did we somehow get “lucky” with trend
filtering and this basis? Do the falling factorial functions have other
properties aside from (1.6), that is, aside from equating (1.3) and (1.7)?
At the time of writing Tibshirani (2014) and Wang et al. (2014) (and
even in subsequent work on trend filtering), we were not fully aware of
the relationship of the falling factorial functions and what appears to
be fairly classical work in numerical analysis. First and foremost:

The span Hk
n = span{hk

1, . . . , hk
n} of the kth degree falling

factorial basis functions is a special space of piecewise poly-
nomials known as kth degree discrete splines.

Discrete splines have been studied since the early 1970s by applied
mathematicians, beginning with Mangasarian and Schumaker (1971)
and Mangasarian and Schumaker (1973). The current monograph recasts
some of our previous work on trend filtering to better connect it to
the discrete spline literature, reviews some relevant existing results
on discrete splines and discusses the implications for trend filtering
and related problems, and lastly, contributes some new results and
perspectives on discrete splines.

1.2 Summary

An outline and summary of this monograph is as follows.

• In Section 2, we provide relevant background and historical re-
marks.

• In Section 3, we give a new perspective on how to construct the
falling factorial basis “from scratch”. We start by defining a natural
discrete derivative operator and its inverse, a discrete integrator.
We then show that the falling factorial basis functions are given
by kth order discrete integration of appropriate step functions
(Theorem 3.2).
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1.2. Summary 11

• In Section 4, we verify that the span of the falling factorial basis
is indeed a space of discrete splines (Lemma 4.1), and establish
that functions in this span satisfy a key matching derivatives
property: their kth discrete derivative matches their kth derivative
everywhere, and moreover, they are the only kth degree piecewise
polynomials with this property (Corollary 4.2).

• In Section 5, we give a dual basis to the falling factorial basis, based
on evaluations of discrete derivatives. As a primary use case, we
show how to use such a dual basis to perform efficient interpolation
in the falling factorial basis, which generalizes Newton’s divided
difference interpolation formula (Theorem 5.4). We also show that
this interpolation formula can be recast in an implicit manner,
which reveals that interpolation using discrete splines can be
done in constant-time (Corollary 5.5), and further, discrete splines
are uniquely determined by this implicit result: they are the
only functions that satisfy such an implicit interpolation formula
(Corollary 5.6).

• In Section 6, we present a matrix-centric view of the results given
in previous sections, drawing connections to the way some related
results have been presented in past papers. We review specialized
methods for fast matrix operations with discrete splines from
Wang et al. (2014).

• In Section 7, we present a new discrete B-spline basis for discrete
splines (it is new for arbitrary designs, and our construction
here is a departure from the standard one): we first define these
basis functions as discrete objects, by fixing their values at the
design points, and we then define them as continuum functions,
by interpolating these values within the space of discrete splines,
using the implicit interpolation view (Lemma 7.2). We show how
this discrete B-spline basis can be easily modified to provide a
basis for discrete natural splines (Lemma 7.3).

• In Section 8, we demonstrate how the previous results and devel-
opments can be ported over to the case where the knot set that
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defines the space of discrete splines is an arbitrary (potentially
sparse) subset of the design points. An important find here is that
the discrete B-spline basis provides a much more stable (better-
conditioned) basis for solving least squares problems involving
discrete splines.

• In Section 9, we present two representation results for discrete
splines. First, we review a result from Tibshirani (2014) and
Wang et al. (2014) on representing the total variation functional
TV(Dkf) for a kth degree discrete spline f in terms of a sum of
absolute differences of its kth discrete derivatives (Theorem 9.1).
(Recall that we translated this in (1.6).) Second, we establish a new
result on representing the L2-Sobolev functional

∫ b
a (Dmf)(x)2 dx

for a (2m − 1)st degree discrete spline f in terms of a quadratic
form of its mth discrete derivatives (Theorem 9.2).

• In Section 10, we derive simple (crude) approximation bounds for
discrete splines, over bounded variation spaces.

• In Section 11, we revisit trend filtering. We discuss some potential
computational improvements, stemming from the development of
discrete B-splines and their stability properties. We also show that
the optimization domain in trend filtering can be further restricted
to the space of discrete natural splines by adding simple linear
constraints to the original problem, and that this modification
can lead to better boundary behavior.

• In Section 12, we revisit Bohlmann-Whittaker (BW) filtering. In
the case of arbitrary design points, we propose a simple modifica-
tion of the BW filter using a weighted penalty, which for m = 1
reduces to the linear smoothing spline. For m = 2, we derive a
deterministic bound on the ℓ2 distance between the weighted cubic
BW filter and the cubic smoothing spline (Theorem 12.2). We
use this, in combination with classical nonparametric regression
theory for smoothing splines, to prove that the weighted BW filter
attains minimax optimal estimation rates over the appropriate
L2-Sobolev classes (Corollary 12.3).
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Most proofs are deferred to Appendix B. Other relevant technical
details (background and otherwise) are deferred to Appendices C and
D.

1.3 Notation

Here is an overview of some general notation used in this monograph.
For integers a ≤ b, we use za:b = {za, za+1, . . . , zb}. For a set C, we
use 1C for the indicator function of C, that is, 1C(x) = 1{x ∈ C}. We
write f |C for the restriction of a function f to C. We use D for the
differentiation operator, and I for the integration operator: acting on
functions f on [a, b], we take If to itself be a function on [a, b], defined
by

(If)(x) =
∫ x

a
f(t) dt.

For a nonnegative integer k, we use Dk and Ik to denote k repeated
applications (that is, k times composition) of the differentiation and
integration operators, respectively. In general, when the derivative of a
function f does not exist, we interpret Df to mean the left derivative,
assuming the latter exists, and the same with Dkf .

An important note: we refer to a kth degree piecewise polynomial
that has k − 1 continuous derivatives as a spline of degree k, whereas
much of the classical literature refers to this as a spline of order k + 1;
we specifically avoid the use of the word “order” when it comes to such
functions or functions spaces, to avoid confusion.

Finally, throughout, we use “blackboard” fonts for matrices (such
as F,G, etc.), in order to easily distinguish them from operators that
act on functions (for which we use F, G, etc.). The only exceptions are
that we reserve R to denote the set of real numbers and E to denote
the expectation opterator.

For a more detailed summary of notation, and discrete-continuum
analogies or equivalences, see Appendix A.
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A
Notation Table

Table A.1: Main notation, and discrete-continuum analogies/equivalences in this
monograph. We omit notational dependence on the domain [a, b] for simplicity.

Discrete object Reference Continuum obj. Reference Notes
Operators

∆k
n =

∆k(·; x1:n), kth
order discrete
differentiation
with respect to
design point
x1:n

(3.1) Dk, kth order
differentiation

– (∆k
nf)(x) =

(Dkf)(x), for
f ∈ Hk

n and
x > xk

(Corollary 4.2)

Sk
n =

Sk(·; x1:n), kth
order discrete
integration

(3.8),
(3.9)

Ik, kth order
integration

– Sk
n = (Dk

n)−1

(Lemma 3.1)
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Table A.1: (Continued)

Discrete object Reference Continuum obj. Reference Notes
Spaces

DSk
n(t1:r), kth

degree discrete
splines with
knots t1:r and
design points
x1:n

Definition
4.1

Sk(t1:r), kth
degree splines
with knots t1:r

Definition
2.1

These spaces
coincide for
k = 0 and k = 1

Hk
n = DSk

n

(x(k+1):(n−1))
– Gk

n =
Sk(x(k+1):(n−1))

– Abbreviations
for the
“canonical”
spaces, with
knots
x(k+1):(n−1)

Bases
hk

j , j = 1, . . . , n,
kth degree
falling factorial
basis for Hk

n

(1.5) gk
j , j = 1, . . . , n,

kth degree
truncated
power basis for
Gk

n

(2.5) Falling
factorials can
be seen as
truncated
Newton
polynomials,
and have dual
relationship to
discrete
differentiation
(Lemma 5.3)

Qk
j and Nk

j ,
j = 1, . . . , n,
unnormalized
and normalized
kth degree
DB-spline basis
for Hk

n

(7.2),
(7.3),
(7.5)

P k
j and Mk

j ,
j = 1, . . . , n,
unnormalized
and normalized
kth degree
B-spline basis
for Gk

n

(C.3),
(C.4),
(C.6)

