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ABSTRACT

Aggregated predictors are obtained by making a set of basic
predictors vote according to some weights, that is, to some
probability distribution. Randomized predictors are obtained
by sampling in a set of basic predictors, according to some
prescribed probability distribution.

Thus, aggregated and randomized predictors have in com-
mon that their definition rely on a probability distribution on
the set of predictors. In statistical learning theory, there is a
set of tools designed to understand the generalization ability
of such predictors: PAC-Bayesian or PAC-Bayes bounds.

Since the original PAC-Bayes bounds (Shawe-Taylor and
Williamson, 1997; McAllester, 1998), these tools have been
considerably improved in many directions. We will for ex-
ample describe a simplified version of the localization tech-
nique (Catoni, 2003; Catoni, 2007) that was missed by the
community, and later rediscovered as “mutual information
bounds”. Very recently, PAC-Bayes bounds received a con-
siderable attention. There was workshop on PAC-Bayes at
NIPS 2017, (Almost) 50 Shades of Bayesian Learning: PAC-
Bayesian trends and insights, organized by B. Guedj, F.

Pierre Alquier (2024), “User-friendly Introduction to PAC-Bayes Bounds”, Foun-
dations and Trends® in Machine Learning: Vol. 17, No. 2, pp 174–303. DOI:
10.1561/2200000100.
©2024 P. Alquier
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Bach and P. Germain. One of the reasons of this recent in-
terest is the successful application of these bounds to neural
networks (Dziugaite and Roy, 2017). Since then, this is a
recurring topic of workshops in the major machine learning
conferences.

The objective of these notes is to provide an elementary
introduction to PAC-Bayes bounds.
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1
Introduction

In a supervised learning problem, such as classification or regression,
we are given a data set, and we 1) fix a set of predictors and 2) find a
good predictor in this set.

For example, when doing linear regression, you 1) chose to consider
only linear predictors and 2) use the least-square method to chose your
linear predictor.

In this tutorial, we will rather focus on “randomized” or “aggregated”
predictors. By this, we mean that we will replace 2) by 2’) define weights
on the predictors and make them vote according to these weights or by 2”)
draw a predictor according to some prescribed probability distribution.

In this first section, we will introduce the main concepts of machine
learning theory, and their mathematical notations. We will briefly in-
troduce PAC bounds, that allow to control the generalization error of
a predictor. These tools will allow to formalize properly the notion of
“randomized” or “aggregated” predictors, and to introduce PAC-Bayes
bounds.

3
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4 Introduction

1.1 Machine Learning and PAC Bounds

1.1.1 Machine learning: notations

In a supervised learning problem, the objective is to learn from examples
to assign labels to objects. Objects can be images, videos, e-mails... The
set of all possible objects will be denoted by X . In all the examples
we mentioned, it is possible to encode the objects by (large enough)
vectors, and thus, we will often have X ⊆ Rd, where R is the set of real
numbers. The set of labels will be denoted by Y.

The most classical examples of supervised learning problems are
binary classification and regression. In binary classification, Y = {0, 1}.
Examples includes spam detection: in this case, objects in X are e-mails,
and the label is 1 if the e-mail is a spam, and 0 otherwise. In regression,
labels can be any real number Y = R. This is the case when we try to
predict a numerical quantity such as CO2 emissions, temperature, etc.

A predictor is a function f : X → Y: for each object x, it returns a
label f(x). We are usually interested in parametric sets of predictors.
That is, we consider {fθ, θ ∈ Θ} where Θ is any set, called the parameter
set, and each fθ is a predictor. For example, in linear regression, a
common set of predictors is fθ(x) = ⟨x, θ⟩ ∈ Y = R, with X = Θ = Rd.
In classification, we can define with the same X and Θ,

fθ(x) =
{

1 if ⟨x, θ⟩ ≥ 0,
0 otherwise.

Other examples include neural networks with a fixed architecture, θ
being the weights of the network. Predictors are sometimes refered to
as classifiers in the classification setting, and as regressors in regression.

