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ABSTRACT

Establishing causal relationships between the marketing
variables under the control of a firm and outcome measures
such as sales and profits is essential for the successful op-
eration of a business. The goal is generally hindered by a
lack of suitable experimental data owing to the costs and
feasibility of conducting randomized experiments. Accord-
ingly, researchers have employed observational and quasi-
experimental data for causal inference. The evolutionary
trajectory of causal inference is closely intertwined with
advancements in business and technology, particularly as
we enter the digital era characterized by big data and multi-
channel marketing.

Against this background, this monograph is a systematic
review of recent developments in causal inference methods
and their applications within the marketing field. For each
causal inference method, five recently published academic
papers in marketing research that employ these methods
are discussed.
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In addition, this monograph provides simplified code for
developing simulated data (using Python) and hypothetical
examples of data analysis (using Stata). This addition will
enable marketing researchers to practice several methods of
causal analysis.

Sections 1-5 elucidate the fundamental principles of causal
inference. Subsequent sections (beginning from Section 6)
delve into the details of a selection of papers that uti-
lize various methods. These encompass: (i) well-established
techniques, such as Differences-In-Differences, Instrumental
Variable, Regression Discontinuity, Synthetic Control, and
Propensity Score Methods, and (ii) emerging methodologies
of Factor Model and Augmented Differences-In-Differences,
Forward Differences-In-Differences, and Bayesian methods
for causal inference. Further, this monograph reviews how
machine learning methods enhance causal inference. This
monograph includes several important and useful references
not reviewed in the monograph. We expect this monograph
to serve as a useful resource both to current and future
researchers in marketing.
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1

Introduction

Marketing is a business function that relates the firm to its customers and
end-consumers. Undoubtedly, it is an essential and important function
of businesses and other organizations (see Kotler and Keller, 2012). On
the business side, the function involves activities such as product design,
sales forecasting, design of advertising strategy for a product and its
execution, and sales and distribution activities. The marketing function
is similar in other types of organizations, even though the terminologies
may differ.

Concurrent with the marketing developments in business, the aca-
demic field of marketing has blossomed over the last 80 years or so.
This discipline is thriving considering the high visibility of academic
marketing associations and academic journals. Three associations, the
American Marketing Association (AMA), the European Marketing
Academy (EMAC), and the Institute for Operations Research and Man-
agement Science (INFORMS) played a significant role in the discipline’s
growth. AMA’s premier journals, Journal of Marketing (JM) is in its
88th year of publication and the Journal of Marketing Research (JMR)
is in its 61st year of publication. The International Journal of Re-
search in Marketing (IJRM) of EMAC is in its 40th year of publication
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Competitors

External Factors:
Political
ECOpomIC Intermediaries*
Social _ (Customers)
Technological
Legal
Consumers
(End buyers)

Figure 1.1: Environmental factors affecting a firm.

Note: *These include various social media and data collection firms.

while Marketing Science of INFORMS is in its 43rd year of publication.
Several other academic journals (e.g., the Journal of the Academy of
Marketing Science, the Journal of Consumer Research, and the Journal
of Retailing) cover the subject matter of marketing in several ways. In
a similar vein, universities have established doctoral degree programs in
marketing and are thriving well. The demand for faculty in marketing
is on the rise and is met by doctoral programs in marketing and other
subjects such as economics, psychology, and computer/information sci-
ence. All these point to the assertion that marketing is a viable field of
academic endeavor.

Figure 1.1 shows the external factors that affect a firm along with
the connections to intermediaries and consumers. It also shows the effect
of competitors. The intermediary firms include not only those firms
used for distributing the firm’s products but also other firms that collect
data on purchase and viewing behavior of end-consumers. The external
factors are categorized as Political, Economic, Social, Technological,
and Legal (or PESTLE for short).

