Artificial Intelligence in Marketing and Consumer Behavior Research
Other titles in Foundations and Trends® in Marketing

The Rise of Mobile Marketing: A Decade of Research in Review
Zeynep Aydin-Gokgoz, M. Berk Ataman and Gerrit van Bruggen

Marketing and Firm Value
Shuba Srinivasan and Dominique M. Hanssens
ISBN: 978-1-63828-044-6

Adoption of Innovations: Comparing the Imitation and the Threshold Models
Amir Heiman, Bruce P. McWilliams and David Zilberman
ISBN: 978-1-63828-020-0

Audio and Visual Analytics in Marketing and Artificial Empathy
Shasha Lu, Hye-Jin Kim, Yinghui Zhou, Li Xiao and Min Ding
ISBN: 978-1-68083-970-8

Language Research in Marketing
Ann Kronrod
ISBN: 978-1-68083-966-1

Reflections of Eminent Marketing Scholars
Dawn Iacobucci
ISBN: 978-1-68083-954-8
Artificial Intelligence in Marketing and Consumer Behavior Research

TaeWoo Kim
University of Technology Sydney
TaeWoo.Kim@uts.edu.au

Umair Usman
Florida International University
Umair.Usman@uky.edu

Aaron Garvey
University of Kentucky
amgarv@gmail.com

Adam Duhachek
University of Illinois Chicago
adamd@uic.edu

Full text available at: http://dx.doi.org/10.1561/1700000078
Editorial Scope

Topics

Foundations and Trends® in Marketing publishes survey and tutorial articles in the following topics:

- B2B Marketing
- Bayesian Models
- Behavioral Decision Making
- Branding and Brand Equity
- Channel Management
- Choice Modeling
- Comparative Market Structure
- Competitive Marketing Strategy
- Conjoint Analysis
- Customer Equity
- Customer Relationship Management
- Game Theoretic Models
- Group Choice and Negotiation
- Discrete Choice Models
- Individual Decision Making
- Marketing Decisions Models
- Market Forecasting
- Marketing Information Systems
- Market Response Models
- Market Segmentation
- Market Share Analysis
- Multi-channel Marketing
- New Product Diffusion
- Pricing Models
- Product Development
- Product Innovation
- Sales Forecasting
- Sales Force Management
- Sales Promotion
- Services Marketing
- Stochastic Model

Information for Librarians

Foundations and Trends® in Marketing, 2023, Volume 18, 4 issues. ISSN paper version 1555-0753. ISSN online version 1555-0761. Also available as a combined paper and online subscription.
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>1 History of AI Research in Marketing</td>
<td>16</td>
</tr>
<tr>
<td>2 AI Decision Contexts and Main Effects</td>
<td>20</td>
</tr>
<tr>
<td>3 Moderators of Behavioral AI Effects in Consumer Research</td>
<td>29</td>
</tr>
<tr>
<td>4 Process Mechanisms of Behavioral AI Effects in Consumer Research</td>
<td>44</td>
</tr>
<tr>
<td>5 Artificial Intelligence Agent Stimuli and Manipulations</td>
<td>55</td>
</tr>
<tr>
<td>6 Future Research Directions for Behavioral AI Research in Marketing</td>
<td>71</td>
</tr>
<tr>
<td>References</td>
<td>77</td>
</tr>
</tbody>
</table>
Artificial Intelligence in Marketing and Consumer Behavior Research

TaeWoo Kim¹, Umair Usman², Aaron Garvey³ and Adam Duhachek⁴

¹University of Technology Sydney, Australia; TaeWoo.Kim@uts.edu.au
²Florida International University, USA; Umair.Usman@uky.edu
³University of Kentucky, USA; amgarv@gmail.com
⁴University of Illinois Chicago, USA; adamd@uic.edu

ABSTRACT

Examining the impact of technology on marketing has been an important research topic dating to the advent of radio, TV, and the Internet. Whereas each new technology had its own implications in the history of marketing research, it is becoming increasingly clear that the emergence of artificial intelligence (AI) is changing the marketing landscape in an unprecedented way. AI technology has been long out there, but recent breakthrough developments suggest we are entering a new technological zeitgeist with profound implications for both marketers and consumers. The current research provides a systematic review of academic AI research conducted in the domain of marketing and consumer psychology. The current review integrates previous research published in leading marketing and psychology journals between 2018 and 2023, during which behavioral research on AI has grown substantially. We synthesize the existing literature and provide guidance for behavioral researchers working in this area. This review concludes with a discussion on critical issues associated with AI and makes suggestions for future research directions.
Introduction