Assume now that a pair label-object, (x, y) ∈ X × Y, is given. A
predictor f will propose a prediction f(x) of the label y. If f(x) = y, the
predictor f predicts the label correctly, otherwise, it makes a mistake.
In order to quantify how serious a mistake is, we usually measure it
by a loss function. In these notes, a loss function can be any function
ℓ : Y2 → [0,+∞) such that ℓ(y, y) = 0 for any y ∈ Y; ℓ(f(x), y) will
be interpreted as the cost of the prediction error. In classification, the
most natural loss function is:

Full text available at: http://dx.doi.org/10.1561/2200000100



1.1. Machine Learning and PAC Bounds 5

ℓ(y′, y) =
{

1 if y′ ̸= y,

0 if y′ = y.

We will refer to it as the 0-1 loss function, and will use the following
shorter notation: ℓ(y′, y) = 1(y ≠ y′). For computational reasons,
it is more convenient to use convex loss functions. For example, in
binary classification: ℓ(y′, y) = max(1 − yy′, 0) (the hinge loss). In
regression problems, the most popular examples are ℓ(y′, y) = (y′ − y)2

the quadratic loss, or ℓ(y′, y) = |y′ − y| the absolute loss. The original
PAC-Bayes bounds of McAllester (1998) were stated in the special case
of the 0-1 loss, and this is also the case of most bounds published since
then. However, we will see in Section 3 that their extension to any
bounded loss is direct. Some PAC-Bayes bounds for regression with the
quadratic loss were proven for example by Catoni (2004). From now,
and until the end of Section 4, we assume that 0 ≤ ℓ ≤ C. This
is typically the case in classification with the 0-1 loss, or in regression
with quadratic loss under the additional assumption that fθ(x) and
y are bounded. We will discuss how to get rid of this assumption in
Section 5.

Assume we want to build a machine to predict the label of objects
it will encounter in the future. Of course, we don’t know these objects
in advance, nor their labels. A way to model this uncertainty is to
assume that a future pair object-label is a random variable (X,Y )
taking values in X × Y. Let P denote the probability distribution1 of
(X,Y ). The expected prediction mistake is thus E(X,Y )∼P [ℓ(f(X), Y )].
This is usually refered to as the (generalization) risk of f . As it is a
very important notion in machine learning, we introduce the notation

R(f) = E(X,Y )∼P [ℓ(f(X), Y )].

As we will focus on predictors in {fθ, θ ∈ Θ}, we define

R(θ) := R(fθ)

1Formally, we can only define a probability distribution on X ×Y if it is equipped
with a σ-algebra. Let B be such a σ-algebra. Essentially, the only thing that matters
is that the loss function ℓ and the predictors fθ(·) are measurable functions, which is
satisfied by all classical examples. Note that B will no longer appear explicitly in
this tutorial.
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6 Introduction

for short. A good strategy would be to implement in our machine a
predictor fθ such that R(θ) is as small as possible – ideally, we should
implement fθ∗ where R(θ∗) = infθ∈ΘR(θ), if this infimum is reached.
Unfortunately, there is a major difficulty: we don’t know the distribution
P of (X,Y ) in practice. Check the examples above: we are not able to
describe the probability distribution of images we will see in the future,
or of e-mails we will receive.

Instead, we will train our machine based on examples. That is, we
assume that we can access a sample of pairs object-label, that we will call
the data, or the observations: (X1, Y1), . . . , (Xn, Yn). From now, and
until the end of Section 4, we assume that (X1, Y1), . . . , (Xn, Yn)
are i.i.d. from P . That is, they are “typical examples” of the pairs
object-label the machine will have to deal with in the future. For short,
we put ℓi(θ) := ℓ(fθ(Xi), Yi) ≥ 0. We define the empirical risk:

r(θ) = 1
n

n∑
i=1

ℓi(θ).

Note that it satisfies

E(X1,Y1),...,(Xn,Yn)[r(θ)] = R(θ).

The notation for the previous expectation is cumbersome. From now,
we will write S = [(X1, Y1), . . . , (Xn, Yn)] and ES (for “expectation with
respect to the sample”) instead of E(X1,Y1),...,(Xn,Yn). In the same way,
we will write PS for probabilities with respect to the sample.

Finally, an estimator is a function that takes a sample of pairs
object-labels of any size and returns a guess for the parameter θ we
should use for future predictions. Formally,2

θ̂ :
∞⋃
n=1

(X × Y)n → Θ.