The basis in
(C.6) is actually
defined for an
arbitrary knot
set t1:r; for
arbitrary knots
in the
DB-spline
setting, see
(8.5), (8.6)
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Table A.1: (Continued)

Discrete object Reference Continuum obj. Reference Notes
Matrices

Dk
n, kth order

discrete
derivative
matrix with
respect to
design points
x1:n

(6.1),
(6.2),
(6.3)

– – Multiplying by
a vector of
evaluations
gives discrete
derivatives at
design points
x(k+1):n, as in
(6.4)

Bk
n, kth order

extended
discrete
derivative
matrix with
respect to
design points
x1:n

(6.6),
(6.7),
(6.8)

– – Multiplying by
a vector of
evaluations
gives discrete
derivatives at
all design
points x1:n, as
in (6.9)

Hk
n, kth degree

falling factorial
basis matrix
with respect to
design points
x1:n

Basis in
kth
degree
trend
filter
(2.20)

Gk
n, kth degree

truncated
power basis
matrix with
respect to
design points
x1:n

Basis in
kth
degree
restricted
locally
adaptive
regression
spline
(2.19)

Hk
n =

(Zk+1
n Bk+1

n )−1,
see (6.12);
results in fast
algorithms for
matrix
computations
in Hk

n, see
Appendix D
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Table A.1: (Continued)

Discrete object Reference Continuum obj. Reference Notes
Smoothness functionals

∥Wk+1
n Dk+1

n θ∥1

=
∑n−k−1

i=1
|(Dk

nθ)i+1 −
(Dk

nθ)i|, kth
order discrete
total variation
of vector θ

Penalty
in kth
degree
trend
filter
(2.21)

TV(Dkf), kth
order total
variation of
function f

Penalty
in kth
degree
locally
adaptive
regression
spline
(1.8)

Equal for
θ = f(x1:n) and
f ∈ Hk

n

(Theorem 9.1)

∥(Wm
n )1

2 Dm
n θ∥2

2
=∑n−m

i=1 (Dm
n θ)2

i

(xi+m − xi)/m,
mth order
discrete Sobolev
seminorm of
vector θ

Penalty
in kth
degree
BW filter
(12.1), for
k =
2m − 1

∫ b

a
(Dmf)(x)2 dx,

mth order
Sobolev
seminorm of
function f

Penalty
in kth
degree
smooth-
ing spline
(2.7), for
k =
2m − 1

Equal for
θ = f(x1:n) and
m = 1 (Lemma
12.4), but not
in general; see
also Theorem
9.2

Full text available at: http://dx.doi.org/10.1561/2200000099



B
Proofs

B.1 Proof of Theorem 2.1

Since f is a natural spline of degree 2m − 1 with knots in x1:n, we know
that Dmf is a spline of degree m − 1 with knots in x1:n, and moreover,
it is supported on [x1, xn]. Thus we can expand Dmf =

∑n−m
i=1 αiP

m−1
i

for coefficients αi, i = 1, . . . , n − m, and∫ b

a
(Dmf)(x)2 dx = αTQα, (B.1)

where Q ∈ R(n−m)×(n−m) has entries Qij =
∫ b

a P m−1
i (x)P m−1

j (x) dx.
But we can also write∫ b

a
(Dmf)(x)2 dx =

∫ b

a
(Dmf)(x)

n−m∑
i=1

αiP
m−1
i (x) dx

=
n−m∑
i=1

αi

∫ b

a
(Dmf)(x)P m−1

i (x) dx

= 1
m

n−m∑
i=1

αi
(
Dm

n f(x1:n)
)

i

= 1
m

αTDm
n f(x1:n), (B.2)
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where in the third line, we used the Peano representation for B-splines,
as described in (C.1) in Appendix C.1, which implies that for i =
1, . . . , n − m,

(m − 1)! · f [xi, . . . , xi+m] =
∫ b

a
(Dmf)(x)P m−1

i (x) dx.

Comparing (B.1) and (B.2), we learn that Qα = Dm
n f(x1:n)/m, that is,

α = Q−1Dm
n f(x1:n)/m, and therefore∫ b

a
(Dmf)(x)2 dx = 1

m2
(
Q−1Dm

n f(x1:n)
)TQQ−1Dm

n f(x1:n)

= 1
m2
(
Dm

n f(x1:n)
)TQ−1Dm

n f(x1:n),

which proves (2.8), (2.9) with Km
n = (1/m2)Q−1, that is, (Km

n )−1 =
m2Q.

When m = 1, for each i = 1, . . . , n − 1, we have the simple form for
the constant B-spline:

P 0
i (x) =


1

xi+1 − xi
if x ∈ Ii

0 otherwise.

where I1 = [x1, x2], and Ii = (xi, xi+1] for i = 2, . . . , n − 1. The result
(2.10) comes from straightforward calculation of

∫ b
a P 0

i (x)2 dx. Lastly,
when m = 2, for each i = 1, . . . , n − 2, we have the linear B-spline:

P 1
i (x) =



x − xi

(xi+2 − xi)(xi+1 − xi)
if x ∈ I−

i

xi+2 − x

(xi+2 − xi)(xi+2 − xi+1) if x ∈ I+
i

0 otherwise,

where I−
1 = [x1, x2], I−

i = (xi, xi+1], i = 2, . . . , n − 2, I+
i = (xi+1, xi+2],

i = 1, . . . , n − 2. The two cases in (2.11) again come from straightfor-
ward calculation of the integrals

∫ b
a P 1

i (x)2 dx and
∫ b

a P 1
i (x)P 1

i−1(x) dx,
completing the proof.

B.2 Proof of the Linear Combination Formulation (3.10)

Denote by g(x) the right-hand side of (3.10). We will show that ∆k
ng = f .

Note by Lemma 3.1, this would imply that g = Sk
nf , proving (3.10). An
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inductive argument similar to that in the proof of Lemma 3.3 shows
that, for x ∈ (xi, xi+1] and i ≥ k,

(∆k
ng)(x) =

k∑
j=1

(∆k
nhk−1

j )(x) · f(xj) +

i∑
j=k+1

(∆k
nhk−1

j )(x) · xj − xj−k

k
· f(xj) +

(∆k
nhk−1

i+1 )(x) · x − xi−k+1
k

· f(x).

By Lemmas 5.1 and 5.2, all discrete derivatives here are zero except
the last, which is (∆k

nhk−1
i+1 )(x)(x − xi−k+1)/k = 1. Thus we have shown

(∆k
ng)(x) = f(x). Similarly, for x ∈ (xi, xi+1] and i < k,

(∆k
ng)(x) =

i∑
j=1

(∆k
nhk−1

j )(x) · f(xj) + (∆k
nhk−1

i+1 )(x) · f(x),

and by Lemma (5.2), all discrete derivatives here are zero except the
last, which is (∆k

nhk−1
i+1 )(x) = 1. For x ≤ x1, we have g(x) = f(x) by

definition. This establishes the desired claim and completes the proof.

B.3 Proof of Lemma 3.1

We use induction, beginning with k = 1. Using (3.8), (3.6), we can
express the first order discrete integral operator Sn more explicitly as

(Snf)(x) =


f(x1) +

i∑
j=2

f(xj)(xj − xj−1) + f(x)(x − xi) if x ∈ (xi, xi+1]

f(x) if x ≤ x1.

(B.3)
Compare (3.3) and (B.3). For x ≤ x1, clearly (∆nSnf)(x) = f(x) and
(Sn∆nf)(x) = f(x), and for x ∈ (xi, xi+1],

(∆nSnf)(x) = (Snf)(x) − (Snf)(xi)
x − xi

=
f(x1) +

∑i
j=2 f(xj)(xj − xj−1) + f(x)(x − xi)

x − xi
−
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(
f(x1) +

∑i
j=2 f(xj)(xj − xj−1)

)
x − xi

= f(x),

and also

(Sn∆nf)(x) = f(x1) +
i∑

j=2
(∆nf)(xj) · (xj − xj−1) + (∆nf)(x) · (x − xi)

= f(x1) +
i∑

j=2

(
f(xj) − f(xj−1)

)
+ f(x) − f(xi)

= f(x).

