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Abstract

Transmit power in wireless cellular networks is a key degree of freedom
in the management of interference, energy, and connectivity. Power
control in both the uplink and downlink of a cellular network has been
extensively studied, especially over the last 15 years, and some of the
results have enabled the continuous evolution and significant impact of
the digital cellular technology.

This survey provides a comprehensive discussion of the models, algo-
rithms, analysis, and methodologies in this vast and growing literature.
It starts with a taxonomy of the wide range of power control prob-
lem formulations, and progresses from the basic formulation to more
sophisticated ones. When transmit power is the only set of optimization
variables, algorithms for fixed SIR are presented first, before turning
to their robust versions and joint SIR and power optimization. This
is followed by opportunistic and non-cooperative power control. Then
joint control of power together with beamforming pattern, base sta-
tion assignment, spectrum allocation, and transmit schedule is surveyed
one-by-one.
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Throughout the survey, we highlight the use of mathematical lan-
guage and tools in the study of power control, including optimization
theory, control theory, game theory, and linear algebra. Practical imple-
mentations of some of the algorithms in operational networks are dis-
cussed in the concluding section. As illustrated by the open problems
presented at the end of most chapters, in the area of power control in
cellular networks, there are still many under-explored directions and
unresolved issues that remain theoretically challenging and practically
important.

Full text available at: http://dx.doi.org/10.1561/1300000009



Contents

1 Introduction 383

1.1 Overview 383
1.2 Notation 386
1.3 Taxonomy of Problem Formulations 386
1.4 Convexity and Decomposability Structures 396

2 Power Control with Fixed SIR 401

2.1 Introduction 401
2.2 Distributed Power Control 402
2.3 Standard Interference Function 404
2.4 Canonical Power Control 406
2.5 Extensions 408
2.6 Open Problems 412

3 Transience, Robustness, and Admission 413

3.1 Introduction 413
3.2 SIR Invariant Region 414
3.3 Power Control with Active Link Protection 417
3.4 Robust Distributed Power Control 418
3.5 Open Problems 426

4 Power Control with Variable SIR 429

4.1 Introduction 429
4.2 SIR Feasibility Region 432

ix

Full text available at: http://dx.doi.org/10.1561/1300000009



4.3 Joint SIR Assignment and Power Control 434
4.4 Open Problems 441

5 Opportunistic Power Control 443

5.1 Introduction 443
5.2 Opportunistic Throughput Maximization

in Uplink 444
5.3 Opportunistic Utility Maximization

in Downlink 445
5.4 Open Problems 452

6 Non-cooperative Power Control 453

6.1 Introduction 453
6.2 Fixed-SIR Power Control as Game 456
6.3 Linear Pricing Game 458
6.4 Energy-efficiency Utility Game: Single-carrier 459
6.5 Energy-efficiency Utility Game: Multi-carrier 461
6.6 Game with Network Pricing and BS Assignment 465
6.7 Open Problems 469

7 Joint PC and Beamforming 471

7.1 Introduction 471
7.2 Uplink with Fixed SIR 474
7.3 Uplink with Variable SIR 478
7.4 Uplink–Downlink Duality 482
7.5 Open Problems 485

8 Joint PC and BS Assignment 487

8.1 Introduction 487
8.2 Joint PC and BS Assignment 490
8.3 Joint PC, Beamforming, and BS Assignment 493
8.4 Open Problems 494

Full text available at: http://dx.doi.org/10.1561/1300000009



9 Joint PC and Spectral-Temporal Scheduling 497

9.1 Introduction 497
9.2 Joint PC and Bandwidth Allocation 498
9.3 Joint PC and Time Scheduling 501
9.4 Joint PC, Beamforming, and Bandwidth

Allocation 508
9.5 Open Problems 511

10 Industry Adoption 513

10.1 Introduction 513
10.2 Power Control in 2G Networks 514
10.3 Power Control and Scheduling in 3G/4G

Networks 516
10.4 Power Control in WiFi Networks 521
10.5 Open Issues 521

References 525

Full text available at: http://dx.doi.org/10.1561/1300000009



Full text available at: http://dx.doi.org/10.1561/1300000009



1

Introduction

1.1 Overview

Transmit powers represent a key degree of freedom in the design of
wireless networks. In both cellular and ad hoc networks, power control
helps with several functionalities:

• Interference management : Due to the broadcast nature of
wireless communication, signals interfere with each other.
This problem is particularly acute in interference-limited sys-
tems, such as CDMA systems where perfect orthogonality
among users is difficult to maintain. Power control helps
ensure efficient spectral reuse and desirable user experience.