For short, we write θ̂ instead of θ̂((X1, Y1), . . . , (Xn, Yn)). The most
famous example is the Empirical Risk Minimizer, or ERM:

θ̂ERM = argmin
θ∈Θ

r(θ)

(when this minimizer exists and is unique).
2The proper definition also requires θ̂ to be a measurable function of the obser-

vations, so that probabilities of events involving θ̂ are well defined. This is not so
important here as we will soon replace the notion of estimator with a new notion.
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1.1. Machine Learning and PAC Bounds 7

1.1.2 PAC bounds

Of course, our objective is to minimize R, not r. So the ERM strategy
is motivated by the hope that these two functions are not so different,
so that the minimizer of r almost minimizes R. Let us now discuss to
what extent this is true. By doing so, we will introduce some tools that
will be also useful for PAC-Bayes bounds.

Proposition 1.1. For any θ ∈ Θ, for any δ ∈ (0, 1),

PS

R(θ) > r(θ) + C

√
log 1

δ

2n

 ≤ δ. (1.1)

The proof relies on a result that will be useful in all this tutorial.

Lemma 1.1 (Hoeffding’s inequality). Let U1, . . . , Un be independent
random variables taking values in an interval [a, b]. Then, for any t > 0,

E
[
et
∑n

i=1[Ui−E(Ui)]
]

≤ e
nt2(b−a)2

8 .

Hoeffding’s inequality is proven for example in Chapter 2 of Bou-
cheron et al. (2013), which is a highly recommended reading, but it is
so classical that you can as well find it on Wikipedia.

Proof of Proposition 1.1. Apply Lemma 1.1 to Ui = E[ℓi(θ)] − ℓi(θ):

ES
[
etn[R(θ)−r(θ)]

]
≤ e

nt2C2
8 . (1.2)

Now, for any s > 0,

PS(R(θ) − r(θ) > s) = PS
(
ent[R(θ)−r(θ)] > ents

)
≤

ES
[
ent[R(θ)−r(θ)]

]
ents by Markov’s inequality,

≤ e
nt2C2

8 −nts by (1.2).

In other words,

PS(R(θ) > r(θ) + s) ≤ e
nt2C2

8 −nts.

Full text available at: http://dx.doi.org/10.1561/2200000100



8 Introduction

We can make this bound as tight as possible, by optimizing our choice
for t. Indeed, nt2C2/8 − nts is minimized for t = 4s/C2, which gives

PS(R(θ) > r(θ) + s) ≤ e
−2ns2
C2 . (1.3)

This means that, for a given θ, the empirical risk r(θ) cannot be much
smaller than the risk R(θ). The order of this “much smaller” can be
better understood by introducing

δ = e
−2ns2
C2

and substituting δ to s in (1.3), which gives (1.1).

Proposition 1.1 states that R(θ) will usually not exceed r(θ) by more
than a term in 1/

√
n. This is not enough, though, to justify the use of

the ERM. Indeed, (1.1) is only true for the θ that was fixed above, and
we cannot apply it to θ̂ERM that is a function of the data.

The usual approach to control R(θ̂ERM) is to use the inequality

R(θ̂ERM) − r(θ̂ERM) ≤ sup
θ∈Θ

[R(θ) − r(θ)] , (1.4)

and to prove a version of (1.1) that would hold uniformly on Θ. As an
illustration of this method, we prove the following result.

Theorem 1.2. Assume that card(Θ) = M < +∞. For any δ ∈ (0, 1),

PS

R(θ̂ERM) ≤ inf
θ∈Θ

r(θ) + C

√
log M

δ

2n

 ≥ 1 − δ.

Proof. As announced before the statement of the theorem, we upper
bound the supremum in (1.4):

PS(sup
θ∈Θ

[R(θ) − r(θ)] > s) = PS

⋃
θ∈Θ

{
[R(θ) − r(θ)] > s

}
≤
∑
θ∈Θ

PS(R(θ) > r(θ) + s)

≤ Me
−2ns2
C2 (1.5)

Full text available at: http://dx.doi.org/10.1561/2200000100



1.1. Machine Learning and PAC Bounds 9

thanks to (1.3). This time, put δ = Me
−2ns2
C2 and plug into (1.5) to get:

PS

sup
θ∈Θ

[R(θ) − r(θ)] > C

√
log M

δ

2n

 ≤ δ.