While the field of marketing does not have a unified theory as such,
several important theories, paradigms, or frameworks have evolved over
the years, which are essential to both the practice of marketing and
research or theory building. The extant theories and paradigms include
the theory of buyer behavior (Howard and Sheth, 1969), Information
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Processing (Bettman, 1979), Hierarchy of effects of advertising (Lavidge
and Steiner, 1961), Customer lifetime value (Gupta and Lehmann, 2005;
Kumar, 2013) are used quite frequently. Further, the idea of “Marketing
Science” has taken hold; some of the research in this direction utilizes
game theory. There is an opportunity in marketing science to develop a
sound theoretical understanding of marketing issues.

On the applied side, several frameworks have appeared over the years.
These include the Four Ps (Product, Price, Place, and Promotion, also
called marketing-mix), STP (Segmentation, Targeting, and Positioning),
consumer choice process, and market response. These frameworks are
utilized to develop and implement a marketing plan for a firm’s product
(brand). Firms use several pieces of data developed from both internal
and external sources in the process of developing marketing plans.
External sources are typically focus groups, consumer surveys and
consumer panels, advertising test data, and occasionally experiments,
etc. The goal here is to come up with a plan that enables the firm
to reach a level of sales target for an existing product as well as a
new product (new brand). The research methods employed for this
purpose include several data analytic techniques (including multivariate
methods). Conceptually, the attempt here is to determine a market
response function for the product or brand in question that shows the
relationship between the sales outcome and variables that are in control
of the firm (i.e., the Four Ps). In general, the data sources within the
firm are not available to academic researchers.

In the early days of marketing research, the tendency was to re-
port summaries of data collected. Currently, the emphasis is on the
development of appropriate models and estimation using advanced and
appropriate methods.

Over the years, academic researchers have utilized data that they
collected on their own and also have utilized data sources that are
publicly available. Several new types of data have become available for
academic research as can be seen from Table 1.1. An example is the
data on online reviews of services like hotels (collected by companies
like Trip Advisor or Yelp). Another example is genetic data (Daviet
et al., 2022) that shed light on consumer behavior based on genetic
variants.
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Table 1.1: Emerging types of data in marketing

A. Standard B. Unstructured C. Social
Marketing Data Data Network Data
Al. Survey data B1. Qualitative research C1. Social relationships data
A2. Experimental data™ B2. Product/service reviews C2. Social games data
A3. Archival data B3. Videos, pictures C3. Postings to social media
A4. Panel data (choices B4. Consumer search data
and durations)
Ab5. Media ratings data B5. Data on physiological
measurements (e.g., eye
tracking)
A6. Sales and prices and B6. Neuroscience-related data

advertising data
B7. Genetic data

Note: * A special case of these data is conjoint analysis data (ratings or choices).

Academic researchers employ various methods in their research.
These methods are either drawn from statistics, econometrics, and psy-
chometrics or specially developed newer techniques. A few developments
in this area are the use of structural models, Hierarchical Bayesian (HB)
methods, and the application of newer methods drawn from Al (such
as deep learning). It is worth noting that the HB methods enable the
estimation of parameters at the individual unit (person, firm, or other)
level. One should underscore that the basic premise of sound research
is a viable theory translated into a model (preferably a mathematical
model). Whether explicit or not, academic research involves estimating
some model parameters, which are intended to measure the impact of
a predictor variable on the outcome variable (such as sales or choice).
If the researcher develops a system of equations to be estimated with
some econometric techniques, the coefficients of the model measure
such impacts. Depending on the theoretical basis for the research, the
estimate can be construed as a “causal effect.” As an example, con-
sider the Koyck model of dynamic effects of advertising specified as
St =a+ 6% Ay + v *Si_1, where A; is the advertising expenditures
in period ¢, and S; is the sales in period t. If this theory is accepted,
then  is the causal effect of current advertising, and -y is the carry-over
effect.