• Energy management : Due to the limited battery power in
mobile stations, handheld devices, or any “nodes” operating
on small energy budget, energy conservation is important
for the lifetime of the nodes and even the network. Power
control helps minimize a key component of the overall energy
expenditure.

• Connectivity management : Due to uncertainty and time-
variation of wireless channels, even when there is neither

383
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384 Introduction

signal interference nor energy limitation, the receiver needs
to be able to maintain a minimum level of received signal
so that it can stay connected with the transmitter and esti-
mate the channel state. Power control helps maintain logical
connectivity for a given signal processing scheme.

To define a scope that allows an in-depth treatment within 150
pages, we will focus on power control in cellular networks in this survey,
emphasizing primarily its use in interference management while occa-
sionally touching upon energy and connectivity management. Most of
the treatment is devoted to uplink transmission from mobile station
(MS) to base station (BS), although extensions to downlink transmis-
sion from a BS to MSs are sometimes discussed as well. In many for-
mulations uplink problems are more difficult to solve, although there
are exceptions like joint power control and beamforming, and in other
formulations uplink and downlink problems present interesting dual-
ity relationships. Uplink power control is also often more important in
systems engineering of cellular networks.1

Within the functionality of interference management, there are sev-
eral types of problem statements, including optimizing Quality of Ser-
vice (QoS) metrics such as utility functions based on throughput and
delay, achieving network capacity in the information-theoretic sense
with technology-agnostic converse theorems, or maintaining network
stability in queueing-theoretic sense when there are dynamic arrival
and departure of users. This survey focuses on the first type of prob-
lems, which is already rich enough that a detailed taxonomy of problem
formulations is warranted and will be provided later in this section.

Given the specialization stated above and the range of power con-
trol problems in wireline systems like DSL, it is clear that this survey
only covers part of the broad set of problems in interference manage-
ment. Within this scope, there is already a wide and growing range

1 First, BS power consumption is of less importance in comparison to MS power consump-

tion. Second, the downlink intra-cell interference is much smaller in comparison to uplink
intra-cell interference, because maintaining orthogonality of resource allocation (e.g., code
allocation in CDMA, tone allocation in OFDM, or frequency and time slot allocation in

GSM) to MSs within a cell on the downlink is easily accomplished by the BS. Third, BS
locations are fixed and inter-cell interference is less bursty.
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1.1 Overview 385

of results that are mathematically interesting and practically impor-
tant. After surveying the key formulations, their relationships with
each other, and the key properties of convexity and decomposability
in this opening section, we organize the core materials in eight sec-
tions. Sections 2–4 present the basic formulations, starting with the
simplest case of power control with fixed equilibrium SIR targets in
Section 2, and progressing to the case of controlling transient behav-
iors and admission in Section 3, and that of jointly controlling power
and SIR assignment in Section 4. Sections 5 and 6 then present exten-
sions to opportunistic and non-cooperative power control, respectively.
Power control is often conducted jointly with other resource allocation
when spatial, spectral, and temporal degrees of freedom are offered.
In Sections 7–9, we discuss joint power control and beamforming, base
station assignment, frequency allocation, and scheduling, for both fixed
SIR and variable SIR cases. Each of Sections 2–9 starts with an overall
introduction and concludes with a discussion of open problems. The
mathematical techniques of optimization theory, control theory, game
theory, and linear algebra will also be highlighted across these eight
sections. Practical impacts of the theory of power control in the wire-
less industry have been substantial over the years, and some of these
engineering implications in operational networks are summarized in
Section 10.