Marketing practitioners and researchers have long been drawn to new technologies to improve business performance and consumer experience. In the early 20th century, the trajectory of future business growth was altered by advancements in early computer science, rooted in theoretical mathematics and driven by applications for military use, such as codebreaking during World War II. The invention of the modern-day computer, the Atanasoff Berry Computer, by researchers at Iowa State University in 1942 launched the digital age. In 1946, mathematician Alan Turing produced a design for a much more sophisticated computer known as the Automatic Computing Engine (ACE) based on earlier theoretical work described in a seminal 1936 paper detailing the specifications for modern-day computing known as the Turing machine. The ACE prototype was built and performed its first operations in 1950.

Turing also introduced the notion of the Turing test in 1950 by proposing that a key touchstone for computing technology would be a “thinking” machine capable of interacting with a human interlocutor such that the machine performs at a level indistinguishable from a human (Turing, 1950). Although philosophers, scientists and logicians had theorized the possibilities surrounding humanlike machines for centuries, the term artificial intelligence (AI) was coined by Dartmouth mathematician John McCarthy at a 1956 summer workshop held at Dartmouth University, and the new field was born.
Concomitant with early theoretical and technical work into building computing systems, applied researchers also began to see the promise of AI technology to address practical problems. Meehl (1954) somewhat controversially proposed that clinicians’ tendency to combine intuition and experience with other analytical inputs resulted in sub-optimal decision-making as compared to the potential of algorithmic and actuarial models in predicting patient outcomes. This prediction flew in the face of conventional thinking and computational capabilities of the day, yet Meehl persisted in this belief. Subsequent research showed Meehl’s intuition was accurate (Dawes et al., 1989), and the idea that an algorithm can outperform a human decision-maker is certainly not controversial today.

In the past decade of marketing scholarship, researchers have begun to examine these issues through a consumer lens (Puntoni et al., 2021). In the next section, we document the state of the art of behavioral consumer research involving AI-human interactions and divide the literature into two primary areas based on whether the reported effects are instantiations of consumers displaying a positive or negative response to encounters with AI.

It is our intention to contribute to the literature by focusing on the current state of behavioral AI-consumer research in marketing by synthesizing the existing research in this domain. We acknowledge the significant contributions made by prior research, including comprehensive reviews of the literature and conceptual papers on AI-consumer research in marketing (Belk et al., 2023; Cukier, 2021; Davenport et al., 2020; Hermann, 2022; Huang and Rust, 2021; Kim and Duhachek, 2022; Kozinets and Gretzel, 2021; Rahwan et al., 2019; Van Doorn et al., 2017; Wirtz et al., 2023), and qualitative research in this domain (Belk, 2021; Novak and Hoffman, 2023). For instance, Davenport et al. (2020) proposed a conceptual framework for understanding the impact of AI by integrating existing knowledge about AI’s level of intelligence, task types, and whether the AI is embedded in a robot that was empirically tested by Schepers et al. (2022). Hermann (2022) proposed a conceptual framework on AI ethics with a multi-stakeholder perspective and focus on levels of intelligence of the AI. Within the services marketing domain, prior conceptual frameworks have proposed the types of AI
Introduction

(e.g., mechanical, thinking and feeling) that could be better suited for different types of services (Huang and Rust, 2021), and the role of firms in ensuring Corporate Digital Responsibility (CDR) as firms implement digital service technologies with a key focus on ethics, fairness and privacy (Hunold et al., 2020; Wirtz et al., 2023). Belk et al. (2023) discusses the impact of the 4th industrial revolution powered by AI and how it is different than previous technological breakthroughs and the new opportunities to increase customer value. Recent conceptual frameworks have also focused on the social presence of AI and the role AI plays in customer experiences (Cukier, 2021; Heerink et al., 2010; Van Doorn et al., 2017). Additionally, it is important to note that AI has been extensively examined as a research topic in various fields of research outside of marketing and consumer psychology. To list a few, studies conducted within the realm of Human-Computer Interaction (HCI) and Computers are Social Actors (CASA) have established a myriad of frameworks and models revealing how humans interact with computers and apply social norms in their interactions (Gambino et al., 2020; Nass et al., 1994). Last, but not least, Vaid et al. (2023) recently examined how researchers have used AI techniques (e.g., deep learning) in consumer behavior research, and proposed a topic modeling approach to further study consumer-relevant topics by analyzing the abundance of consumer research data. Vaid et al. (2023) identify opportunities for marketing to engage in cross-disciplinary collaborations with disciplines that will effectively help in exploiting the AI techniques.