Also, we may note that real-life experiments or randomized con-
trolled experiments out of the lab (Fisher, 1935) are expensive to carry
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out in marketing, even when researchers collaborate with industry. Even
though most marketing data are not based on designed experiments,
marketing researchers have employed data from quasi-experiments (also
called observational data') for estimating causal effects. During the last
10 years or so, novel methods have emerged to estimate “causal effects.”
Researchers have also adopted methods developed for text analysis
as well; see Feder et al. (2022) for a comprehensive review of these
methods.

Two examples of studies that measure causal effects will be rele-
vant to mention here. One is the study by Wang et al. (2022) that
uses data from a natural experiment to determine the effect of the
Black Lives Matter movement on consumer responses (likes). They
employ the Differences-In-Differences (DID) method and estimate the
causal effect of the BLM movement on firms’ empirical strategy. The
authors exploit Blackout Tuesday as a natural experiment in which
BLM support occurred on Instagram (treated platform) but not on
Twitter (control platform) to perform a within-brand cross-platform
Differences-In-Differences (DID) analysis.

In a different context, Manchanda et al. (2015) measure the incre-
mental economic impact (expenditures) of customer communities (called
social dollars) in a multichannel retail environment. They measure this
by estimating a regression model. Because a well-defined control group
is missing, the authors test the effect of joining the online community
on economic activity using the Regression Discontinuity Analysis with
the time of joining the community as the threshold.

Against this background, the objective of this monograph is to
provide a comprehensive review of the methods for estimating causal
effects in marketing along with a review of the applications where these
methods have been applied. This monograph consists of seven sections.
In the next (and second) section, we offer an overview of the estimation
of causal effects attempting to synthesize the large literature in various
disciplines. The third section discusses various methods in brief; the

! Although there are slight differences between observational data and quasi-
experimental data, we use them interchangeably in this monograph.
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methods discussed are: Directed Acyclic Graphs,? Analysis of Variance
and Covariance, Differences-In-Differences regression methods, regres-
sion with Instrumental Variables, Regression Discontinuity methods,
Synthetic Control Methods, as well as Sub-classification and Matching
methods (including Propensity Score Methods). In this section, we
attempt to provide the theoretical basis for each method along with
numerical examples and estimation codes. Section 4 describes four
emerging methods (i.e., Factor Model, Augmented DID, Forward DID,
and Bayesian Synthetic Control). The fifth section describes the role
and development of machine learning methods in causal estimation
with some examples. Section 6 reviews five applications of each of the
methods in marketing (i.e., Differences-In-Differences (DID), Instrumen-
tal Variable (IV), Regression Discontinuity (RD), Synthetic Control
Method (SCM), Propensity Score Method (PSM)), as well as emerging
methods and machine learning-related methods. Section 7 provides a
summary and a discussion of future directions in this rapidly growing
area.

2This monograph will not cover the Directed Acyclic Graphs (DAGs) developed
by Pearl and his colleagues with an exclusive focus on econometrics-based methods.
See Pearl (2009a) for the DAG approaches. But we will briefly describe the debate
between Rubin and Pearl (Pearl, 2009b; Rubin, 1974).
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A

Python Code for Generating Simulated Data'’

Regression of Treatment Effects

Example Context: Assume a firm is interested in testing the impact of
a new television ad compared to its existing television ad, and the firm

will be airing the current ad in TV areas 1,...,20 and airing the new
add in TV areas 21,...,40. We define each area in terms of artificial
area codes 7, where ¢ = 1,...,40, and denote each outcome measure as

Y (i,t) for t = 1,...,10, where ¢ is month.

The variables describing the TV areas are the average age of people
in the area, average income per household, the percentage of females in
the area, and the percentage of days in the period the brand was sold
on promotion.

The two outcome variables are the percentage of households buying
the brand during the period, and the percentage of buyers (households)
buying for the first time during the period.

The data is generated with the assumed treatment effects of 2 for
the percentage of households buying the brand during the period and
3 for the percentage of buyers (households) buying for the first time
during the period.

!To enhance the replicability of the code, we have made the code available on
GitHub https://github.com/zhesimon/Methods-for- Causal-Inference-in-Marketing.