Power control in wireless networks has been systematically stud-
ied since the 1970s. Over the last 15 years, thanks to the tremendous
growth of cellular networks and its transformative impacts on society,
extensive research on cellular network power control has produced a
wide and deep set of results in terms of modeling, analysis, and design.
We have tried to include as many contributions in the bibliography
as possible, to survey the key results and methodologies in a balanced
manner, and to strike a tradeoff between a detailed treatment of each
problem and a comprehensive coverage of all major issues. While these
lofty goals may not have been attained to perfection, we hope this sur-
vey will serve both as a partial summary of the state-of-the-art and a
sketchy illustration of the exciting open problems in the area of power
control in cellular networks.
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386 Introduction

1.2 Notation

The following notation are used throughout this survey. Vectors are
denoted in bold small letter, e.g., z, with their ith component denoted
by zi. Matrices are denoted by bold capitalized letters, e.g., Z, with
Zij denoting the {i, j}th component. Vector division x/y and multi-
plication xy are considered component-wise, and vector inequalities
denoted by � and � are component-wise inequalities. We use D(x) to
denote a diagonal matrix whose diagonal elements are the correspond-
ing components from vector x. A summary of key notation is provided
in Table 1.1 at the end of this section.

1.3 Taxonomy of Problem Formulations

1.3.1 Basic System Model

Consider a general multi-cell network where N MSs establish links to
K BSs, as illustrated in Figure 1.1. We assume that each MS is served
by one of the K BSs, thereby establishing N logical links. Let σi denote
the serving BS for link i.

Let Ci denote the set of links whose transmit power appear as inter-
ference to link i for a given receiver design. This definition allows us
to consider both orthogonal and non-orthogonal uplinks. In a non-
orthogonal uplink, such as CDMA, transmitted power from all links
appear as interference, so we set Ci = {j|j 6= i}. For an orthogonal
uplink, such as OFDM, links terminating on the same BS are orthogo-
nal and do not contribute interference to one another. In this case, we
set Ci = {j|σj 6= σi}.

Let hkj denote the amplitude gain from MS j to BS k. Define the
N × N power-gain matrix G by

Gij = ‖hσij‖
2, (1.1)

which represents the power gain from MS on link j to the receiving BS
on link i. Correspondingly define a normalized gain matrix F where

Fij =
{
Gij/Gjj if j ∈ Ci,

0 if j 6∈ Ci.
(1.2)

Let Dh = diag(G11, . . . ,GNN ) be the diagonal matrix containing direct
link channel gains, which depend on h.
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1.3 Taxonomy of Problem Formulations 387

Table 1.1 Summary of key notation.

Symbol Meaning

C,D,X ,Y, K Sets in RN (X̄ denotes the closure of X )

g(·), φ(·) Scalar-valued functions

c, d Scalar constants
L(·) Lagrangian

λi, µi, νi Lagrangian multipliers (or prices)

x∗ Optimizer or stationary point of a problem
x[t] Variable at the tth iteration

δ Step size for an iterative algorithm

N (indexed by i or j) Number of links (MS)
K (indexed by k) Number of base-stations (BS)

M (indexed by m) Number of BS antennas

Ci A set of links interfering with link i
hki or hki Complex channel amplitude from MS i to BS k

G Absolute link gain matrix,

Gij = |hσij |2 or Gij =
�
�wT

i hσij

�
�2 (for multi-antennas)

F Normalized link gain matrix,

Fij = Gij/Gii if j ∈ Ci and Fij = 0 O.W.
Dh Direct link gain matrix Dh =diag{G11, . . . ,GNN}
D(·) Diagonal matrix operator

γi (in vector γ) SIR value of link i
ni = E[zi] (in vector n) Thermal noise for link i

vi = γini/Gii Product of normalized noise with SIR target for link i

ηi = ni/Gii (in vector η) Normalized noise for link i
κ Rise-Over-Thermal

pi (in vector p) Transmission power of MS i

pm
i (in vector pm) Transmit power constraint for link i

qi (in vector q) Interference plus noise power for MS i

qm
i (in vector qm) Interference constraint for link i

Γ, B A set of feasible SIRs

SIRi(p) SIR function for MS i

ρ(·) Spectral radius operator
I(p) Standard interference function

RI Feasibility index of a standard interference function

λF Lyapunov exponent associated with matrix F
V Lyapunov function of power control algorithm