Now assume the result is true for the order k − 1 operators. Then, we
have from (3.7), (3.9),

∆k
n ◦ Sk

n = (W k
n )−1 ◦ ∆n−k+1 ◦ ∆k−1

n ◦ Sk−1
n ◦ Sn−k+1 ◦ W k

n = Id,

and also

Sk
n ◦ ∆k

n = Sk−1
n ◦ Sn−k+1 ◦ W k

n ◦ (W k
n )−1 ◦ ∆n−k+1 ◦ ∆k−1

n = Id,

where Id denotes the identity operator. This completes the proof.

B.4 Proof of Lemma 3.3

The case d = 0. Beginning with the case d = 0, the desired result in
(3.13) reads

1
k!

j−1∏
m=j−k

(x − xm) =
i∑

ℓ=j

1
(k − 1)!

ℓ−1∏
m=ℓ−k+1

(x − xm)xℓ − xℓ−k

k
+

1
(k − 1)!

i∏
m=i−k+2

(x − xm)x − xi−k+1
k

,

or more succintly,

η(x; x(j−k):(j−1)) =
i∑

ℓ=j

η(x; x(ℓ−k+1):(ℓ−1))(xℓ − xℓ−k) + η(x; x(i−k+2):i),

The above display is a consequence of an elementary result (B.4) on
Newton polynomials. We state and prove this result next, which we
note completes the proof for the case d = 0.
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Lemma B.1. For any k ≥ 1, and points t1:r with r ≥ k, the Newton
polynomials defined in (2.2) satisfy, at any x,

η(x; t1:k) − η(x; t(r−k+1):r) =
r∑

ℓ=k+1
η(x; t(ℓ−k+1):(ℓ−1))(tℓ − tℓ−k). (B.4)

Proof. Observe that

η(x; t1:k) − η(x; t2:(k+1)) = η(x; t2:k)
(
(x − t1) − (x − tk+1)

)
= η(x; t2:k)(tk+1 − t1). (B.5)

Therefore

η(x; t1:k) − η(x; t(r−k+1):r) = η(x; t1:k) − η(x; t2:(k+1))︸ ︷︷ ︸
a1

+

η(x; t2:(k+1)) − η(x; t3:(k+2))︸ ︷︷ ︸
a2

+ · · · +

η(x; t(r−k):r−1) − η(x; t(r−k+1):r)︸ ︷︷ ︸
ar−k

.

In a similar manner to (B.5), for each i = 1, . . . , k, we have ai =
η(x; t(i+1):(i+k−1))(ti+k − ti), and the result follows, after making the
substitution ℓ = i + k.

The case d ≥ 1. We now prove the result (3.13) for d ≥ 1 by
induction. The base case was shown above, for d = 0. Assume the result
holds for discrete derivatives of order d − 1. If x ≤ xd (or d > n), then
(∆d

nf)(x) = (∆d−1
n f)(x) for all functions f and thus the desired result

holds trivially. Hence assume x > xd (which implies that i ≥ d). By the
inductive hypothesis,

(∆d−1
n hk

j )(x) − (∆d−1
n hk

j )(xi)

=
i∑

ℓ=j

(∆d−1
n hk−1

ℓ )(x) · xℓ − xℓ−k

k
+ (∆d−1

n hk−1
i+1 )(x) · x − xi−k+1

k
−

i∑
ℓ=j

(∆d−1
n hk−1

ℓ )(xi) · xℓ − xℓ−k

k
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=
i∑

ℓ=j

(
(∆d−1

n hk−1
ℓ )(x) − (∆d−1

n hk−1
ℓ )(xi)

)
· xℓ − xℓ−k

k
+

(
(∆d−1

n hk−1
i+1 )(x) − (∆d−1

n hk−1
i+1 )(xi)

)
· x − xi−k+1

k
,

where in the last line we used the fact that hk−1
i+1 = 0 on [a, xi], and thus

(∆d−1
n hk−1

i+1 )(xi) = 0. This means, using (3.4),

(∆d
nhk

j )(x) =
(∆d−1

n hk
j )(x) − (∆d−1

n hk
j )(xi)

(x − xi−d+1)/d

=
i∑

ℓ=j

(∆d−1
n hk−1

ℓ )(x) − (∆d−1
n hk−1

ℓ )(xi)
(x − xi−d+1)/d

· xℓ − xℓ−k

k
+

(∆d−1
n hk−1

i+1 )(x) − (∆d−1
n hk−1

i+1 )(xi)
(x − xi−d+1)/d

· x − xi−k+1
k

=
i∑

ℓ=j

(∆d
nhk−1

ℓ )(x) · xℓ − xℓ−k

k
+ (∆d

nhk−1
i+1 )(x) · x − xi−k+1

k
,

as desired. This completes the proof.

B.5 Lemma B.2 (Helper Result for Corollary 5.6)

Lemma B.2. Given distinct points ti ∈ [a, b], i = 1, . . . , r and evalua-
tions f(ti), i = 1, . . . , r, if f satisfies

f [t1, . . . , tr, x] = 0, for x ∈ [a, b],

then f is a polynomial of degree r.

Proof. We will actually prove a more general result, namely, that if f

satisfies
f [t1, . . . , tr, x] = pℓ(x), for x ∈ [a, b], (B.6)

where pℓ is a polynomial of degree ℓ, then f is a polynomial of degree
r + ℓ. We use induction on r. For r = 0, the statement (B.6) clearly
holds for all ℓ, because f [x] = f(x) (a zeroth order divided difference is
simply evaluation). Now assume (B.6) holds for any r − 1 centers and
all degrees ℓ. Then

pℓ(x) = f [t1, . . . , tr, x] = f [t2, . . . , tr, x] − f [t1, . . . , tr]
x − t1

,
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which means f [t2, . . . , tr, x] = (x − t1)pℓ(x) + f [t1, . . . , tr]. As the right-
hand side is a polynomial of degree ℓ + 1, the inductive hypothesis
implies that f is a polynomial of degree r − 1 + ℓ + 1 = r + ℓ, completing
the proof.

B.6 Proof of Theorem 9.2

Let hk
j , j = 1, . . . , n denote the falling factorial basis, as in (1.5).

Consider expanding f in this basis, f =
∑n

j=1 αjhk
j . Define Q ∈ Rn×n

to have entries

Qij =
∫ b

a
(Dmhk

i )(x)(Dmhk
j )(x) dx. (B.7)

Observe∫ b

a
(Dmf)(x)2 dx =

∫ b

a

n∑
i,j=1

αiαj(Dmhk
i )(x)(Dmhk

j )(x) dx

= αTQα

= f(x1:n)T(Hk
n)−TQ(Hk

n)−1f(x1:n)
= f(x1:n)T(Bk+1

n )TZk+1
n QZk+1

n Bk+1
n f(x1:n). (B.8)

In the third line above we used the expansion f(x1:n) = Hk
nα, where Hk

n

is the kth degree falling factorial basis with entries (Hk
n)ij = hk

j (xi), and
in the fourth line we applied the inverse relationship in (6.12), where
Bk+1

n is the (k + 1)st order extended discrete derivative matrix in (6.8)
and Zk+1

n is the extended weight matrix in (6.7). Now note that we can
unravel the recursion in (6.8) to yield

Bk+1
n = (Zk+1

n )−1 Bn,k+1(Zk
n)−1Bn,k · · · (Zm+1

n )−1Bn,m+1︸ ︷︷ ︸
F

Bm
n , (B.9)

and returning to (B.8), we get∫ b

a
(Dmf)(x)2 dx = f(x1:n)T(Bm

n )TFTQFBm
n f(x1:n). (B.10)

We break up the remainder of the proof up into parts for readability.
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Reducing (B.10) to involve only discrete derivatives. First we show
that the right-hand side in (B.10) really depends on the discrete deriva-
tives Dm

n f(x1:n) only (as opposed to extended discrete derivatives
Bm

n f(x1:n)). As the first m basis functions hk
1, . . . , hk

m are polynomi-
als of degree at most m − 1, note that their mth derivatives are zero,
and hence we can write

Q =
[

0 0
0 M

]
,

where M ∈ R(n−m)×(n−m) has entries as in (9.6). Furthermore, note
that F as defined in (B.9) can be written as

F =
[
Im 0
0 G

]
,

for a matrix G ∈ R(n−m)×(n−m). Therefore

FTQF =
[

0 0
0 GTMG

]
, (B.11)

and hence (B.10) reduces to∫ b

a
(Dmf)(x)2 dx = f(x1:n)T(Dm

n )T GTMG︸ ︷︷ ︸
Vm

n

Dm
n f(x1:n), (B.12)

recalling that Dm
n is exactly given by the last n − m rows of Bm

n .