100
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import numpy as np

import pandas as pd

import random

from scipy.stats import norm

from sklearn.preprocessing import MinMaxScaler

np.random.seed(1)

TV_areas, n_periods = 40, 10

age_mean, age_std = 38, 5

income_household_mean, income_household_std = 70000,
female_rate, female_std = 50, 10
pct_days_promo_mean, pct_days_promo_std = 50, 15

data = []
for i in range(TV_areas):
TV_area = i+l
age = int(np.random.normal(age_mean, age_std))

income = int(np.random.normal(income_household_mean, income_household_std))
female = round(np.random.normal (female_rate, female_std),2)
pct_days_promo = round(np.random.normal (pct_days_promo_mean,

pct_days_promo_std),2)

for j in range(n_periods):
TV_area_data = {
'period': j+1,
'TV_areas': TV_area,
'avg_age': age,
'avg_income': income,
'%female': female,
'pct_days_promo': pct_days_promo,
}
data.append(TV_area_data)
df = pd.DataFrame(data)

# outcome wvar, Jhouseholds buying the brand

df ['purchase_rate'] = (0.02 * df['avg_age'] + 0.5/10000 * df['avg_income'] + 0.1
* df ['/female'] + 0.05 * df['pct_days_promo'] + np.random.uniform(-2, 2,

size = len(df)))

# outcome wvar, Jbuyers (households) buying for the first time
df ['pct_buyer_1sttime'] = (0.01 * df['avg_age'] + 0.3/10000 * df['avg_income']
+ 0.05 =* df['Yfemale'] + 0.1 * df['pct_days_promo'] + np.random.uniform(-2, 2,

size = len(df)))

# trim values to between 0 and 100

df [['purchase_rate', 'pct_buyer_isttime']l] = df [['purchase_rate',

'pct_buyer_isttime']l].round(2).clip(0, 100)

# treatment group: TV_areas 21-40

df ['treatment'] = [0 if i < TV_areas/2 * 10 else 1 for i in range(df.shape[0])]
df ['purchase_rate_t'] = df['purchase_rate'] + 2 * df['treatment']

# treatment effect = 2

df ['pct_buyer_1isttime_t'] = df['pct_buyer_isttime'] + 3 * df['treatment']

10000

101
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# treatment effect = 3
df .to_csv('simulated_TV_areas.csv', index=False)

Nearest Neighbor Matching and Propensity Score Matching

Example Context: Here we used a similar dataset except that we gener-
ated the TV areas 21,...,40 as close neighbors of TV areas 1,...,20.

To do that, we duplicated the first 200 rows (thus, duplicated
TV__areas 1-20 that are control units) and added noise to the average
age of people living in the area, the average income per household, the
percentage of female in the area, and the percentage of days in the
period the brand was sold on promotion.

The covariates are the same with noise added, so the areas from the
duplicated rows are close neighbors of control areas.

# controls
new_df1l = df.iloc[:200, :6]

# new_df2 to be modified to close neighbors of controls
new_df2 = new_df1.copy()

new_df2['TV_areas'] = new_df2['TV_areas'] + 20

# error ~ N(0, 2) for age
new_df2['avg_age'] = df.groupby('TV_areas')['avg_age'].transform(lambda x:
x + np.random.normal(0, 2)).round(2)

# error ~ N(0, 1000) for income
new_df2['avg_income'] = df.groupby('TV_areas')['avg_income'].transform(lambda x:
x + np.random.normal(0, 1000)).round(2)

# error ~ N(0, 2) for percent female
new_df2['/female'] = df.groupby('TV_areas')['/female'].transform(lambda x: x +
np.random.normal (0, 2)).round(2)

# error ~ N(0, 2) for percent of days the brand was sold on promotion
new_df2['pct_days_promo'] = df.groupby('TV_areas') ['pct_days_promo'].
transform(lambda x: x + np.random.normal(0, 2)).round(2)

df = pd.concat([new_dfl, new_df2]).reset_index(drop=True)