ε Robustness parameter

K1+ε Invariant cone parameterized by robustness parameter
p̃i = logpi Log transformation of power

ξ Energy consumption budget (percentage over total power)

Ui(·) (with parameter α) Utility function (for α fairness)
si Spillage factor

`i Load factor
θ Convex combination weight
S (indexed by s) Number of states

πs Probability that the system is in state s
ps,i Transmit power of user i in state s

Gs,i Path gain from base station to user i in state s

(Countinued)
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388 Introduction

Table 1.1 (Continued).

Symbol Meaning

gs,i Performance measure of user i in state s

ai,j Fixed weight on each gj
s,i(ps,j) to reflect priority

υi Minimum fraction of the total transmit power by user i
υ̃i Minimum fraction of the expected total system utility by user i

%i Stochastic gradient of Lagrangian

PT Total transmit power in downlink transmission
ζi Signal-interference product of user i

ϑ Non-orthogonality factor in CDMA spreading code

Eb/I0 The bit energy to interference density ratio
L (indexed by l) Number of (orthogonal) carriers

Di Multiplexing gain for MS i in a CDMA network

Dt and Df Number of total information bits and bits in a packet
BER(γi) Bit error rate function

f(·) Packet success rate function

Ai A set of feasible power allocation policies for MS i
wi (in matrix W) Uplink beamforming vector for MS i
ŵi Downlink beamforming vector for MS i
ui Information symbol of unit power for MS i

Gex Extended coupling matrix for beamforming

1 A vector whose components are 1’s
p̂i Downlink transmission power of MS i

σi The BS that serves MS i

Si A set of allowable BSs that MS i can connect to
bi, Bm Bandwidth for MS i and total bandwidth allowed

ri(γi) Rate function of link i

R Instantaneous rate region
X The stable arrival rate region

Conv(R) Convex hull of R
T Length of time resource

Let pj be the transmit signal power on link j. Since hσjj is the path
gain from MS on link j to its serving BS, the receiver on link j receives
the signal at the power of pj‖hσjj‖2 = Gjjpj . If j ∈ Ci, this transmission
will appear as interference to link i with a power of ‖hσij‖

2pj = Gijpj .
The total interference and noise at the BS serving MS i is given by

qi =
∑
j∈Ci

Gijpj + ni =
M∑

j=1

FijGjjpj + ni, (1.3)

where ni ≥ 0 is the power of noise other than interference from other
links. In matrix notation, (1.3) can be written as

q = FDhp + n. (1.4)
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1.3 Taxonomy of Problem Formulations 389

Fig. 1.1 An example of a multi-cellular network and uplink transmission.

Let γi be the SIR achieved by link i. With the above notation,
γi = Giipi/qi, or equivalently,

Dhp = D(γ)q, (1.5)

where D(γ) = diag(γ1, . . . ,γM ).2 Combining (1.4) and (1.5), we get the
following basic equations relating the key quantities:

q = FD(γ)q + n, (1.6)

and

Dhp = D(γ)FDhp + D(γ)n. (1.7)

An important factor that determines the total uplink capacity in
commercial networks today is the interference limit qm, often stated

2 The difference between the D(γ) and Dh notation is that the diagonal entries of D(γ) is
exactly γ while those of Dh are functions of h.
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in the form qm = κn for some constant κ ≥ 1. With this definition,
the interference, qi, at each BS i, is not allowed to be larger than a
factor κ greater than the thermal noise ni. The factor, κ, is called the
Interference over Thermal (IOT), and typically quoted in dB,

IOT = 10log10(κ).

A related measure is the Raise over Thermal (ROT), the ratio of the
interference and the signal power to the thermal noise. The IOT limits
bound the interference to the cell and the power required for new MSs to
access the network. Typical IOT values in commercial networks range
from 3 to 10 dB.

1.3.2 Optimization Variables

Whether a power control problem is formulated as cooperative or non-
cooperative, over a period of time or for a target equilibrium, it often
involves an optimization formulation. An optimization can be described
by four tuples: optimization variables, objective function, constraint
set, and constant parameters.