The current research aims to contribute to the literature by integrating the growing body of AI research in marketing and consumer psychology. In doing so, we differentiate our work from the aforementioned AI research by focusing on the burgeoning yet less examined behavioral studies conducted in marketing and consumer behavior. We also identify the theories and process mechanisms that explain the reported effects. Our inclusion criteria for the articles followed a search strategy using keywords such as “artificial intelligence,” “algorithm,” and “robots” to search online databases of leading marketing journals, including the Journal of Marketing, Journal of Marketing Research, Journal of Consumer Research, Marketing Science, Journey of the Academy of Marketing Science, Journal of Consumer Psychology, Journal of Service
Research, Journal of Service Management and Management Science. We restricted our search to articles published between 2018–2023 (until June 19, 2023) that empirically studied consumer-AI interactions primarily using experimental methods. Next, we also included several relevant articles published in leading social psychology journals, including Psychological Science, Journal of Experimental Social Psychology, Emotion, Nature, Journal of Experimental Psychology (General), Organizational Behavior and Human Decision Processes, and Cognition. These articles were selected based on their substantial contributions to the literature. The selected articles are listed in Table 1.
Table 1: Study details and DVs

<table>
<thead>
<tr>
<th>Paper</th>
<th>Decision Context</th>
<th>Methodologies</th>
<th>Dependent Variables</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergner et al.</td>
<td>Evaluation of AI-based conversational interfaces and its effect on consumer-brand</td>
<td>Online Experiments</td>
<td>Willingness to pay a premium, recommendation acceptance, brand advocacy and brand loyalty</td>
<td>AI-conversational interfaces that use turn-taking, turn-initiating and grounding between turns, promote brand intimacy and lead to positive downstream consequences for the brand.</td>
</tr>
<tr>
<td>(2023), JCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Castelo et al.</td>
<td>Evaluation of bot-provided services</td>
<td>Lab and Field Experiments</td>
<td>Consumers’ evaluation of service</td>
<td>Consumers evaluate the services more negatively when they are served by the bots (vs. humans)</td>
</tr>
<tr>
<td>(2023), JCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chen and</td>
<td>Evaluation of how highlight robots’ (vs. humans’) helping behavior in disaster</td>
<td>Lab and Online Experiments</td>
<td>Consumers’ prosociality</td>
<td>Consumers are less likely to engage in prosocial behaviors when robots’ (vs. humans’) helping behavior in disaster response is highlighted.</td>
</tr>
<tr>
<td>Huang et al.</td>
<td>response effect consumers’ prosociality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2023), JCP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Bellis et al.</td>
<td>Evaluation of meaningfulness of manual labor to consumers and its effect on</td>
<td>Online and Field Experiments</td>
<td>Product valuation, adoption likelihood</td>
<td>Consumers who score high (vs. low) on the meaning of manual labor construct tend to evaluate autonomous products less favorably and adopt them less frequently.</td>
</tr>
<tr>
<td>(2023), JM</td>
<td>automated technology adoption</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Garvey et al.</td>
<td>Evaluation of marketing offers administered by AI vs. humans</td>
<td>Lab and Online Experiments</td>
<td>Willingness/likelihood to accept offers, customer satisfaction</td>
<td>Customers respond better to worse-than-expected offers when dealing with an AI agent (vs. human). Customers respond positively to better-than-expected offers when dealing with human agent (vs. AI agent)</td>
</tr>
<tr>
<td>(2023), JM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Han et al.</td>
<td>Evaluation of the impact of consumers’ mindset on their attitude towards</td>
<td>Online Experiments</td>
<td>Attitude toward the robot</td>
<td>Consumers with competitive (collaborative) mindset respond less (more) favorably to anthropomorphized (vs. non-anthropomorphized) AI</td>
</tr>
<tr>
<td>(2023), JSR</td>
<td>anthropomorphized AI in services</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued.
Table 1: Continued.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Decision Context</th>
<th>Methodologies</th>
<th>Dependent Variables</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maar et al. (2023), JSM</td>
<td>Evaluation of how consumer, chatbot, and contextual characteristics shape consumers’ attitude related to chatbots</td>
<td>Online Experiments</td>
<td>Chatbot-related usage intention Consumers belonging to GenZ have a more favorable attitude towards chatbots than consumers belonging to GenX. However, GenX consumers perceive chatbots with high social orientation as warmer.</td>
<td></td>
</tr>
<tr>
<td>Reich et al. (2023), JCP</td>
<td>Evaluation of why algorithm aversion occurs among consumers</td>
<td>Online Experiments</td>
<td>Trust</td>
<td>Consumers avoid algorithmic recommendations assuming that the AI cannot learn from its mistakes.</td>
</tr>
<tr>
<td>Crolic et al. (2022), JM</td>
<td>Evaluation of customer satisfaction with firm in a chatbot-led interaction</td>
<td>Secondary data analysis and lab experiments</td>
<td>Customer satisfaction, purchase intentions, evaluation of firm Chatbot anthropomorphism negatively affects customers’ satisfaction, firm evaluation and purchase intention, when customers enter chatbot-led interaction in an angry (vs. non-angry) state</td>
<td></td>
</tr>
<tr>
<td>Holthöwer and van Doorn (2022), JAMS</td>
<td>Evaluation of consumers’ preference to interact with robot (vs. human) service providers in embarrassing product consumption contexts</td>
<td>Lab, online and field experiments</td>
<td>Choice of service provider (human vs. robot); Click Through Rate; Likelihood to accept recommendation from the service provider; Purchase intentions</td>
<td>Consumers feel less judged by a robot (vs. human) in embarrassing service encounters</td>
</tr>
<tr>
<td>Kim et al. (2022c), JAMS</td>
<td>Evaluation of consumers’ likelihood to engage in unethical behavior when interacting with artificial intelligence/robots (vs. humans)</td>
<td>Lab and online experiments</td>
<td>Unethical behavior (e.g., clipping additional coupons; choose false reasons) Engaging with AI/robots (vs. humans) increases tendency to engage in unethical behavior</td>
<td></td>
</tr>
</tbody>
</table>