# outcome wvar, Jhouseholds buying the brand

df ['purchase_rate'] = (0.02 * df['avg_age']l + 0.5/10000 * df['avg_income']

+ 0.1 * df['/female'] + 0.05 * df['pct_days_promo'] + np.random.uniform(-2, 2,
size = len(df)))

# outcome wvar, Jbuyers (households) buying for the first time
df ['pct_buyer_1isttime'] = (0.01 * df['avg_age'] + 0.3/10000 * df['avg_income'] +
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0.05 * df['%female'] + 0.1 * df['pct_days_promo'] + np.random.uniform(-2, 2,
size = len(df)))

# trim values to between 0 and 100
df [['purchase_rate', 'pct_buyer_isttime']] = df [['purchase_rate', 'pct_buyer_lsttime']]
.round(2) .clip(0, 100)

# treatment for TV_areas 21-40

df['treatment'] = [0 if i < TV_areas/2 * 10 else 1 for i in range(df.shape[0])]
df ['purchase_rate_t'] = df['purchase_rate'] + 2 * df['treatment']

# treatment effect = 2

df ['pct_buyer_1isttime_t'] = df['pct_buyer_isttime'] + 3 * df['treatment']

# treatment effect = 3

df .to_csv('simulated_TV_areas_nnmatch.csv', index=False)

Instrumental Variable (IV) Method

Example Context: We used the IV method to estimate the causal effect
of advertising on sales. For this purpose, we generated one unobserved
variable that affects both advertising expenditure and sales at the same
time, so there is endogeneity if we directly regress sales on advertising
expenditure. The instrumental variable is set as advertising costs. This
variable is generated to affect advertising expenditure but not sales
directly. We also assumed a linear relationship between advertising costs
and advertising expenditure, and between advertising expenditure and
sales.

We generated data for 100 periods, for each period there are different
advertising costs, advertising expenditure, and sales. The treatment
effect of advertising expenditure on sales is set to be 2.5.
np.random.seed(42)

n = 100 # perzods

pi0 = 30 # interceptl

pil = -2 # effect of advertising costs on advertising expenditure
betal = 35 # intercept2

betal = 2.5 # effect of advertising expenditure on sales

omit_exp = 2 # effect of omitted variable on advertising expenditure

omit_sales = 3 # effect of omitted variable on sales
omitted_variable = np.random.randint(1l, 3, size=n)

# IV (Z): advertising costs
advertising_costs = np.random.randint (1, 11, size=n)

# X: advertising expenditure
advertising_expenditure = piO + pil * advertising_costs + omit_exp * omitted_variable
+ np.random.uniform(-2, 2, size=n)
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# Y: sales
sales = beta0 + betal * advertising_expenditure + omit_sales * omitted_variable
+ np.random.uniform(-5, 5, size=n)

data = pd.DataFrame ({
'Ad_Costs': advertising_costs,
'Ad_Expenditure': advertising_expenditure,
'Omitted_variable': omitted_variable,
'Sales': sales

B

data.to_csv('IV_Data.csv',index=False)

Regression Discontinuity Method

Example Context: Assume a firm owns an online platform where hotel
guests provide ratings on three variables (brand image, price, and
service) after staying at a hotel.

Based on the overall feedback on the three variables (i.e., the average
score of brand image of the hotel, the average perceived price level, and
the average score of service performance), the firm develops a rating of
each hotel listed on the platform.

Further, the firm assigns symbols to the hotels based on a threshold.
If the rating is below 3, the platform assigns a Symbol B, and if the
rating is equal or above 3, Symbol A is assigned. Relative to Symbol B,
the treatment effect of being assigned Symbol A is 8.