Obviously transmit power vector p is an optimization variable in
all formulations in this survey. In Sections 7–9, beamforming pattern,
BS assignment, bandwidth allocation, and time schedules also become
variables. In addition to these primary variables, there are also sec-
ondary variables that are functions of them. An important example is
that, in Section 4, SIR vector γ also becomes a variable.

1.3.3 Objectives

There are two types of terms in the objective function: QoS-based util-
ity and resource cost. Cost function for resource usage is relatively
simple. It is often an increasing, convex function V of the underlying
resource, e.g., linear function of transmit power.

Utility functions require more discussion. The most general utility
function assumes the form of U(β), where β is a vector of metrics. Often
it is assumed to be additive across MSs indexed by i: U(β) =

∑
iUi(β),

and locally dependent: U(β) =
∑

iUi(βi).
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1.3 Taxonomy of Problem Formulations 391

Metric βi may be the achieved throughput or goodput (and U would
be an increasing function), or delay, jittering, or distortion (and U

would be a decreasing function). These metrics are in turn functions
of transmit power and other optimization variables in a given power
control problem formulation.

For example, one QoS metric of interest is throughput, which is a
function of SIR, which is in turn a function of transmit powers. There
are several expressions of this metric. One is in terms of the capacity
formula:

βi(γi) = d log(1 + cγi), (1.8)

where c and d are constants that depend on modulation scheme, symbol
period, and target Bit Error Rate (BER). In high-SIR regime, the above
expression can be approximated by log function: βi(γi) = d logcγi. In
low-SIR regime, it can be approximated by linear function: βi(γi) =
dcγi. It turns out both approximations help with formulating a con-
vex optimization problem as discussed later. When other degrees of
freedom such as schedules and beamforming patterns are involved, the
expression becomes more complicated. Another expression for through-
put is through the packet success rate function f that maps SIR to the
probability of successfully decoding a packet:

βi(γi) = Rif(γi), (1.9)

where Ri is the transmission rate.
There are also other QoS metrics such as delay that depend on SIR,

and they will be introduced as the sections progress.
Back to the utility function Ui itself, it is often modeled as a mono-

tonic, smooth, and concave function, but in more general form as
required by some applications, it may not be smooth or concave. It
can capture any of the following: happiness of users, elasticity of traf-
fic, efficiency of resource allocation, and even the notion of fairness.
Consider a family of utility functions parameterized by α ≥ 0 [122]:

Ui(βi) =
{

log(βi) if α = 1,
(1 − α)−1β1−α

i if α 6= 1.
(1.10)

Maximizing such an “α-fair utility function” leads to an optimizer that
satisfies the definition of α-fairness in economics literature. For exam-
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ple, proportional fairness is attained for α = 1 and maxmin fairness for
α→∞. It is also often believed that larger α means more fairness.

A utility function that will help provide convexity of problem for-
mulation while approximating linear utility function is the following
pseudo-linear utility function:

Ui(βi) = log(exp(βi/c) − 1), (1.11)

where c > 0 is a constant. This utility function is fairer than the linear
utility function but approximates the linear utility at high QoS values.
In particular, we have

log(exp(βi/c) − 1)→ βi/c as βi →∞,

log(exp(βi/c) − 1)→−∞ as βi → 0.

Sometimes, QoS-based utility and resource cost are combined into
a single objective function for each user, either additively as in utility
minus power, or multiplicatively as in throughput over power.

1.3.4 Constraints

There are three major types of constraints in power control problems.
First is the set of constraints reflecting technological and regulatory
limitations, e.g., total transmit power, maximum transmit power for
each user, and IOT or ROT. These are usually simple constraints
mathematically.

Second are constraints based on inelastic, individual users’ require-
ments, e.g., two MSs’ received SIR at a BS need to be the same, or one
MS’s rate cannot be smaller than a threshold. It is not always possi-
ble to meet these constraints simultaneously. In these cases, the power
control problem is infeasible.