Continued.
Table 1: Continued.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Decision Context</th>
<th>Methodologies</th>
<th>Dependent Variables</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kim et al. (2022b), JMR</td>
<td>Evaluation of the extent to which AI assistance improves service provided by service employees</td>
<td>Field experiment</td>
<td>Students’ test scores</td>
<td>Providing AI-generated diagnoses to tutors (service employees) improves academic performance. Tutors’ willingness to use AI’s assistance depends on their level of AI aversion, and technology overload</td>
</tr>
<tr>
<td>Longoni and Cian (2022), JM</td>
<td>Evaluation of utilitarian vs. hedonic recommendations made by AI vs. humans</td>
<td>Field and lab experiments</td>
<td>Product choice referred by AI vs. human, Products’ hedonic/utilitarian perceptions, Product usage intentions</td>
<td>Consumers prefer recommendations of utilitarian (hedonic) products made by AI (humans)</td>
</tr>
<tr>
<td>Longoni et al. (2022), JMR</td>
<td>Evaluation of consumers’ responses to service failures made by an algorithm vs. humans</td>
<td>Online experiments</td>
<td>Propensity to trust the agent or use the service being provided by the agent</td>
<td>Consumers generalize algorithmic failures more broadly than human failures as algorithms are perceived to be more homogenous than humans</td>
</tr>
<tr>
<td>Mozafari et al. (2022), JSM</td>
<td>Evaluation of how the negative effects of chatbot disclosure on consumer retention can be prevented</td>
<td>Online Experiments</td>
<td>Customer retention</td>
<td>Consumers react negatively to chatbot disclosure for highly critical services due to reduced trust.</td>
</tr>
<tr>
<td>Pitardi et al. (2022), JSM</td>
<td>Evaluation of how customers respond to service robots in context of embarrassing service encounters</td>
<td>Interviews and Online Experiments</td>
<td>Customer embarrassment</td>
<td>Consumers anticipate less embarrassment when interacting with service robots due to the robots’ perceived lack of agency</td>
</tr>
</tbody>
</table>