Thus, the complementary event satisfies

PS

sup
θ∈Θ

[R(θ) − r(θ)] ≤ C

√
log M

δ

2n

 ≥ 1 − δ. (1.6)

From (1.4),

PS

R(θ̂ERM) ≤ r(θ̂ERM) + C

√
log M

δ

2n

 ≥ 1 − δ

and note that, as Θ is finite, r(θ̂ERM) = infθ∈Θ r(θ).

Bounds in the form of Theorem 1.2 are called Probably Approxi-
mately Correct (PAC) bounds, because r(θ̂ERM) approximates R(θ̂ERM)
within C

√
log(M/δ)/2n with probability 1 − δ. This terminology was

introduced by Valiant (1984).

Remark 1.1. The proofs of Proposition 1.1 and Theorem 1.2 used, in
addition to Hoeffding’s inequality, two tricks that we will reuse very
often when we will prove PAC-Bayes bounds:

• given a random variable U and s ∈ R, for any t > 0,

P (U > s) = P
(
etU > ets

)
≤

E
(
etU
)

ets

thanks to Markov inequality. The combo “exponential + Markov
inequality” is known as Chernoff’s bounding technique. It is
is of course very useful together with exponential inequalities like
Hoeffding’s inequality.

Full text available at: http://dx.doi.org/10.1561/2200000100



10 Introduction

• given a finite number of random variables U1, . . . , UM ,

P
(

sup
1≤i≤M

Ui > s

)
= P

 ⋃
1≤i≤M

{
Ui > s

}
≤

M∑
i=1

P (Ui > s) .

This argument is called the union-bound argument.

The next step in the study of the ERM would be to go beyond finite
sets Θ. The union bound argument has to be modified in this case, and
things become a little more complicated. We will therefore stop here
the study of the ERM: it is not our objective anyway.

If the reader is interested by the study of the ERM in general:
Vapnik and Chervonenkis (1968) developed the theoretical tools for
this study, see the more recent monograph by Vapnik (1998). We
refer the reader to Devroye et al. (1996) for a beautiful and very
pedagogical introduction to machine learning theory. Chapters 11 and
12 in particular are dedicated to Vapnik and Chervonenkis theory. More
recent references include Giraud (2014) and Wainwright (2019).

1.2 What are PAC-Bayes Bounds?

We are now in better position to explain what are PAC-Bayes bounds.
A simple way to phrase things: PAC-Bayes bounds are generalization of
the union bound argument, that will allow to deal with any parameter
set Θ: finite or infinite, continuous... However, a byproduct of this
technique is that we will have to change the notion of estimator.

Definition 1.1. Let P(Θ) be the set of all probability distributions on
Θ equipped with a σ-algebra T . A data-dependent probability measure
is a function:

ρ̂ :
∞⋃
n=1

(X × Y)n → P(Θ)

Full text available at: http://dx.doi.org/10.1561/2200000100



1.2. What are PAC-Bayes Bounds? 11

with a suitable measurability condition.3 We will write ρ̂ instead of
ρ̂((X1, Y1), . . . , (Xn, Yn)) for short.

In practice, when you have a data-dependent probability measure,
and you want to build a predictor, you can:

• draw a random parameter θ̃ ∼ ρ̂, we will call this procedure
“randomized estimator”.

• use it to average predictors, that is, define a new predictor:

fρ̂(·) = Eθ∼ρ̂[fθ(·)]

called the aggregated predictor with weights ρ̂.

So, with PAC-Bayes bounds, we will extend the union bound argu-
ment4 to infinite, uncountable sets Θ, but we will obtain bounds on
various risks related to data-dependent probability measures, that is:

• the risk of a randomized estimator, R(θ̃),

• or the average risk of randomized estimators, Eθ∼ρ̂[R(θ)],

• or the risk of the aggregated estimator, R(fρ̂).

From a technical point of view, the analysis shares many similarities
with the analysis of the ERM in the previous section. A key difference
is that the supremum in (1.4) will be replaced by

Eθ∼ρ̂[R(θ) − r(θ)] ≤ sup
ρ∈P(Θ)

Eθ∼ρ[R(θ) − r(θ)].