The third type of constraints, called feasibility constraints, is most
complicated. In the information-theoretic sense, it would be the capac-
ity region of an interference channel, which remains unknown. In the
queueing-theoretic sense, it would be the stochastic stability region.
In this survey, we focus instead on constraints that are defined with
respect to QoS feasibility region, which is closely related to SIR feasi-
bility region.
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1.3 Taxonomy of Problem Formulations 393

An SIR vector γ � 0 is called feasible if there exists an interfer-
ence vector, q � 0, and power vector p � 0, satisfying (1.6) and (1.7),
respectively. It is reasonable to assume that the network of BSs and
MSs represented by the channel matrix F in Section 1.3.1 is connected,
implying that F is a primitive matrix. Let ρ(·) denote the spectral
radius function3 of such a positive, primitive matrix. The following
lemma from [198] is one of the fundamental results that characterizes
SIR feasibility based on spectral radius of system matrices F and D(γ):

Lemma 1.1. An SIR vector γ � 0 is feasible if and only if ρ(FD(γ)) <
1, when n 6= 0, and ρ(FD(γ)) = 1, when n = 0.

Further discussions on SIR and QoS feasibility regions will be pro-
vided in Sections 2 and 4.

1.3.5 Problem Formulations

We are ready to provide a quick preview of some representative problem
formulations in the rest of the survey. Given the vast landscape of power
control problems covered, a “problem tree” in Figure 1.2 serves as a
high-level guide to the relationships among these problems. Meanings
of each level of branching off are as follows:

• Level 1: Optimization vs. game theory approach.
• Level 2: Deterministic optimization within each time-slot vs.

opportunistic approach.
• Level 3: Variable SIR vs. fixed SIR approach.
• Level 4 and below: Joint power control and a subset of the fol-

lowing: beamforming, BS assignment, bandwidth allocation,
and scheduling.

Next, we present one or two representative problems in each of the
nodes in the problem tree. Symbols are defined in the Table of Nota-
tion. The meanings, justifications, solutions, and implications of these
problems are not discussed here, since they will be extensively studied

3 Spectral radius is the maximum of the absolute value of the eigenvalues of a matrix.
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Fig. 1.2 A tree of representative problem formulations. Obviously, only part of the tree is

shown here.

in the following 8 sections. This preview puts the following sections in
the appropriate corners of the problem landscape.

Problem (O), distributed power control, discussed in Section 2:

minimize
∑

i

pi

subject to SIRi(p) ≥ γi, ∀i
variables p.

(1.12)

Problem (M), robust distributed power control, discussed in
Section 3:

minimize
∑

i

pi + φ(ε)

subject to SIRi(p) ≥ γi(1 + ε), ∀i
variables p, ε.

(1.13)

Problem (N), power control for optimal SIR assignment, discussed
in Section 4:

maximize
∑

i

Ui(γi)

subject to p(γ) � pm

variables γ, p.

(1.14)
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Problem (E), opportunistic power control, discussed in Section 5:

maximize
∑

s

πs

∑
i

Us,i(ps,i)

subject to
∑

s

πsgs,i(ps) ≥ ci, ∀i∑
i

ps,i ≤ PT , ∀s

variables ps, ∀s.

(1.15)

Problem (C), Non-cooperative power control, discussed in Section 6:

maximize Ui(γi) − Vi(pi)
subject to SIRi(pi,σi,p−i) ≥ γi, ∀i

p � pm

σi ∈ Si, ∀i
variables p, γ, σ.

(1.16)

Problem (K), Joint PC and beamforming power minimization, dis-
cussed in Section 7:

minimize
∑

i

pi

subject to SIRi(W,p) ≥ γi, ∀i
variables p, W.

(1.17)

Problem (J), Joint PC and beamforming for utility maximization,
discussed in Section 7:

maximize
∑

i

Ui(γi)

subject to SIRi(W,p) ≥ γi, ∀i
p � pm

variables p, γ, W.

(1.18)

Problem (L), Joint PC and BS assignment, discussed in Section 8:

minimize
∑

i

pi

subject to SIRi(p,σ) ≥ γi, ∀i
σi ∈ Si, ∀i

variables p, σ.