Casting FTQF in terms of scaled differences. Next we prove that
Vm

n = GTMG, as defined in (B.12), is a banded matrix. To prevent
unnecessary indexing difficulties, we will actually just work directly
with FTQF, and then in the end, due to (B.11), we will be able to read
off the desired result according to the lower-right submatrix of FTQF,
of dimension (n − m) × (n − m). Observe that

FTQF = (Bn,m+1)T(Zm+1
n )−1 · · · (Bn,k)T(Zk

n)−1

(Bn,k+1)TQBn,k+1(Zk
n)−1Bn,k · · · (Zm+1

n )−1Bn,m+1. (B.13)
To study this, it helps to recall the notation introduced in Lemma 9.3:
for a matrix A and positive integers i, j, let

A(i, j) =

Aij if A has at least i rows and j columns
0 otherwise,
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as well as

δr
ij(A) = A(i, j) − A(i + 1, j),

δc
ij(A) = A(i, j) − A(i, j + 1).

Now to compute (B.13), we first compute the product

FTQ = (Bn,m+1)T(Zm+1
n )−1 · · · (Bn,k)T(Zk

n)−1(Bn,k+1)TQ.

We will work “from right to left”. From (6.6), we have

(Bn,k+1)T =



1 0 . . . 0

00 1 . . . 0
...
0 0 . . . 1

0

1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...
0 0 0 . . . 1 −1
0 0 0 . . . 0 1



 k rows


n − k rows

This shows left multiplication by (Bn,k+1)T gives row-wise differences,
((Bn,k+1)TA)ij = δr

ij(A), for i > k. Further, from (6.7), we can see that
left multiplication by (Zk

n)−1 applies a row-wise scaling, (Zk
n)−1A =

Aij · k/(xi − xi−k), for i > k. Thus letting U1,0 = (Zk
n)−1(Bn,k+1)TQ, its

entries are:

U1,0
ij =


Qij if i ≤ k

δr
ij(Q) · k

xi − xi−k
if i > k.

The next two products to consider are left multiplication by (Bn,k)T

and by (Zk−1
n )−1, which act similarly (they again produce row-wise

differencing and scaling, respectively). Continuing on in this same
manner, we get that FTQ = Um,0, where Uℓ,0, ℓ = 1, . . . , m − 1 satisfy
the recursion relation (setting U0,0 = Q for convenience):

Uℓ,0
ij =


Uℓ−1,0

ij if i ≤ k + 1 − ℓ

δr
ij(Uℓ−1,0) · k + 1 − ℓ

xi − xi−(k+1−ℓ)
if i > k + 1 − ℓ,

(B.14)
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and where (using k + 1 − m = m):

Um,0
ij =

Um−1,0
ij if i ≤ m

δr
ij(Um−1,0) if i > m.

(B.15)

The expressions (B.14), (B.15) are equivalent to (9.7), (9.8), the row-
wise recursion in Lemma 9.3 (the main difference is that Lemma 9.3
is concerned with the lower-right (n − m) × (n − m) submatrices of
these matrices, and so these recursive expressions are written with i, j

replaced by i + m, j + m, respectively).
The other half of computing (B.13) is of course to compute the

product

FTQF = FTQBn,k+1(Zk
n)−1Bn,k · · · (Zm+1

n )−1Bn,m+1.

Working now “from left to right”, this calculation proceeds analogously
to the case just covered, but with column-wise instead of row-wise
updates, and we get FTQF = Um,m, where Um,ℓ, ℓ = 1, . . . , m − 1
satisfy the recursion:

Um,ℓ
ij =


Um,ℓ−1

ij if j ≤ k + 1 − ℓ

δc
ij(Um,ℓ−1) · k + 1 − ℓ

xj − xj−(k+1−ℓ)
if j > k + 1 − ℓ,

(B.16)

and where:

Um,m
ij =

Um,m−1
ij if j ≤ m

δc
ij(Um,m−1) if j > m.

(B.17)

Similarly, (B.16), (B.17) are equivalent to (9.9), (9.10), the column-wise
recursion in in Lemma 9.3 (again, the difference is that Lemma 9.3 is
written in terms of the lower-right (n−m)× (n−m) submatrices). This
establishes the result in Lemma 9.3.

Exchanging the order of scaled differencing with integration and
differentiation. Now that we have shown how to explicitly write
the entries of FTQF via recursion, it remains to prove bandedness.
To this end, for each x ∈ [a, b], define Qx ∈ Rn×n to have entries
Qx

ij = (Dmhk
i )(x)(Dmhk

j )(x), and note that by linearity of integration,

FTQF =
∫ b

a
FTQx F dx,
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where the integral on the right-hand side above is meant to be inter-
preted elementwise. Furthermore, defining ax ∈ Rn to have entries
ax

i = (Dmhk
i )(x), we have Qx = ax(ax)T, and defining bx ∈ Rn to have

entries bx
i = hk

i (x), note that by linearity of differentiation,

FTax = DmFTbx,

where again the derivative on the right-hand side is meant to be inter-
preted elementwise. This means that

FTQx F = (DmFTbx)(DmFTbx)T.

By the same logic as that given above (see the development of (B.14),
(B.15)), we can view FTbx as the endpoint of an m-step recursion. First
initialize ux,0 = bx, and define for ℓ = 1, . . . , m − 1,

ux,ℓ
i =


ux,ℓ−1

i if i ≤ k + 1 − ℓ

(ux,ℓ−1
i − ux,ℓ−1

i+1 ) · k + 1 − ℓ

xi − xi−(k+1−ℓ)
if i > k + 1 − ℓ,

(B.18)

as well as

ux,m
i =

ux,m−1
i if i ≤ m

ux,m−1
i − ux,m−1

i+1 if i > m.
(B.19)

Here, we set ux,ℓ
n+1 = 0, ℓ = 1, . . . , m, for convenience. Then as before,

this recursion terminates at ux,m = FTbx.
In what follows, we will show that

(Dmux,m
i )(Dmux,m

j ) = 0, for x ∈ [a, b] and |i − j| > m. (B.20)

Clearly this would imply that (FTQx F)ij = 0 for x ∈ [a, b] and |i −
j| > m, and so (FTQF)ij = 0 for |i − j| > m; focusing on the lower-
right submatrix of dimension (n − m) × (n − m), this would mean
(GTMG)ij = (Vm

n )ij = 0 for |i−j| > m, which is the claimed bandedness
property of Vm

n .

Proof of the bandedness property (B.20) for i > k + 1, j > k + 1.
Consider i > k + 1. At the first iteration of the recursion (B.18), (B.19),
we get

ux,1
i =

(
hk

i (x) − hk
i+1(x)

)
· k

xi − xi−k
, (B.21)
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where we set hk
n+1 = 0 for notational convenience. Next we present

a helpful lemma, which is an application of the elementary result in
Lemma B.1, on differences of Newton polynomials (recall this serves as
the main driver behind the proof of Lemma 3.3). Since (B.22) is a direct
consequence of (B.4) (more specifically, a direct consequence of the
special case highlighted in (B.5)), we state the lemma without proof.

Lemma B.3. For any k ≥ 1, the piecewise polynomials in the kth degree
falling factorial basis, given in the second line of (1.5), satisfy for each
k + 2 ≤ i ≤ n − 1,

hk
i (x) − hk

i+1(x) = hk−1
i (x) · xi − xi−k

k
, for x /∈ (xi−1, xi]. (B.22)

Fix i ≤ n − m. Applying Lemma B.3 to (B.21), we see that for
x /∈ (xi−1, xi], we have simply ux,1

i = hk−1
i (x). By the same argument,

for x /∈ (xi−1, xi+1],

ux,2
i = (ux,1

i − ux,1
i+1) · k − 1

xi − xi−(k−1)

=
(
hk−1

i (x) − hk−1
i+1 (x)

)
· k − 1

xi − xi−(k−1)

= hk−2
i (x).