Continued.
Table 1: Continued.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Decision Context</th>
<th>Methodologies</th>
<th>Dependent Variables</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schepers et al.</td>
<td>Evaluation of consumers’ emotional responses to different types of AI (mechanical, thinking and feeling AI)</td>
<td>Online Experiments and Field Study</td>
<td>Loyalty intentions, customer spending</td>
<td>As AI type becomes more sophisticated, the impact of AI type on positive emotions becomes stronger, leading to higher spending and loyalty intention.</td>
</tr>
<tr>
<td>Uysal et al.</td>
<td>The effect of consumers’ anthropomorphism of AI on threats to consumer identity, perceived empowerment, privacy concerns and well-being</td>
<td>Interviews, Online Survey and Field Experiment</td>
<td>Consumers’ satisfaction with AI, privacy concerns and well-being</td>
<td>AI anthropomorphism may threaten users’ identity, which disempowers them, creates data privacy concerns and ultimately undermines their well-being</td>
</tr>
<tr>
<td>Xu and Mehta</td>
<td>The effect of AI designing luxury products on consumers’ valuation of the product</td>
<td>Lab and online experiments</td>
<td>Brand Attitudes and Purchase Intentions</td>
<td>AI as design source reduces brand attitudes for luxury products</td>
</tr>
<tr>
<td>Yalcin et al.</td>
<td>Evaluation of (un)favorable decisions made by algorithm vs. humans</td>
<td>Lab and online experiments</td>
<td>Attitude towards the organization</td>
<td>Consumers’ reaction to a favorable decision by an algorithm (vs. a human) is less positive. The effect is mitigated for unfavorable decisions</td>
</tr>
<tr>
<td>Yu et al.</td>
<td>Evaluation of consumers’ evaluation of service experience upon rejection of requests from a robot (vs. human) agent</td>
<td>Online and Lab Experiments</td>
<td>Service evaluation</td>
<td>Consumers evaluate the service less negatively when their requests are rejected by a service robot (vs. human agent)</td>
</tr>
<tr>
<td>Zierau et al.</td>
<td>Evaluation of voice-based (vs. text-based) AI interfaces and its effect on consumers’ flow-like experiences and service outcomes</td>
<td>Online Experiments</td>
<td>Contract renewal, customer sentiment, conversion rate</td>
<td>Voice-based (vs. text-based) interfaces promote flow-like experiences that enhance service outcomes.</td>
</tr>
</tbody>
</table>

continued.
<table>
<thead>
<tr>
<th>Paper</th>
<th>Decision Context</th>
<th>Methodologies</th>
<th>Dependent Variables</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Choi et al. (2021), JSR</td>
<td>Evaluation of social perceptions of a service robot’s warmth and competence and its influence on consumers’ reaction to service failure recovery efforts by robots.</td>
<td>Online Experiments</td>
<td>Satisfaction, behavioral intentions</td>
<td>Consumers are most dissatisfied due to service failure caused by humanoid (vs. non-humanoid) robots, but humanoid robots can recover by offering sincere apology or an explanation that restores warmth. Human intervention can mitigate dissatisfaction when the service failure is caused by a non-humanoid robot.</td>
</tr>
<tr>
<td>Granulo et al. (2021), JCP</td>
<td>Evaluation of preference for human versus robotic labor in symbolic consumption</td>
<td>Lab experiments</td>
<td>Preference for product made by human versus robot and Likelihood to buy</td>
<td>Consumers prefer humans (vs. robots) for products with high (vs. low) symbolic value.</td>
</tr>
<tr>
<td>Hildebrand and Bergner (2021), JAMS</td>
<td>Evaluation of consumers’ trust, firm’s evaluation and financial decisions based on interaction with conversational (vs. non-conversational) algorithms</td>
<td>Lab and online experiments</td>
<td>Attribution of benevolence toward the financial services firm; Amount to invest and be managed by the algorithm; Acceptance of recommendation made by algorithm</td>
<td>Conversational (vs. non-conversational) algorithms increase consumer trust and willingness to accept recommendations from algorithm, and positively affect firm’s evaluation</td>
</tr>
<tr>
<td>Luo et al. (2021), JM</td>
<td>Evaluation of an AI’s effectiveness as a coach for sales agents</td>
<td>Field experiments</td>
<td>Sales calls successfully converted into loan renewal</td>
<td>Middle-ranked sales agents are more successful with an AI sales coach (vs. human coach) than low- and top-ranked sales agents.</td>
</tr>
<tr>
<td>McLeay et al. (2021), JSR</td>
<td>Evaluation of consumers’ perceptions of Frontline Service Robots (FLSRs)</td>
<td>Online Experiments</td>
<td>Service experience, brand usage intent</td>
<td>Augmenting human employees with FLSRs has positive, whereas substituting human employees with FLSRs has negative consequences (irrespective of value creation model, AI type and service type).</td>
</tr>
</tbody>
</table>