The firm is interested in estimating the impact of being assigned to
Symbol A compared to Symbol B on hotel sales based on 1000 hotels.
We define each hotel in terms of hotel identification code ¢, where
i=1,...,1000, and denote each Sales measure as Y (7).

random. seed (0)
num_samples = 1000

betal = 8 # effect of symbol A on sales
beta2 = 5 # effect of ratings on sales
data = []

for _ in range(num_samples):
brandimage = random.uniform(1l, 5)
price = random.uniform(l, 5)
service = random.uniform(1, 5)

rating = brandimage * 0.3 + price * -0.2 + service * 0.4

data.append ({
'Brandimage': brandimage,
'Price': price,
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'Service': service,
'Rating_': rating})
df = pd.DataFrame(data)

# scale ratings to between O and 5
scaler = MinMaxScaler(feature_range = (1, 5))
df ['Rating'] = scaler.fit_transform(df[['Rating_']])

# 1f rating < 3, assign symbol B, else assign Symbol A
df ['Symbol'] = df['Rating'].apply(lambda x: 'B' if x < 3 else 'A')

df['Sales'] = betal * (df['Symbol'] == 'A') + beta2 * df['Rating']
+ df .apply(lambda row: random.uniform(-2, 2), axis = 1)
df .to_csv('RD_ratings.csv', index = False)

Synthetic Control Method (and Differences-In-Differences)

Example Context: Assume that a country consists of 51 geographically
identified States and that these States have a sales tax for products sold
within the State. Assume further that for a specific product category,
one State reduced tax in period 100 while other States did not. We are
interested in estimating the effect of the tax reduction on the State’s
product category sales using data available for 200 units of time (e.g.,
weeks). We define each State in terms of index i, where i = 0,1,..., 50,
where State 0 is the treated unit, and States 1-50 are control States.
We denote each outcome measure as Y (i,t) for t = 1,...,200, where
t is period. Periods 1-100 are pre-treatment periods, the treatment
happened in period 100, and periods 101-200 are post-treatment periods.
We assumed that the treatment effect is 10.

Initially, we generated the treatment unit using only two States i.e.,
State 1 (weight 0.2) and State 2 (weight 0.8) and random noise. Later,
we performed the Synthetic Control Method based on all 50 States,
States 1-25, States 1-10, and States 1-5. The pre-treatment periods
in our simulation were set as periods 1-100, periods 51-100, periods
81-100, or periods 91-100.

After obtaining the synthetic control, we used DID to estimate the
treatment effect.

random.seed (40)

# weights used for synthetic control (correspond to the 50 control states)
betas = [0.2, 0.8] + [0] * 48
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# creates variables betal, ..., beta50 and assigns them values from betas
for i in range(l, 51):
globals() [f'beta{i}'] = betas[i - 1]

print(betal,beta2)

print(betas)

# generates a dictionary containing 50 key-value pairs, keys are "mul", "mu2", ...,
— "mu50", wvalues are random integers in range (5, 15)

mu_gen = {}

for i in range(l, 51):
mu_gen[f"mu{i}"] = random.randint(5, 15)
print (mu_gen)

# generates a list containing values of all mu's
mus = list(mu_gen.values())
print (mus)

# creates 50 variables mul, ... , mub0, corresponding to the values stored in
— dictionary mu_gen
for i in range(1l, 51):
globals() [f"mu{i}"] = mu_gen[f"mu{i}"]
#print (mul, mu2, mu3)

control_units = ['Y' + str(i) for i in range(l, 51)]

#for i, Y in enumerate (control_units):
# print(control_units[i],mus[i],betas[t])

n=200

treated_period=int(n/2)
random_state=100

data= pd.DataFrame(index=range(n))

# control unit Y[i] ~ N (mu[i], 5)
for i, Y in enumerate (control_units):
random_state += 1
datalcontrol_units[i]]=norm.rvs(loc=mus[i], scale=5, size=data.shapel[0],
random_state=random_state)

# error term for the synthetic control ~ N (0, 1)

random_state=random_state + 1

datal'error']=norm.rvs(loc=0, scale=1, size = data.shape[0], random_state =
random_state)