Iterating this over ux,ℓ
i , ℓ = 3, . . . , m, we get that for x /∈ (xi−1, xi+m−1],

ux,m
i = ux,m−1

i − ux,m−1
i+1

= hm
i (x) − hm

i+1(x)

= hm−1
i (x) · xi − xi−m

m
.

As hm−1
i = 0 on [a, xi−1] and it is a polynomial of degree m − 1 on

(xi−1, b], we therefore conclude that Dmux,m
i = 0 for x /∈ (xi−1, xi+m−1].

For i ≥ n − m + 1, note that we can still argue ux,m
i = 0 for

x ≤ xi−1, as ux,m
i is just a linear combination of the evaluations

hk
i (x), hk

i+1(x), . . . , hk
n(x), each of which are zero. Thus, introducing

the convenient notation x̄i = xi for i ≤ n − 1 and x̄i = b for i ≥ n, we
can still write Dmux,m

i = 0 for x /∈ (xi−1, x̄i+m−1].
Altogether, for i > k + 1, j > k + 1, the product (Dmux,m

i )(Dmux,m
j )

can only be nonzero if x /∈ (xi−1, x̄i+m−1] ∩ (xj−1, x̄j+m−1], which can
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only happen (this intersection is only nonempty) if |i − j| ≤ m. This
proves (B.20) for i > k + 1, j > k + 1.

Proof of the bandedness property (B.20) for i ≤ k + 1, j > k + 1.
Consider i = k + 1. At the first iteration of the recursion (B.18), (B.19),
we get

ux,1
k+1 =

(
hk

k+1(x) − hk
k+2(x)

)
· k

xk+1 − x1
. (B.23)

We give another helpful lemma, similar to Lemma B.3. As (B.24) is
again a direct consequence of (B.4) from Lemma B.1 (indeed a direct
consequence of the special case in (B.5)), we state the lemma without
proof.

Lemma B.4. For any k ≥ 1, the last of the pure polynomials and the
first of the piecewise polynomials in the kth degree falling factorial basis,
given in (1.5), satisfy

hk
k+1(x) − hk

k+2(x) = hk−1
k+1(x) · xk+1 − x1

k
, for x > xk+1. (B.24)

Applying Lemma B.4 to (B.23), we see that for x > xk+1, it holds
that ux,2

k+1 = hk−1
k+1(x). Combined with our insights from the recursion

for the case i > k + 1 developed previously, at the next iteration we see
that for x > xk+2,

ux,2
k+1 = (ux,1

k+1 − ux,1
k+2) · k − 1

xk+1 − x2

=
(
hk−1

i (x) − hk−1
i+1 (x)

)
· k − 1

xk+1 − x2

= hk−2
k+1(x).

Iterating this over ux,ℓ
i , ℓ = 3, . . . , m, we get that for x > xk+m,

ux,m
k+1 = ux,m−1

k+1 − ux,m−1
k+2

= hm
k+1(x) − hm

k+2(x)

= hm−1
k+1 (x) · xk+1 − xk+1−m

m
.

and as before, we conclude that Dmux,m
k+1 = 0 for x > xk+m.
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For i < k + 1, the same argument applies, but just lagged by some
number of iterations (for ℓ = 1, . . . , k+1−i, we stay at ux,ℓ

i = hk
i (x), then

for ℓ = k + 2 − i, we get ux,ℓ
i = (hk

i (x) − hk
i+1(x)) · (i − 1)/(xi − x1), so

Lemma B.4 can be applied, and so forth), which leads us to Dmux,m
i = 0

for x > xi+m−1.
Finally, for i ≤ k + 1 and |i − j| > m, we examine the product

(Dmux,m
i )(Dmux,m

j ). As |i − j| > m, we must have either j < m or
j > k + 1. For j < m, we have already shown (FTQF)ij = 0, and so for
our ultimate purpose (of establishing (B.20) to establish bandedness of
FTQF), we only need to consider the case j > k +1. But then (from our
analysis in the last part) we know (Dmux,m

j ) = 0 for x ≤ xj−1, whereas
(from our analysis in the current part) (Dmux,m

i ) = 0 for x > xi+m−1,
and since xj−1 > xi+m−1, we end up with (Dmux,m

i )(Dmux,m
j ) = 0 for

all x. This establishes the desired property (B.20) over all i, j, and
completes the proof of the theorem.

B.7 Proof of Lemma 9.4

To avoid unnecessary indexing difficulties, we will work directly on the
entries of Q, defined in (B.7), and then we will be able to read off the
result for the entries of M, defined in (9.6), by inspecting the lower-right
submatrix of dimension (n − m) × (n − m). Fix i ≥ j, with i > 2m.
Applying integration by parts on each subinterval of [a, b] in which the
product (Dmhk

i )(Dmhk
j ) is continuous, we get∫ b

a
(Dmhk

i )(x)(Dmhk
j )(x) dx =

(Dmhk
i )(x)(Dm−1hk

j )(x)
∣∣∣xj−1,xi−1,b

a,xj−1,xi−1
−
∫ b

a
(Dm+1hk

i )(x)(Dm−1hk
j )(x) dx,

where we use the notation

f(x)
∣∣∣b1,...,br

a1,...,ar

=
r∑

i=1

(
f−(bi) − f+(ai)

)
.

as well as f−(x) = limt→x− f(t) and f+(x) = limt→x+ f(t). As hk
i and

hk
j are supported on (xi−1, b] and (xj−1, b], respectively, so are there
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derivatives, and as xi−1 ≥ xj−1 (since i ≥ j) the second to last display
reduces to∫ b

a
(Dmhk

i )(x)(Dmhk
j )(x) dx =

(Dmhk
i )(x)(Dm−1hk

j )(x)
∣∣∣b
xi−1

−
∫ b

a
(Dm+1hk

i )(x)(Dm−1hk
j )(x) dx,

Applying integration by parts m − 2 more times (and using k = 2m − 1)
yields∫ b

a
(Dmhk

i )(x)(Dmhk
j )(x) dx

=
m−1∑
ℓ=1

(−1)ℓ−1(Dm+ℓ−1hk
i )(x)(Dm−ℓhk

j )(x)
∣∣∣b
xi−1

+

(−1)m−1
∫ b

a
(Dkhk

i )(x)(Dhk
j )(x) dx

=
m−1∑
ℓ=1

(−1)ℓ−1(Dm+ℓ−1hk
i )(x)(Dm−ℓhk

j )(x)
∣∣∣b
xi−1

+

(−1)m−1(hk
j (b) − hk

j (xi−1)
)
, (B.25)

where in the second line we used (Dkhk
i )(x) = 1{x > xi−1} and the

fundamental theorem of calculus. The result for the case i ≤ 2m is
similar, the only difference being that we apply integration by parts a
total of i − m − 1 (rather than m − 1 times), giving∫ b

a
(Dmhk

i )(x)(Dmhk
j )(x) dx =

i−m−1∑
ℓ=1

(−1)ℓ−1(Dm+ℓ−1hk
i )(x)(Dm−ℓhk

j )(x)
∣∣∣b
a

+

(−1)i−m−1(hk
j (b) − hk

j (a)
)
. (B.26)

Putting together (B.25), (B.26) establishes the desired result (9.11)
(recalling that the latter is cast in terms of the lower-right (n − m) ×
(n − m) submatrix of Q, and is hence given by replacing i, j with
i + m, j + m, respectively).
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B.8 Proof of Lemma 10.2

For k = 0 or k = 1, we can use elementary piecewise constant or
continous piecewise linear interpolation. For k = 0, we set g to be the
piecewise constant function that has knots in x1:(n−1), and g(xi) = f(xi),
i = 1 . . . , n; note clearly, TV(g) ≤ TV(f). For k = 1, we again set g

to be the continous piecewise linear function with knots in x2:(n−1),
and g(xi) = f(xi), i = 1 . . . , n; still clearly, TV(Dg) ≤ TV(Df). This
proves (10.4).

For k ≥ 2, we can appeal to well-known approximation results for
kth degree splines, for example, Theorem 6.20 of Schumaker (2007).
First we construct a quasi-uniform partition from x(k+1):(n−1), call it
x∗

1:r ⊆ x(k+1):(n−1), such that δn/2 ≤ maxi=1,...,r−1 (yi+1 − yi) ≤ 3δn/2,
and an extended partition y1:(r+2k+2),

y1 = · · · = yk+1 = a,

yk+2 = x∗
1 < · · · < yr+k+1 = x∗

r ,

yr+k+2 = · · · = yr+2k+2 = b.