Continued.
Table 1: Continued.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Decision Context</th>
<th>Methodologies</th>
<th>Dependent Variables</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Srinivasan and Sarial-Abi (2021), JM</td>
<td>Evaluation of consumers’ reaction to brand harm caused by algorithm (vs. humans)</td>
<td>Lab and online experiments</td>
<td>Attitude towards the firm; Helpful behavior towards the firm and its causes</td>
<td>Consumers react less negatively to a brand harm caused by an algorithm (vs. human)</td>
</tr>
<tr>
<td>Weihrauch and Huang (2021), JM</td>
<td>Evaluation of portraying humans as machines as means to promote healthy behavior</td>
<td>Field, lab and online experiments</td>
<td>Healthiness of food items chosen</td>
<td>Portraying humans-as-machines promotes healthier choices for those with high (vs. low) eating self-efficacy</td>
</tr>
<tr>
<td>Zhang et al. (2021), Marketing Science</td>
<td>The effect of smart-pricing algorithm on the racial disparity in daily revenue earned by Airbnb hosts</td>
<td>Quasi-natural experiment</td>
<td>Average daily revenue of Airbnb hosts</td>
<td>Smart-pricing algorithm adoption decreased average nightly rates but increased average daily revenue. Smart-pricing adoption decreased the revenue gap between White and Black hosts</td>
</tr>
<tr>
<td>Belanche et al. (2020), JSM</td>
<td>Evaluation of customers’ attribution of responsibility following a service failure/success</td>
<td>Online Experiments</td>
<td>Customer’s attributions towards agent, firm and stability</td>
<td>Customers make strong attribution of responsibility towards human employees versus robots, especially in case of service failure, and by extension, attribute the blame to the firm. Customers also attribute greater performance stability to robots than to humans</td>
</tr>
<tr>
<td>Gill (2020), JCR</td>
<td>Evaluation of consumer morality in context of self versus autonomous vehicles protecting self vs. pedestrians</td>
<td>Lab experiments</td>
<td>Swerve (kill/injure self) vs. Stay (kill/injure pedestrians); Moral judgements of swerve vs. stay decision</td>
<td>Participants reported harming a pedestrian more permissible with an autonomous vehicle (vs. self)</td>
</tr>
<tr>
<td>Kim and Duhachek (2020), Psychological Science</td>
<td>Evaluation of persuasiveness of human versus AI agents</td>
<td>Lab experiments</td>
<td>Product usage intentions</td>
<td>Human (AI) agents are more persuasive when persuasive messages represent high- (low-) levels of construal</td>
</tr>
<tr>
<td>Paper</td>
<td>Methodologies</td>
<td>Decision Context</td>
<td>Dependent Variables</td>
<td>Findings</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| Newman et al. | Lab and field experiments | Evaluation of perceived procedural justice of using an algorithm in employee evaluation | Perceived fairness, organizational commitment | Participants perceived performance reviews conducted by algorithms less fair than those conducted by human managers.
Consumers are more likely to depend on AI to have domain expertise, even if the recommendation is inferior.
Trust in algorithms increases for objective tasks.
Framing tasks as more quantifiable increases trust in algorithms.
Observing a robot conduct disaster relief acts is less inspiring for consumers as opposed to when the acts are performed by a human.
Bots were better than humans at eliciting cooperation, but only if they were allowed to pass as humans. As soon as their true nature was revealed, cooperation rates dropped and could no longer match typical levels of human–human cooperation. |
| OBHDP | Experiment | Evaluation of perceived procedural justice of using an algorithm in employee evaluation | Perceived fairness, organizational commitment | Participants perceived performance reviews conducted by algorithms less fair than those conducted by human managers.
Consumers are more likely to depend on AI to have domain expertise, even if the recommendation is inferior.
Trust in algorithms increases for objective tasks.
Framing tasks as more quantifiable increases trust in algorithms.
Observing a robot conduct disaster relief acts is less inspiring for consumers as opposed to when the acts are performed by a human.
Bots were better than humans at eliciting cooperation, but only if they were allowed to pass as humans. As soon as their true nature was revealed, cooperation rates dropped and could no longer match typical levels of human–human cooperation. |
| Banker and Khetani (2019), JPPM | Lab and Online Experiments | Overreliance on AI and Its Recommendations from AI | Consumer’s willingness to accept recommendations from AI | Consumers are more likely to depend on AI to have domain expertise, even if the recommendation is inferior.
Trust in algorithms increases for objective tasks.
Framing tasks as more quantifiable increases trust in algorithms.
Observing a robot conduct disaster relief acts is less inspiring for consumers as opposed to when the acts are performed by a human.
Bots were better than humans at eliciting cooperation, but only if they were allowed to pass as humans. As soon as their true nature was revealed, cooperation rates dropped and could no longer match typical levels of human–human cooperation. |
