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Abstract

Volume I first provides a compact survey on classical stochastic geome-
try models, with a main focus on spatial shot-noise processes, coverage
processes and random tessellations. It then focuses on signal to inter-
ference noise ratio (SINR) stochastic geometry, which is the basis for
the modeling of wireless network protocols and architectures consid-
ered in Volume II. It also contains an appendix on mathematical tools
used throughout Stochastic Geometry and Wireless Networks, Volumes
I and II.
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Preface

A wireless communication network can be viewed as a collection of
nodes, located in some domain, which can in turn be transmitters or
receivers (depending on the network considered, nodes may be mobile
users, base stations in a cellular network, access points of a WiFi
mesh, etc.). At a given time, several nodes transmit simultaneously,
each toward its own receiver. Each transmitter–receiver pair requires
its own wireless link. The signal received from the link transmitter may
be jammed by the signals received from the other transmitters. Even
in the simplest model where the signal power radiated from a point
decays in an isotropic way with Euclidean distance, the geometry of
the locations of the nodes plays a key role since it determines the sig-
nal to interference and noise ratio (SINR) at each receiver and hence
the possibility of establishing simultaneously this collection of links at
a given bit rate. The interference seen by a receiver is the sum of the
signal powers received from all transmitters, except its own transmitter.

Stochastic geometry provides a natural way of defining and com-
puting macroscopic properties of such networks, by averaging over
all potential geometrical patterns for the nodes, in the same way as
queuing theory provides response times or congestion, averaged over
all potential arrival patterns within a given parametric class.

1
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2 Preface

Modeling wireless communication networks in terms of stochastic
geometry seems particularly relevant for large scale networks. In the
simplest case, it consists in treating such a network as a snapshot of
a stationary random model in the whole Euclidean plane or space and
analyzing it in a probabilistic way. In particular the locations of the
network elements are seen as the realizations of some point processes.
When the underlying random model is ergodic, the probabilistic anal-
ysis also provides a way of estimating spatial averages which often cap-
ture the key dependencies of the network performance characteristics
(connectivity, stability, capacity, etc.) as functions of a relatively small
number of parameters. Typically, these are the densities of the under-
lying point processes and the parameters of the protocols involved.
By spatial average, we mean an empirical average made over a large
collection of ‘locations’ in the domain considered; depending on the
cases, these locations will simply be certain points of the domain, or
nodes located in the domain, or even nodes on a certain route defined
on this domain. These various kinds of spatial averages are defined
in precise terms in the monograph. This is a very natural approach,
e.g. for ad hoc networks, or more generally to describe user positions,
when these are best described by random processes. But it can also
be applied to represent both irregular and regular network architec-
tures as observed in cellular wireless networks. In all these cases, such
a space average is performed on a large collection of nodes of the net-
work executing some common protocol and considered at some com-
mon time when one takes a snapshot of the network. Simple examples
of such averages are the fraction of nodes which transmit, the fraction
of space which is covered or connected, the fraction of nodes which
transmit their packet successfully, and the average geographic progress
obtained by a node forwarding a packet towards some destination. This
is rather new to classical performance evaluation, compared to time
averages.

Stochastic geometry, which we use as a tool for the evaluation of
such spatial averages, is a rich branch of applied probability partic-
ularly adapted to the study of random phenomena on the plane or
in higher dimension. It is intrinsically related to the theory of point
processes. Initially its development was stimulated by applications to
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Preface 3

biology, astronomy and material sciences. Nowadays, it is also used in
image analysis and in the context of communication networks. In this
latter case, its role is similar to that played by the theory of point
processes on the real line in classical queuing theory.

The use of stochastic geometry for modeling communication
networks is relatively new. The first papers appeared in the engineering
literature shortly before 2000. One can consider Gilbert’s paper of 1961
[19] both as the first paper on continuum and Boolean percolation and
as the first paper on the analysis of the connectivity of large wireless
networks by means of stochastic geometry. Similar observations can be
made on [20] concerning Poisson–Voronoi tessellations. The number of
papers using some form of stochastic geometry is increasing fast. One
of the most important observed trends is to take better account in these
models of specific mechanisms of wireless communications.