Now for each ℓ = k + 1, . . . , r + k + 1, define Iℓ = [yℓ, yℓ+1] and
Īℓ = [yℓ−k, yℓ+k+1]. Then there exists a kth degree spline g with knots
in x∗

1:r, such that, for any d = 0, . . . , k, and a constant bk > 0 that
depends only on k,

∥Dd(f − g)∥L∞(Īℓ) ≤ bkδk−d
n ω(Dkf ; δn)L∞(Īℓ), (B.27)

Here ∥h∥L∞(I) = supx∈I |f(x)| denotes the L∞ norm of a function h

an interval I, and

ω(h; v)L∞(I) = sup
x,y∈I, |x−y|≤v

|h(x) − h(y)|

denotes the modulus of continuity of h on I. Note that

ω(Dkf ; δn)L∞(Īℓ) ≤ TV(Dkf).

Thus setting d = 0 in (B.27), and taking a maximum over ℓ =
k + 1, . . . , r + k + 1, we get ∥f − g∥L∞ ≤ bkδk

n · TV(Dkf). Further, the
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importance of the result in (B.27) is that it is local and hence allows us
to make statements about total variation as well. Observe

TV(Dkg) =
r+k+2∑
i=k+2

|Dkg(yi) − Dkg(yi−1)|

≤
r+k+2∑
i=k+2

(
|Dkf(yi) − Dkg(yi)| +

|Dkf(yi−1) − Dkg(yi−1)| + |Dkf(yi) − Dkf(yi−1)|
)

≤
(
2(k + 2)bk + 1

)︸ ︷︷ ︸
ak

· TV(Dkf),

In the last step above, we applied (B.27) with d = k, and the fact
that each interval Īℓ can contain at most k + 2 of the points yi, i =
k + 1, . . . , r + k + 2. This proves (10.5).

B.9 Proof of Lemma 12.1

Observe that, by adding and subtracting y and expanding,

∥θ̂a − θ̂b∥2
2 = (y − θ̂a)T(θ̂b − θ̂a) + (y − θ̂b)T(θ̂a − θ̂b). (B.28)

By the stationarity condition for problem (12.5), we have y − θ̂a = λaAθ̂a,
so that

(y − θ̂a)T(θ̂b − θ̂a) ≤ λaθ̂T
a Aθ̂b − λaθ̂T

a Aθ̂a

≤ 1
2λaθ̂T

b Aθ̂b − 1
2λaθ̂T

a Aθ̂a,

where in the second line we used the inequality uTAv ≤ uTAu/2 +
vTAv/2. By the same logic,

(y − θ̂b)T(θ̂a − θ̂b) ≤ 1
2λbθ̂

T
a Bθ̂a − 1

2λbθ̂
T
b Bθ̂b.

Applying the conclusion in the last two displays to (B.28),

∥θ̂a − θ̂b∥2
2 ≤ 1

2λaθ̂T
b Aθ̂b − 1

2λaθ̂T
a Aθ̂a + 1

2λbθ̂
T
a Bθ̂a − 1

2λbθ̂
T
b Bθ̂b

≤ 1
2σλaθ̂T

b Bθ̂b − 1
2λaθ̂T

a Aθ̂a + 1
2(λb/τ)θ̂T

a Aθ̂a − 1
2λbθ̂

T
b Bθ̂b,

where in the second line we twice used the spectral similarity property
(12.4). The desired result follows by grouping terms.
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B.10 Proof of Theorem 12.2

Note that

K2
n,W2

n are (σ, τ)-spectrally-similar
⇐⇒ (K2

n)−1, (W2
n)−1 are (1/σ, 1/τ)-spectrally-similar

⇐⇒ W2
n(K2

n)−1W2
n,W2

n are (1/σ, 1/τ)-spectrally-similar.

Set A = W2
n(K2

n)−1W2
n. From (2.11), we can see that

Aij =


xi+2 − xi

3 if i = j

xi+1 − xi

6 if i = j + 1.

Now define ai = (xi+2 − xi)/3 and bi = (xi+2 − xi+1)/6, for i =
1, . . . , n − 2. Also denote qi = (xi+2 − xi)/2, for i = 1, . . . , n − 2. Fix
u ∈ Rn. For notational convenience, set b0 = u0 = 0 and un−1 = 0.
Then

uTAu =
n−2∑
i=1

(
aiu

2
i + bi−1ui−1ui + biuiui+1

)

≤
n−2∑
i=1

(
aiu

2
i + bi−1

2 (u2
i−1 + u2

i ) + bi

2 (u2
i + u2

i+1)
)

=
n−2∑
i=1

(ai + bi−1 + bi)u2
i

=
n−2∑
i=1

qiu
2
i − x2 − x1

6 u2
1 − xn−1 − xn−2

6 u2
n−2

≤
n−2∑
i=1

qiu
2
i .

In the second line above, we used 2st ≤ s2 + t2, and in the fourth we
used ai + bi−1 + bi = qi, for i = 1, . . . , n − 2. This shows that we can
take 1/τ = 1, that is, τ = 1.

As for the other direction, using 2st ≥ −s2 − t2, we have

uTWu ≥
n∑

i=1

(
aiu

2
i − bi−1

2 (u2
i−1 + u2

i ) − bi

2 (u2
i + u2

i+1)
)
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=
n−2∑
i=1

(ai − bi−1 − bi)u2
i

= 1
2

n−2∑
i=1

qiu
2
i + x2 − x1

6 u2
1 + xn−1 − xn−2

6 u2
n−2

≥ 1
3

n−2∑
i=1

qiu
2
i ,

where in the third line we used the fact that ai − bi−1 − bi = qi/3, for
i = 1, . . . , n − 2. This shows that we can take 1/σ = 1/3, that is, σ = 3,
which completes the proof.

B.11 Proof of Lemma 12.4

To keep indexing simple in the current case of m = 1, we will compute
the entries of the matrix Q in (B.7), then carry out the recursion
(B.14)–(B.17), and the desired matrix Vn will be given be reading off
the lower-right (n − 1) × (n − 1) submatrix of the result. Consider i ≥ j.
For i ≥ 3, observe that

Qij =
∫ b

a
(Dh1

i )(x)(Dh1
j )(x) dx

=
∫ b

a
1{x > xi−1} dx

= b − xi−1.

Meanwhile, for i = 2, by a similar calculation, Qij = b − a. Therefore,
introducing the convenient notation x̄i = xi for i ≥ 3 and x̄i = a for
i = 2, we get

Qij = b − x̄i−1,

for all i ≥ 2. We know that the result of the recursion in (B.14)–(B.17)
will be diagonal. As m = 1, this recursion reduces to simply (B.15),
(B.17), which together give

U1,1
ii = (Qii − Qi+1,i) − (Qi,i+1 − Qi+1,i+1)

=
(
(b − x̄i−1) − (b − x̄i)

)
−
(
(b − x̄i) − (b − x̄i)

)
= x̄i − x̄i−1.
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This proves (12.15) (recalling that this is written in terms of Vn = V1,1,
the lower-right (n − 1) × (n − 1) submatrix of U1,1, and so for (12.15)
we simply replace i with i + 1).
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C
B-Splines and Discrete B-Splines

C.1 B-Splines

Though the truncated power basis (2.5) is the simplest basis for splines,
the B-spline basis is just as fundamental, as it was “there at the very
beginning”, appearing in Schoenberg’s original paper on splines (Schoen-
berg, 1946a). Here we are quoting Boor (1976), who gives a masterful
survey of the history and properties of B-splines (and points out that
the name “B-spline” is derived from Schoenberg’s use of the term “basic
spline”, to further advocate for the idea that B-splines can be seen as
the basis for splines). A key feature of B-splines is that they have local
support, and are thus extremely useful for computational purposes.

Peano representation. There are different ways to construct B-splines;
here we cover a construction based on what is called the Peano repre-
sentation for B-splines (see, for example, Theorem 4.23 in Schumaker
(2007)). If f is a k +1 times differentiable function f on an interval [a, b]
(and its (k + 1)st derivative is integrable), then by Taylor expansion

f(z) =
k∑

i=0

1
i! (D

if)(a)(z − a)i +
∫ z

a

1
k! (D

k+1f)(x)(z − x)k dx.