While this might look unnecessarily complicated at first sight, PAC-
Bayes bounds will actually turn out to be extremely convenient for
many reasons that we hope will become clear along the next sections:

3I don’t want to scare the reader with measurability conditions, as I will not
check them in this tutorial anyway. Here, the exact condition to ensure that what
follows is well defined is that for any A ∈ T , the function

((x1, y1), . . . , (xn, yn)) 7→ [ρ̂((x1, y1), . . . , (xn, yn))] (A)

is measurable. That is, ρ̂ is a regular conditional probability.
4See the title of van Erven’s tutorial (van Erven, 2014): “PAC-Bayes mini-tutorial:

a continuous union bound”. Note, however, that it is argued by Catoni (2007) that
PAC-Bayes bounds are actually more than that, we will come back to this in Section 4.
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• first, they don’t require the set of predictors to be finite, nor
discrete. Of course, it is also possible to prove PAC bounds for
the ERM when Θ ⊂ Rp is not finite, but this leads to techni-
cal difficulties or strong restrictions such as the compactness of
Θ. PAC-Bayes bounds do not lead to major difficulties with un-
bounded parameter spaces, as will be illustrated in Example 3.2.

• randomized estimators are fairly common in machine learning.
This includes Bayesian estimation and related methods such as
variational inference and ensemble methods. Section 2 illustrates
how PAC-Bayes bounds can be applied to such estimators. More-
over, many non-randomized estimators can be derived from ran-
domized ones: aggregation rules, majority vote classifiers, etc. The
PAC-Bayes bounds on the randomized estimator often brings
strong information on the de-randomized version. This will also
be discussed thoroughly and illustrated in Section 2.

• Bayesian estimators incorporate prior knowledge through a prior
distribution π on Θ. Even though PAC-Bayes bounds can be
applied to non-Bayesian estimators, a prior π will still appear in
the bound. The effect of π on the bound will be discussed thor-
oughly. In particular, PAC-Bayes bounds depend not only on the
minimum of the empirical risk r(θ), but on the prior probability
of the level sets of r: in general, this can be quantified through
the so-called prior-mass condition, as described in Section 4, even
though specific examples such as Example 2.1 will already illus-
trate this property. A consequence is that flater minima lead to
tigther bounds. This is one of the reasons why PAC-Bayes bounds
can be tight for deep learning (Section 3).

You will of course ask the question: if Θ is infinite, what will the log(M)
term be replaced with? In PAC-Bayes bounds, this term will be replaced
by the Kullback-Leibler divergence between ρ and a fixed π on Θ (the
prior).
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Definition 1.2. Given two probability measures µ and ν in P(Θ), the
Kullback-Leibler (or simply KL) divergence between µ and ν is

KL(µ∥ν) =
∫

log
(dµ

dν (θ)
)
µ(dθ) ∈ [0,+∞]

if µ has a density dµ
dν with respect to ν, and KL(µ∥ν) = +∞ otherwise.5

Example 1.1. For example, if Θ is finite,

KL(µ∥ν) =
∑
θ∈Θ

log
(
µ(θ)
ν(θ)

)
µ(θ).

The following result is well known. You can prove it using Jensen’s
inequality.

Proposition 1.2. For any probability measures µ and ν, KL(µ∥ν) ≥ 0
with equality if and only if µ = ν.

1.3 Why this Tutorial?

Since the “PAC analysis of a Bayesian estimator” by Shawe-Taylor
and Williamson (1997) and the first PAC-Bayes bounds proven by Mc-
Allester (1998) and McAllester (1999), many new PAC-Bayes bounds
appeared (we will see that some of them can be derived from a bound
due to Seeger, 2002). These bounds were used in various contexts, to
solve a wide range of problems. This led to hundreds of (beautiful!)
papers. The consequence of this is that it’s quite difficult to be aware of
all the existing work on PAC-Bayes bounds. In particular, it seems that
many powerful techniques in Catoni’s book (Catoni, 2007) and earlier
works (Catoni, 2003; 2004) are largely ignored by the community.

On the other hand, it’s not easy to enter into the PAC-Bayes
literature. Most papers already assume some basic knowledge on these
bounds, and Catoni’s book is quite technical to begin with. The objective

5We recall that if there is a measurable function g such that for any measurable
set A,

µ(A) =
∫
A

g(θ)ν(dθ),

then this function is essentially unique. We put dµ
dν (θ) = g(θ) and refer to this

function as the density of µ with respect to ν.
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of these notes is thus to provide a user-friendly introduction, accessible
to PhD students, that could be used as a first approach to PAC-Bayes
bounds. It also provides references for more sophisticated results.