| Castelo et al. (2019), JMR | Online lab, online field experiments | Romantic advice, financial advice, movie recommendation, disease prediction, disease treatment, recidivism, personality prediction, job performance, stock performance | Facebook ad clickthrough rates for ads featuring AI and human agents; trust in algorithms | Participants perceived performance reviews conducted by algorithms less fair than those conducted by human managers.
Consumers are more likely to depend on AI to have domain expertise, even if the recommendation is inferior.
Trust in algorithms increases for objective tasks.
Framing tasks as more quantifiable increases trust in algorithms.
Observing a robot conduct disaster relief acts is less inspiring for consumers as opposed to when the acts are performed by a human.
Bots were better than humans at eliciting cooperation, but only if they were allowed to pass as humans. As soon as their true nature was revealed, cooperation rates dropped and could no longer match typical levels of human–human cooperation. |
| Huang and Chen (2019), ACR Proceedings | Online lab, online field experiments | Evaluate if users would negatively perceive bots’ efficiencies upon disclosure of bot’s identity | Donation amount | Participants perceived performance reviews conducted by algorithms less fair than those conducted by human managers.
Consumers are more likely to depend on AI to have domain expertise, even if the recommendation is inferior.
Trust in algorithms increases for objective tasks.
Framing tasks as more quantifiable increases trust in algorithms.
Observing a robot conduct disaster relief acts is less inspiring for consumers as opposed to when the acts are performed by a human.
Bots were better than humans at eliciting cooperation, but only if they were allowed to pass as humans. As soon as their true nature was revealed, cooperation rates dropped and could no longer match typical levels of human–human cooperation. |
| Ishikawa-Oloko et al. (2019), Nature Machine Intelligence | Online experiment | Evaluate if users would negatively perceive bots’ efficiencies upon disclosure of bot’s identity | Cooperation in a prisoner’s dilemma game | Participants perceived performance reviews conducted by algorithms less fair than those conducted by human managers.
Consumers are more likely to depend on AI to have domain expertise, even if the recommendation is inferior.
Trust in algorithms increases for objective tasks.
Framing tasks as more quantifiable increases trust in algorithms.
Observing a robot conduct disaster relief acts is less inspiring for consumers as opposed to when the acts are performed by a human.
Bots were better than humans at eliciting cooperation, but only if they were allowed to pass as humans. As soon as their true nature was revealed, cooperation rates dropped and could no longer match typical levels of human–human cooperation. |
Table 1: Continued.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Decision Context</th>
<th>Methodologies</th>
<th>Dependent Variables</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jörling et al. (2019),</td>
<td>Evaluation of technology autonomy and consumers’ attribution of responsibility on</td>
<td>Interviews and online experiments</td>
<td>Outcome responsibility</td>
<td>Technology’s autonomy decreases perceived behavioral control and subsequently decreases perceived responsibility for positive, but not for negative, outcomes</td>
</tr>
<tr>
<td>JAMS</td>
<td>outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logg et al. (2019),</td>
<td>The evaluation of when people prefer to use algorithms (algorithm appreciation)</td>
<td>Lab and online experiments</td>
<td>Utilization of algorithm’s advice (weight on advice)</td>
<td>People prefer advice from algorithm over human unless they are choosing between algorithm and self estimates, or when they have expertise in the domain.</td>
</tr>
<tr>
<td>OBHDP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longoni et al. (2019),</td>
<td>Receptivity to healthcare provided by AI versus humans</td>
<td>Lab and online experiments</td>
<td>Healthcare utilization, reservation prices, and utility</td>
<td>Lower preference for AI than human in healthcare context driven by perceived “uniqueness” neglect by AI</td>
</tr>
<tr>
<td>JCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luo et al. (2019),</td>
<td>The effect of AI chatbot disclosure on customer purchases</td>
<td>Field experiment</td>
<td>Customers’ decision to renew the loan</td>
<td>Undisclosed chatbots are as effective as human agents, and more effective than inexperienced human agents. Disclosing chatbot identity before interaction reduces purchase rates by more than 79.7%</td>
</tr>
<tr>
<td>Marketing Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mende et al. (2019),</td>
<td>The effect of humanoid service robots on consumers’ compensatory consumption behavior</td>
<td>Lab experiments</td>
<td>Consumption of food item; social affiliation seeking; purchasing status products</td>
<td>Humanoid service robots (vs. humans) elicit greater levels of discomfort among consumers leading to higher compensatory consumption</td>
</tr>
<tr>
<td>JMR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Awad et al. (2018),</td>
<td>Autonomous vehicle moral decision making</td>
<td>Online survey (variety of correlational techniques e.g., PCA)</td>
<td>Choosing (not choosing) preferred option</td>
<td>Moral tendency clusters identified for Western, Eastern, and Southern participants reflect differences among measured dimensions.</td>
</tr>
<tr>
<td>Nature</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1: Continued.