139
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Note that we can rewrite this as

f(z) =
k∑

i=0

1
i! (D

if)(a)(z − a)i +
∫ b

a

1
k! (D

k+1f)(x)(z − x)k
+ dx.

Next we take a divided difference with respect to arbitrary centers
z1, . . . , zk+2 ∈ [a, b], where we assume without a loss of generality
that z1 < · · · < zk+2. Then by linearity we can exchange divided
differentiation with integration, yielding

k! · f [z1, . . . , zk+2] =
∫ b

a
(Dk+1f)(x) (· − x)k

+[z1, . . . , zk+2]︸ ︷︷ ︸
P k(x;z1:(k+2))

dx, (C.1)

where we have also used the fact that a (k +1)st order divided difference
(with respect to any k + 2 centers) of a kth degree polynomial is zero
(for example, see (4.6)), and lastly, we multiplied both sides by k!. To be
clear, the notation (· − x)k

+[z1, . . . , zk+2] means that we are taking the
divided difference of the function z 7→ (z − x)k

+ with respect to centers
z1, . . . , zk+2.

B-spline definition. The result in (C.1) shows that the (k + 1)st
divided difference of any (smooth enough) function f can be written as
a weighted average of its (k + 1)st derivative, in a local neighborhood
around the corresponding centers, where the weighting is given by a
universal kernel P k(·; z1:(k+2)) (that does not depend on f), which is
called the Peano kernel formulation for the B-spline; to be explicit, this
is

P k(x; z1:(k+2)) = (· − x)k
+[z1, . . . , zk+2]. (C.2)

Since
(z − x)k

+ − (−1)k+1(x − z)k
+ = (z − x)k,

and any (k + 1)st order divided difference of the kth degree polynomial
z 7→ (z − x)k is zero, we can rewrite the above (C.2) as:

P k(x; z1:(k+2)) = (−1)k+1(x − ·)k
+[z1, . . . , zk+2]. (C.3)

The function P k(·; z1:(k+2)) is called a kth degree B-spline with knots
z1:(k+2). It is a linear combination of kth degree truncated power func-
tions and is hence indeed a kth degree spline.
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It is often more convenient to deal with the normalized B-spline:

Mk(x; z1:(k+2)) = (−1)k+1(zk+2 − z1)(x − ·)k
+[z1, . . . , zk+2]. (C.4)

It is easy to show that

Mk(·; z1:(k+2)) is supported on [z1, zk+2], and
Mk(x; z1:(k+2)) > 0 for x ∈ (z1, zk+2). (C.5)

To see the support result, note that for x > zk+2, we are taking a
divided difference of all zeros, which of course zero, and for x < z1, we
are taking a (k + 1)st order divided difference of a polynomial of degree
k, which is again zero. To see the positivity result, we can, for example,
appeal to induction on k and the recursion to come later in (C.8).

B-spline basis. To build a local basis for Sk(t1:r, [a, b]), the space of kth
degree splines with knots t1:r, where we assume a < t1 < · · · < tr < b,
we first define boundary knots

t−k < · · · < t−1 < t0 = a, and b = tr+1 < tr+2 < · · · < tr+k+1.

(Any such values for t−k, . . . , t0 and tr+1, . . . , tr+k+1 will suffice to pro-
duce a basis; in fact, setting t−k = · · · = t0 and tr+1 = · · · = tr+k+1
would suffice, though this would require us to understand how to prop-
erly interpret divided differences with repeated centers; as in Definition
2.49 of Schumaker (2007).) We then define the normalized B-spline basis
Mk

j , j = 1, . . . , r + k + 1 for Sk(t1:r, [a, b]) by

Mk
j = Mk(·; t(j−k−1):j)

∣∣∣
[a,b]

, j = 1, . . . , r + k + 1. (C.6)

It is clear that each Mk
j , j = 1, . . . , r + k + 1 is a kth degree spline with

knots in t1:r; hence to verify that they are a basis for Sk(t1:r, [a, b]), we
only need to show their linear independence, which is straightforward
using the structure of their supports (for example, see Theorem 4.18 of
Schumaker (2007)).

For concreteness, we note that the 0th degree normalized B-splines
basis for S0(t1:r, [a, b]) is simply

M0
j = 1Ij , j = 1, . . . , r + 1. (C.7)
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Here I0 = [t0, t1] and Ii = (ti, ti+1], i = 1, . . . , r, and we use tr+1 = b for
notational convenience. We note that this particular choice for the half-
open intervals (left- versus right-side open) is arbitrary, but consistent
with our definition of the truncated power basis (2.5) when k = 0.
Figure C.1 shows example normalized B-splines of degrees 0 through 3.

Recursive formulation. B-splines satisfy a recursion relation that can
be seen directly from the recursive nature of divided differences: for any
k ≥ 1 and centers z1 < · · · < zk+2,

(x − ·)k
+[z1, . . . , zk+2]

=
(x − ·)k

+[z2, . . . , zk+2] − (x − ·)k
+[z1, . . . , zk+1]

zk+2 − z1

=
(x − zk+2)(x − ·)k−1

+ [z2, . . . , zk+2] − (x − z1)(x − ·)k−1
+ [z1, . . . , zk+1]

zk+2 − z1
,

where in the second line we applied the Leibniz rule for divided differ-
ences (for example, Theorem 2.52 of Schumaker (2007)), fg[z1, . . . , zk+1]
=
∑k+1

i=1 f [z1, . . . , zi]g[zi, . . . , zk+1], to conclude that

(x − ·)k
+[z1, . . . , zk+1] = (x − z1) · (x − ·)k−1

+ [z1, . . . , zk+1]
(x − ·)k

+[z2, . . . , zk+2] = (x − ·)k−1
+ [z2, . . . , zk+2] · (x − zk+2).

Translating the above recursion over to normalized B-splines, we get

Mk(x; z1:(k+2)) = x − z1
zk+1 − z1

· Mk−1(x; z1:(k+1)) +

zk+2 − x

zk+2 − z2
· Mk−1(x; z2:(k+2)), (C.8)

which means that for the normalized basis,

Mk
j (x) = x − tj−k−1

tj−1 − tj−k−1
· Mk−1

j−1 (x) +

tj − x

tj − tj−k
· Mk−1

j (x), j = 1, . . . , r + k + 1. (C.9)

Above, we naturally interpret Mk−1
0 = Mk−1(·; t−k:0)|[a,b] and Mk−1

r+k+1 =
Mk−1(·; t(r+1):(r+k+1))|[a,b].
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The above recursions are very important, both for verifying numerous
properties of B-splines and for computational purposes. In fact, many
authors prefer to use recursion to define a B-spline basis in the first
place: they start with (C.7) for k = 0, and then invoke (C.9) for all
k ≥ 1.

C.2 Discrete B-splines

Here we will assume the design points are evenly-spaced, taking the
form [a, b]v = {a, a + v, . . . , b} for v > 0 and b = a + Nv. As covered in
Chapter 8.5 of Schumaker (2007), in this evenly-spaced case, discrete B-
splines can be developed in a similar fashion to B-splines. Below we will
jump directly into defining the discrete B-spline, which is at face value
just a small variation on the definition of the usual B-spline given above.
Chapter 8.5 of Schumaker (2007) develops several properties for discrete
B-splines (for evenly-spaced design points)—such as a Peano kernel
result for the discrete B-spline, with respect to a discrete integral—that
we do not cover here, for simplicity.