I want to mention existing short introduction to PAC-Bayes bounds,
like the ones by McAllester (2013) and van Erven (2014) and the nice
introductory slides of Fleuret (2011). They are very informative, and
I recommend the reader to check them. However, they are focused on
empirical bounds only. There are also surveys on PAC-Bayes bounds,
such as Chopin et al. (2015, Section 5) or Guedj (2019). These papers
are very useful to navigate in the ocean of publications on PAC-Bayes
bounds, and they helped me a lot when I was writing this document,
but might not provide enough detail for a first reading on the topic.

Finally, in order to highlight the main ideas, I will not necessarily try
to present the bounds with the tightest possible constants. In particular,
many oracle bounds and localized bounds in Section 4 were introduced
in Catoni (2003; 2007) with better constants. Once again, this is an
introduction to PAC-Bayes bounds. I strongly recommend the reader to
check the original publications for more accurate results.

1.4 Two Types of PAC Bounds, Organization of these Notes

It is important to make a distinction between two types of PAC bounds.
Theorem 1.2 is usually refered to as an empirical bound. It means

that, for any θ, R(θ) is upper bounded by an empirical quantity, that
is, by something that we can compute when we observe the data. This
allows to study the ERM as the minimizer of this bound. It also provides
a numerical certificate of the generalization error of the ERM. You will
really end up with something like

PS
(
R(θ̂ERM) ≤ 0.12

)
≥ 0.99.

However, a numerical certificate on the generalization error does
not tell you one thing. Can this 0.12 be improved using a larger sample
size? Or is it the best that can be done with our set of predictors? The
right tools to answer these questions are excess risk bounds, also known
as oracle PAC bounds. In these bounds, you have a control of the form

PS

(
R(θ̂ERM) ≤ inf

θ∈Θ
R(θ) + rn(δ)

)
≥ 1 − δ,
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where the remainder rn(δ) should be as small as possible and satisfy
rn(δ) → 0 when n → ∞. Of course, the upper bound on R(θ̂ERM)
cannot be computed because R is unknown in practice, so it doesn’t
lead to a numerical certificate on R(θ̂ERM). Still, these bounds are very
interesting, because they tell you how close you can expect R(θ̂ERM) to
be to the smallest possible value of R.

In the same way, there are empirical PAC-Bayes bounds, and oracle
PAC-Bayes bounds (also known as excess-risk PAC-Bayes bounds). The
very first PAC-Bayes bounds by McAllester (1998) and McAllester
(1999) were empirical bounds. The first oracle PAC-Bayes bounds came
later (Catoni, 2003; Catoni, 2004; Zhang, 2006; Catoni, 2007).

In some sense, empirical PAC-Bayes bounds are more useful in
practice, and oracle PAC-Bayes bounds are theoretical objects. But
this might be an oversimplification. We will see that empirical bounds
are tools used to prove some oracle bounds, so they are also useful in
theory. On the other hand, when we design a data-dependent probability
measure, we don’t know if it will lead to large or small empirical bounds.
A preliminary study of its theoretical properties through an oracle
bound is the best way to ensure that it is efficient, and so that it has a
chance to lead to small empirical bounds.

In Section 2, we will study an example of empirical PAC-Bayes
bound, essentially taken from a preprint by Catoni (2003). We will
prove it together, play with it and modify it in many ways. In Section 3,
we cover many empirical PAC-Bayes bounds, and explain the race to
tighter bounds. This led to bounds that are tight enough to provide
good generalization certificates for deep learning, we will discuss this
based on Dziugaite and Roy’s paper (Dziugaite and Roy, 2017) and
a more recent work by Pérez-Ortiz, Rivasplata, Shawe-Taylor, and
Szepesvàri (Pérez-Ortiz et al., 2021).

In Section 4, we will turn to oracle PAC-Bayes bounds. We will see
how to derive these bounds from empirical bounds, and apply them to
some classical set of predictors. We will examine the assumptions leading
to fast rates in these inequalities. Section 5 will be devoted to the various
attempts to extend PAC-Bayes bounds beyond the setting introduced in
this introduction, that is: bounded loss, and i.i.d. observations. Finally,
in Section 6 we will discuss briefly the connection between PAC-Bayes
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bounds and many other approaches in machine learning and statistics,
including regret bounds and Mutual Information bounds (MI).
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