<table>
<thead>
<tr>
<th>Paper</th>
<th>Decision Context</th>
<th>Methodologies</th>
<th>Dependent Variables</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dietvorst et al. (2018), Management Science</td>
<td>Forecasts with or without the assistance of an algorithm; forecasting student exam performance.</td>
<td>Online survey administered in laboratory</td>
<td>Choice of algorithm for making forecasts, satisfaction with choice, satisfaction with forecasting process, belief algorithm is superior</td>
<td>Users prefer algorithms that they are able to even slightly modify.</td>
</tr>
<tr>
<td>Dietvorst et al. (2015), JEP: General</td>
<td>Evaluation of AI versus human forecaster in domains of MBA student performance, airline passenger trends,</td>
<td>Online survey administered in laboratory environment</td>
<td>Accuracy of forecasts, confidence in model versus human, perceived accuracy of model versus human</td>
<td>Participants who saw the algorithm perform were less confident in it, and less likely to choose it over an inferior human forecaster.</td>
</tr>
<tr>
<td>Waytz et al. (2014), JESP</td>
<td>Driving simulator involving completion of two courses</td>
<td>Lab experiment</td>
<td>Perceived anthropomorphism, liking, trust, heart rate change, “startle” response, blame for vehicle, distraction</td>
<td>Anthropomorphism of an autonomous car predicts trust in that car and affects attributions of responsibility and punishment.</td>
</tr>
<tr>
<td>Waytz and Norton (2014), Emotion</td>
<td>Evaluation of when people will prefer botsourcing</td>
<td>Lab and online experiments</td>
<td>Comfort with botsourcing; Comfort with outsourcing</td>
<td>People are more comfortable in botsourcing tasks that require cognition (vs. emotion) unless the robots appear to convey more emotion</td>
</tr>
<tr>
<td>Gray and Wegner (2012), Cognition</td>
<td>Evaluation of why people experience the uncanny valley phenomenon when interacting with humanlike robots</td>
<td>Lab and online experiments</td>
<td>Feeling uncanny</td>
<td>People perceived humanlike (vs. machine-like) robots as uncanny because of attributions of experience/mind to the robots. There was no difference in attributions of agency between the robot types</td>
</tr>
</tbody>
</table>
In the following, we present the sections that consist of the rest of this review:

• Section 1: History of AI Research in Marketing.

• Section 2: AI Decision Contexts and Main Effects. This section reviews and categorizes the decision contexts explored to date in this literature, while identifying the key theoretical constructs explored in these contexts.

• Section 3: Moderators of Behavioral AI Effects in Consumer Research. This section provides an overview of moderators that have been demonstrated to alter the effects of AI-related consumption.

• Section 4: Process Mechanisms of Behavioral AI Effects in Consumer Research. This section examines psychological processes that underlie consumer responses to and decisions involving AI.

• Section 5: Artificial Intelligence Agent Stimuli and Manipulations. This section provides the stimuli and manipulations employed in this research to date, while also suggesting a taxonomy of AI agents to guide future research designs.

• Section 6: Future Research Directions for Behavioral AI Research in Marketing.
References

References

came%20with%20a%2C%20$300%20prize.

References