Discrete B-spline definition. Let z1:(k+2) ⊆ [a, b]v. Assume without a
loss of generality that z1 < · · · < zk+2, and also zk+2 ≤ b−kv. We define
the kth degree discrete B-spline or DB-spline with knots z1, . . . , zk+2
by

Uk(x; z1:(k+2)) =
(
(· − x)k,v · 1{· > x}

)
[z1, . . . , zk+2], (C.10)

where now we denote by (z)k,v = z(z + v) · · · (z + (k − 1)v) the rising
factorial polynomial of degree k with gap v, which we take to be equal to
1 when k = 0. To be clear, the notation ((·−x)k,v ·1{· > x})[z1, . . . , zk+2]
means that we are taking the divided difference of the function z 7→
(z − x)k,v · 1{z > x} with respect to the centers z1, . . . , zk+2. Since

(z − x)k,v · 1{z > x} − (−1)k+1(x − z)k,v · 1{x > z} = (z − x)k,v,

and any (k + 1)st order divided difference of the kth degree polynomial
z 7→ (z − x)k,v is zero, we can equivalently rewrite (C.10) as:

Uk(x; z1:(k+2)) = (−1)k+1
(
(x − ·)k,v · 1{x > ·}

)
[z1, . . . , zk+2]. (C.11)
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We see (C.11) is just as in the usual B-spline definition (C.3), but with
a truncated falling factorial polynomial instead of a truncated power
function. Also, note Uk(·; z1:(k+2)) is a linear combination of kth degree
truncated falling factorial polynomials and is hence a kth degree discrete
spline.

As before, it is convenient to define the normalized discrete B-spline
or normalized DB-spline:

V k(x; z1:(k+2)) = (−1)k+1(zk+2 −z1)
(
(x−·)k,v ·1{x > ·}

)
[z1, . . . , zk+2].

(C.12)
We must emphasize that

V k(x; z1:(k+2)) = Mk(x; z1:(k+2)) for k = 0 or k = 1

(and the same for the unnormalized versions). This should not be a
surprise, as discrete splines are themselves exactly splines for degrees
k = 0 and k = 1. Back to a general degree k ≥ 0, it is easy to show that

V k(·; z1:(k+2)) is supported on [z1, zk+2]. (C.13)

Curiously, V k(·; z1:(k+2)) is no longer positive on the whole interval
(z1, zk+2): for k ≥ 2, it has a negative “ripple” close to the leftmost
knot z1. This is more pronounced when the knots are closer together
(separated by fewer design points), see Figure C.1.

Discrete B-spline basis. To develop a local basis for DSk
v(t1:r, [a, b]v),

the space of kth degree discrete splines with knots in t1:r, where a <

t1 < · · · < tr < b, and also t1:r ⊆ [a, b]v and tr ≤ b − kv, we first define
boundary knots

t−k < · · · < t−1 < t0 = a, and b = tr+1 < tr+2 < · · · < tr+k+1,

as before. We then define the normalized discrete B-spline basis V k
j ,

j = 1, . . . , r + k + 1 for DSk
v(t1:r, [a, b]v) by

V k
j = V k(·; t(j−k−1):j)

∣∣∣
[a,b]

, j = 1, . . . , r + k + 1. (C.14)

It is clear that each V k
j , j = 1, . . . , r + k + 1 is a kth degree discrete

spline with knots in t1:r; hence to verify that they form a basis for
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Figure C.1: Normalized DB-splines in black, and normalized B-splines in dashed red,
of degrees 0 through 3. In each example, the n = 16 design points are evenly-spaced
between 0 and 1, and marked by dotted vertical lines. The knot points are marked
by blue vertical lines (except for k = 0, as here these would obscure the B-splines, so
in this case we use small blue ticks on the horizontal axis). In the bottom row, the
knots are closer together; we can see that the DB-splines of degrees 2 and 3 have
negative “ripples” near their leftmost knots, which is much more noticeable when
the knot points are closer together.
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DSk
n(t1:r, [a, b]), we only need to show their linear independence, which

follows from similar arguments to the result for the usual B-splines (see
also Theorem 8.55 of Schumaker (2007)).

Recursive formulation. To derive a recursion for discrete B-splines, we
proceed as in the usual B-spline case, using the recursion that underlies
divided differences: for any k ≥ 1 and centers z1 < · · · < zk+2 (such
that z1:(k+2) ⊆ [a, b]v and zk+2 ≤ b − kv),(

(x − ·)k,v · 1{x > ·}
)
[z1, . . . , zk+2]

=
(

(x − ·)k,v · 1{x > ·})[z2, . . . , zk+2] −

((x − ·)k,v · 1{x > ·})[z1, . . . , zk+1]
)

/(zk+2 − z1)

=
(

(x − zk+2 − (k − 1)v) · ((x − ·)k−1,v · 1{x > ·})[z2, . . . , zk+2] −

(x − z1 − (k − 1)v) · ((x − ·)k−1,v · 1{x > ·})[z1, . . . , zk+1]
)

/

(zk+2 − z1),

where as before, in the second line, we applied the Leibniz rule for
divided differences to conclude(

(x − ·)k,v · 1{x > ·}
)
[z1, . . . , zk+1] =(

x − z1 − (k − 1)v
)

·
(
(x − ·)k−1,v · 1{x > ·}

)
[z1, . . . , zk+1],

and(
(x − ·)k,v · 1{x > ·}

)
[z2, . . . , zk+2] =(

(x − ·)k−1,v · 1{x > ·}
)
[z1, . . . , zk+1] ·

(
x − zk+2 − (k − 1)v

)
.

Translating the above recursion over normalized DB-splines, we get

V k(x; z1:(k+2)) = x − z1 − (k − 1)v
zk+1 − z1

· V k−1(x; z1:(k+1)) +

zk+2 + (k − 1)v − x

zk+2 − z2
· V k−1(x; z2:(k+2)), (C.15)
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which means that for the normalized basis,

V k
j (x) = x − tj−k−1 − (k − 1)v

tj−1 − tj−k−1
· V k−1

j−1 (x) +

tj + (k − 1)v − x

tj − tj−k
· V k−1

j (x), j = 1, . . . , r + k + 1. (C.16)

Above, we naturally interpret V k−1
0 = V k−1(·; t−k:0)|[a,b] and V k−1

r+k+1 =
V k−1(·; t(r+1):(r+k+1))|[a,b].
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D
Fast Matrix Multiplication

We recall the details of the algorithms from Wang et al. (2014) for fast
multiplication by Hk

n, (Hk
n)−1, (Hk

n)T, (Hk
n)−T, in Algorithms 1–4. In each

case, multiplication takes O(nk) operations (at most 4nk operations),
and is done in-place (no new memory required). We use cumsum to
denote the cumulative sum operator, cumsum(v) = (v1, v1 + v2, . . . , v1 +
· · · + vn), for v ∈ Rn, and diff for the pairwise difference operator,
diff(v) = (v2 −v1, v3 −v2, . . . , vn −vn−1). We also use rev for the reverse
operator, rev(v) = (vn, . . . , v1), and ⊙ for elementwise multiplication
between vectors.

Algorithm 1 Multiplication by Hk
n

Input: Integer degree k ≥ 0, design points x1:n (assumed in sorted
order), vector to be multiplied v ∈ Rn.
Output: v is overwritten by Hk

nv.
for i = k to 0 do

v(i+1):n = cumsum(v(i+1):n)
if i ̸= 0 then

v(i+1):n = v(i+1):n ⊙ x(i+1):n−x1:(n−i)
i

end if
end for
Return v.

148
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Algorithm 2 Multiplication by (Hk
n)−1

Input: Integer degree k ≥ 0, design points x1:n (assumed in sorted
order), vector to be multiplied v ∈ Rn.
Output: v is overwritten by (Hk

n)−1v.
for i = 0 to k do

if i ̸= 0 then
v(i+1):n = v(i+1):n ⊙ i

x(i+1):n−x1:(n−i)
end if
v(i+2):n = diff(v(i+1):n)

end for
Return v.

Algorithm 3 Multiplication by (Hk
n)T

Input: Integer degree k ≥ 0, design points x1:n (assumed in sorted
order), vector to be multiplied v ∈ Rn.
Output: v is overwritten by (Hk

n)−1v.
for i = 0 to k do

if i ̸= 0 then
v(i+1):n = v(i+1):n ⊙ x(i+1):n−x1:(n−i)

i

end if
v(i+1):n = rev(cumsum(rev(v(i+1):n)))

end for
Return v.

Algorithm 4 Multiplication by (Hk
n)−T

Input: Integer degree k ≥ 0, design points x1:n (assumed in sorted
order), vector to be multiplied v ∈ Rn.
Output: v is overwritten by (Hk

n)−Tv.
for i = k to 0 do

v(i+1):n−1 = rev(diff(rev(v(i+1):n)))
if i ̸= 0 then

v(i+1):n ⊙ i
x(i+1):n−x1:(n−i)

end if
end for
Return v.
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