# data_w holds the weighted control units Y[i]Jw, weighted by their corresponding beta
— values
data_w=pd.DataFrame(index = range(n))
for i, Y in enumerate (control_units):
data_w[control_units[i] + 'w'] = betas[i] * datal[control_units[i]]
data_w['error'] = datal'error']
data_w.to_csv('Data_w.csv',index=False)

# treated outcome in the absence of treatment: weighted sum plus noise
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datal['YO_treated'] = data_w[list(data_w.columns)].sum(axis = 1)

# treatment effect for the treated units (post-treatment periods 101-200), which
—  equals 10 + eps ~Uniform (-0.1,+0.1)

data['eps_te'] = np.concatenate((np.zeros(treated_period,dtype = int),

np.random.uniform(-0.1,0.1,treated_period) + 10))

# treated outcome in the presence of treatment
datal['YO_te'] = datal['YO_treated'] + datal'eps_te']
data['period'] = np.arange(i,n + 1)

# check that the weighted Ys are Y+*beta
for i in range(data.shape[0]):

assert(datal['Y1'][i] * betas[0] == data_w['Yiw'][i])
data.to_csv('Synthetic_Control_Data.csv',index=False)
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Stata Code for Analysis of Data

Regression of Treatment Effects

import delimited "/simulated TV _ areas.csv', clear

rename female pct_ female

*Dependent var: purchase rate

reg purchase_rate_t avg age avg_income pct_female pct_days_promo treatment
*Dependent var: percent of first-time buyer

reg pct__buyer_ lsttime_ t avg_age avg_income pct_female pct__days_promo treatment

Nearest-Neighbor Matching

import delimited "/simulated TV _areas_nnmatch.csv', clear

rename female pct_ female

*Dependent var: purchase rate

teffects nnmatch (purchase rate t avg age avg income pct_female
pct_days_promo)(treatment), nneighbor(1)

*Dependent var: percent of first-time buyer

teffects nnmatch (pct_buyer 1sttime t avg age avg income pct_female
pct_days_promo)(treatment), nneighbor(1)

Propensity Score Matching

import delimited "/simulated TV _areas nnmatch.csv', clear

rename female pct_ female

*Dependent var: purchase rate

teffects psmatch (purchase_rate_t) (treatment avg age avg income pct_female
pct_days_promo)

*Dependent var: percent of first-time buyer

teffects psmatch (pct__buyer_ Isttime_ t) (treatment avg age avg income
pct_female pct_days promo)
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Instrumental Variable

import delimited "/IV_ Data.csv", clear

*Manually run 2sls

reg ad_ expenditure ad_ costs

gen constructed_ad__expenditure = _b[_cons] + _blad_costs] * ad_costs
reg sales constructed_ad_ expenditure

vV

ivregress 2sls sales (ad_expenditure = ad_ costs)

*Test of endogeneity: check whether ad__expenditure is endogenous
estat endog

*Check whether the instrument is weak

estat firststage

Regression Discontinuity Method

import delimited "/RD_ ratings.csv", clear

*RD plot, Cut-off c = 3

rdplot sales rating, c(3) graph_options(title(RD Plot) xtitle("Rating")
ytitle("Sales"))

*Sharp RD estimates

rdrobust sales rating, c(3) all

Synthetic Control Method

import delimited "/Synthetic_ Control Data.csv", clear
reshape long y, i(period) j(State)

rename period Period

rename y Sales

save "/Synth Panel.dta", replace

*Performing synthetic control method using all 50 control states and all pre-treatment periods
use "/Synth_Panel.dta", clear

tsset state Period

synth Sales Sales(1(1)100), trunit(0) trperiod(101) fig keep(100period_ 50state)

graph export "/Graph_ 100period_ 50state.png", replace

*Performing synthetic control method using partial (25) control states and all
pre-treatment periods

use "/Synth_Panel.dta", clear

keep if State<26

tsset state Period

synth Sales Sales(1(1)100), trunit(0) trperiod(101) fig keep(100period_ 25state)
graph export "/Graph_ 100period_ 25state.png", replace