Time averages have been classical objects of performance evaluation
since the work of Erlang (1917). Typical examples include the random
delay to transmit a packet from a given node, the number of time steps
required for a packet to be transported from source to destination on
some multihop route, the frequency with which a transmission is not
granted access due to some capacity limitations, etc. A classical ref-
erence on the matter is [28]. These time averages will be studied here
either on their own or in conjunction with space averages. The combi-
nation of the two types of averages unveils interesting new phenomena
and leads to challenging mathematical questions. As we shall see, the
order in which the time and the space averages are performed matters
and each order has a different physical meaning.

This monograph surveys recent results of this approach and is struc-
tured in two volumes.

Volume I focuses on the theory of spatial averages and contains
three parts. Part I in Volume I provides a compact survey on classi-
cal stochastic geometry models. Part II in Volume I focuses on SINR
stochastic geometry. Part III in Volume I is an appendix which contains
mathematical tools used throughout the monograph. Volume II bears
on more practical wireless network modeling and performance analy-
sis. It is in this volume that the interplay between wireless commu-
nications and stochastic geometry is deepest and that the time–space
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4 Preface

framework alluded to above is the most important. The aim is to show
how stochastic geometry can be used in a more or less systematic way
to analyze the phenomena that arise in this context. Part IV in Vol-
ume II is focused on medium access control (MAC). We study MAC
protocols used in ad hoc networks and in cellular networks. Part V in
Volume II discusses the use of stochastic geometry for the quantita-
tive analysis of routing algorithms in MANETs. Part VI in Volume II
gives a concise summary of wireless communication principles and of
the network architectures considered in the monograph. This part is
self-contained and readers not familiar with wireless networking might
either read it before reading the monograph itself, or refer to it when
needed.

Here are some comments on what the reader will obtain from study-
ing the material contained in this monograph and on possible ways of
reading it.

For readers with a background in applied probability, this mono-
graph provides direct access to an emerging and fast growing branch
of spatial stochastic modeling (see, e.g., the proceedings of conferences
such as IEEE Infocom, ACM Sigmetrics, ACM Mobicom, etc. or the
special issue [22]). By mastering the basic principles of wireless links
and the organization of communications in a wireless network, as sum-
marized in Volume II and already alluded to in Volume I, these read-
ers will be granted access to a rich field of new questions with high
practical interest. SINR stochastic geometry opens new and interest-
ing mathematical questions. The two categories of objects studied in
Volume II, namely medium access and routing protocols, have a large
number of variants and implications. Each of these could give birth to a
new stochastic model to be understood and analyzed. Even for classical
models of stochastic geometry, the new questions stemming from wire-
less networking often provide an original viewpoint. A typical example
is that of route averages associated with a Poisson point process as dis-
cussed in Part V in Volume II. Reader already knowledgeable in basic
stochastic geometry might skip Part I in Volume I and follow the path:

Part II in Volume I⇒ Part IV in Volume II
⇒ Part V in Volume II,
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Preface 5

using Part VI in Volume II for understanding the physical meaning of
the examples pertaining to wireless networks.

For readers whose main interest in wireless network design, the
monograph aims to offer a new and comprehensive methodology for the
performance evaluation of large scale wireless networks. This methodol-
ogy consists in the computation of both time and space averages within
a unified setting. This inherently addresses the scalability issue in that
it poses the problems in an infinite domain/population case from the
very beginning. We show that this methodology has the potential to
provide both qualitative and quantitative results as below:

• Some of the most important qualitative results pertaining
to these infinite population models are in terms of phase
transitions. A typical example bears on the conditions under
which the network is spatially connected. Another type of
phase transition bears on the conditions under which the
network delivers packets in a finite mean time for a given
medium access and a given routing protocol. As we shall see,
these phase transitions allow one to understand how to tune
the protocol parameters to ensure that the network is in the
desirable “phase” (i.e. well connected and with small mean
delays). Other qualitative results are in terms of scaling laws:
for instance, how do the overhead or the end-to-end delay on
a route scale with the distance between the source and the
destination, or with the density of nodes?
• Quantitative results are often in terms of closed form expres-

sions for both time and space averages, and this for each
variant of the involved protocols. The reader will hence be
in a position to discuss and compare various protocols and
more generally various wireless network organizations. Here
are typical questions addressed and answered in Volume II:
is it better to improve on Aloha by using a collision avoid-
ance scheme of the CSMA type or by using a channel-aware
extension of Aloha? Is Rayleigh fading beneficial or detri-
mental when using a given MAC scheme? How does geo-
graphic routing compare to shortest path routing in a mobile
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6 Preface

ad hoc network? Is it better to separate the medium access
and the routing decisions or to perform some cross layer joint
optimization?

The reader with a wireless communication background could either
read the monograph from beginning to end, or start with Volume II,
i.e. follow the path

Part IV in Volume II ⇒ Part V in Volume II ⇒ Part II in Volume I

and use Volume I when needed to find the mathematical results which
are needed to progress through Volume II.

We conclude with some comments on what the reader will not find
in this monograph:

• We do not discuss statistical questions and give no measure-
ment based validation of certain stochastic assumptions used
in the monograph, e.g., when are Poisson-based models justi-
fied? When should one rather use point processes with some
repulsion or attraction? When is the stationarity/ergodicity
assumption valid? Our only aim is to show what can be done
with stochastic geometry when assumptions of this kind can
be made.
• We will not go beyond SINR models either. It is well known

that considering interference as noise is not the only possible
option in a wireless network. Other options (collaborative
schemes, successive cancellation techniques) can offer better
rates, though at the expense of more algorithmic overhead
and the exchange of more information between nodes. We
believe that the methodology discussed in this monograph
has the potential of analyzing such techniques but we decided
not to do this here.

Here are some final technical remarks. Some sections, marked with
a * sign, can be skipped at the first reading as their results are not
used in what follows; the index, which is common to the two volumes,
is designed to be the main tool to navigate within and between the two
volumes.
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Brémaud, Srikant Iyer, Mohamed Karray, Omid Mirsadeghi, Paul Muh-
lethaler, Barbara Staehle and Patrick Thiran for their useful comments
on the manuscript.

Full text available at: http://dx.doi.org/10.1561/1300000006



Preface to Volume I

This volume focuses on the theory and contains three parts.
Part I provides a compact survey on classical stochastic geometry

models. The basic models defined in this part will be used and extended
throughout the whole monograph, and in particular to SINR based
models. Note, however, that these classical stochastic models can be
used in a variety of contexts which go far beyond the modeling of
wireless networks. Chapter 1 reviews the definition and basic properties
of Poisson point processes in Euclidean space. We review key operations
on Poisson point processes (thinning, superposition, displacement) as
well as key formulas like Campbell’s formula. Chapter 2 is focused on
properties of the spatial shot-noise process: its continuity properties,
Laplace transform, moments, etc. Both additive and max shot-noise
processes are studied. Chapter 3 bears on coverage processes, and in
particular on the Boolean model. Its basic coverage characteristics are
reviewed. We also give a brief account of its percolation properties.
Chapter 4 studies random tessellations; the main focus is on Poisson–
Voronoi tessellations and cells. We also discuss various random objects
associated with bivariate point processes such as the set of points of

9
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10 Preface to Volume I

the first point process that fall in a Voronoi cell w.r.t. the second point
process.

Part II focuses on the stochastic geometry of SINR. The key new
stochastic geometry model can be described as follows: consider a
marked point process of the Euclidean space, where the mark of a point
is a positive random variable that represents its “transmission power”.
The SINR cell of a point is then defined as the region of the space
where the reception power from this point is larger than an affine func-
tion of the interference power. Chapter 5 analyzes a few basic stochas-
tic geometry questions pertaining to such SINR cells in the case with
independent marks, such as the volume and the shape of the typical
cell. Chapter 6 focuses on the complex interactions that exist between
cells. Chapter 7 studies the coverage process created by the collection
of SINR cells. Chapter 8 studies the impact of interferences on the con-
nectivity of large-scale mobile ad hoc networks using percolation theory
on the SINR graph.

Part III is an appendix which contains mathematical tools used
throughout the monograph.

It was our choice not to cover Gibbs point processes and the random
closed sets that one can associate to them. And this in spite of the fact
that these point processes already seem to be quite relevant within
this wireless network context (see the bibliography of Chapter 18 in
Volume II for instance). There are two main reasons for this decision:
first, these models are rarely amenable to closed form analysis, at least
in the case of systems with randomly located nodes as those considered
here; second and more importantly, the amount of additional material
needed to cover this part of the theory is not compatible with the
format retained here.
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