*Performing synthetic control method using all 50 control states and 50 pre-treatment periods
use "/Synth_Panel.dta", clear

keep if Period>50

tsset State Period

synth Sales Sales(51(1)100), trunit(0) trperiod(101) fig keep(50period_ 50state)

graph export "/Graph_ 50period_ 50state.png", replace
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*Calculating treatment effects using DID (reshape data from wide format to long format)
use "/100period_ 50state.dta", clear

drop __ Co_ Number _W_ Weight

reshape long _Y_, i(_time) j(State, string)

gen treatment = 0

replace treatment = 1 if _time >=101 & State == "treated"

encode State, generate(nState)

xtset nState

xtdidregress (_Y_ )(treatment), group(nState) time(_time)

Differences-In-Differences

use "/Synth_ Panel.dta", clear

*DID result using State2 as control (which has weight of beta 0.8 when generating the treatment
unit in our simulation)

keep if State ==2 | State ==

gen treatment = 0

replace treatment = 1 if Period >=101 & State == 0

xtset State

xtdidregress (Sales)(treatment), group(State) time(Period)
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ADID, Alternative Methods for ATT Estimation,
and Double Machine Learning

In this appendix, we briefly summarize the models behind the ADID
and its alternatives (DID, SC, MSC, and HCW) for estimating the
average treatment effect in quasi-experimental studies, and some notes
about Double Machine Learning.

ADID and Alternative Methods for ATT Estimation

After introducing the notation, we will describe the specific methods
and compare them with ADID.

The problem is to estimate the average treatment effect on the
treated units (or ATT) using data on different units, some of which are
treated for a number of time periods. For simplicity, we will assume that
the first unit is treated at time 77; 1 < 77 < T and all other (N — 1)
units do not receive treatment.

Notation:

yl(tl ) — Outcome measure after treatment for the i-th unit at time t;

t1=1,....,N;andt=1,...,T.
yl(to ) = Outcome measure before treatment for the i-th unit at time

t;i=1,...,N;andt=1,...,T.
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Ay =y — Y
t>1 + 1.
We can describe the observed data as: y;; = dityilt—i— (1 —dit)y?t, where
d;; = 1 if the i-th unit receives treatment at time ¢ and 0 otherwise.
Given the above assumption on timing and units treated, the ATT
estimator that averages Ait over the post-treatment period is A =

T% Z% 11 Ajt where Ty = T — Ty is the number of post-treatment time

= Treatment effect for the first unit at time ¢, with

periods., where Ay = yl(tl ) yl(f ). While the data are available for yl(? )
but not for yl(t1 ), we need to estimate this quantity. The methods differ
according to the model used for this estimation. Table C.1 below shows
the models and differences.

To summarize, the ADID method is more flexible than DID because
it controls for slope in addition to intercept differences in pre-treatment
periods. This also means that it only requires that the treated unit’s
trend is parallel to a slope-adjusted trend of the control unit in pre-
treatment periods. Compared to Synthetic Control Methods that require
no intercept and weights sum to one, ADID require equal weights, but

the weights can sum to any value.

Double Machine Learning

Traditional machine learning methods are good at predictions, but not
good at causal relationships because they can produce biased estimates
due to regularization and overfitting. Double machine learning (Cher-
nozhukov et al., 2018a) is a recently developed framework that combines
machine learning methods and causal inference in that it deals with
regularization bias through orthogonalization and deals with overfit-
ting bias through sample splitting. Double machine learning enables
in obtaining approximately unbiased and \/N-consistent estimation
under high dimensional complex covariates and confounding variables.
Researchers will find the Python and R packages of DoubleML (Bach
et al., 2021, 2022) valuable in the implementation of the double/debiased
machine learning framework of Chernozhukov et al. (2018a).
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