(1.19)
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Problem (H), Joint PC and scheduling in frequency domain, dis-
cussed in Section 9:

maximize
∑

i

Ui(ri)

subject to ri =
L∑

l=1

bl log(1 + cγl
i), ∀i

γl ∈ Γl, ∀l∑
l

pl
i ≤ pm

i , ∀i

variables pl, γl, ∀l.

(1.20)

Problem (I), Joint PC and scheduling in time domain, discussed in
Section 9:

maximize
∑

i

Ui(ri)

subject to r ∈ X = Conv(R(Γ))
γ ∈ Γ

variables r, γ.

(1.21)

Finally, the above list of representative formulations are compared
in Table 1.2. The columns represent the fields describing the problem,
and each row corresponds to one node in the tree of problems.

1.4 Convexity and Decomposability Structures

1.4.1 Convexity

Convexity has long been recognized as the watershed between easy and
hard optimization problems. Convex optimization refers to minimiza-
tion of a convex objective function over a convex constraint set. For
convex optimization, a local optimum is also a global optimum (and
unique if the objective function is strictly convex), duality gap is zero
under mild conditions, and a rich understanding of its theoretical and
numerical properties is available. For example, solving a convex opti-
mization is highly efficient in theory and in practice, as long as the
constraint set is represented efficiently, e.g., by a set of upper bound
inequality constraints on other convex functions. Zero duality gap fur-
ther enables distributed solutions through dual decomposition.
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To check if a power control problem is convex optimization, we
need to check both its objective and constraints. We want the objective
function being maximized (e.g., utility function of rate) to be concave,
and the one being minimized (e.g., cost function of power consumption)
to be convex in the optimization variables. As will be discussed in many
sections later, concavity of utility function may not always hold. In
non-cooperative power control formulations, quasi-concavity property
of selfish utility functions plays a similarly important role for proving
the existence of Nash equilibrium. We also want the constraint set to be
convex, and in an efficient representation. Sometimes, a log change of
variables turns an apparently non-convex problem into a convex one as
in the Geometric Programming approach that has been shown to solve
a wide range of constrained power control problems in high-SIR regime
and a smaller set of problems in general-SIR regime [40]. More sufficient
conditions for such convexity will be discussed in later sections.

Sometimes discrete optimization variables need to be introduced,
thus turning the problem into a non-convex one. Three important
examples include BS assignment among a finite set of BS choices,
scheduling an MS to transmit or not, and a discrete set of available
power levels.

1.4.2 Decomposability

While convexity is the key to global optimality and efficient compu-
tation, decomposability is the key to distributed solutions of an opti-
mization problem. Unlike convex optimization, however, there is no
definition of a decomposable problem. Rather decomposability comes
in different degrees. If a problem can be decomposed into subproblems
whose coordination does not involve communication overhead, its solu-
tion algorithm can be distributed without any message passing. In other
instances, subproblems being solved by different network elements (e.g.,
MS and BS) need to be coordinated by passing messages among these
elements. Counting such communication overhead is not always easy
either, it often depends on how far and how often are messages passed
and how many bits each message contains. In general, message passing
across multiple BS is difficult, whereas between a BS and the MS in its

Full text available at: http://dx.doi.org/10.1561/1300000009



1.4 Convexity and Decomposability Structures 399

cell is more feasible. Frequency and length of these control messages
will be further discussed in Section 10.

There are various decomposition techniques from optimization the-
ory, such as dual decomposition, primal decomposition, and penalty
function method. However, one of the key constraints in power control
problems, the SIR feasibility constraint, turns out to be coupled in a
way that is not readily decomposed by these techniques. In Section 4,
we will show how a reparametrization of this set reveals decomposabil-
ity structures and leads to a distributed algorithm.

In contrast to the global optimization formulations, distributed
algorithms are, by definition, already provided in non-cooperative game
formulations of power control, as surveyed in Section 6. The challenge
then becomes showing that such distributed interactions among selfish
network elements will lead to a desirable equilibrium, e.g., they also
maximize the global utility function for the whole network. The follow-
ing two approaches are complementary: modeling through global opti-
mization and searching for decomposition method, or modeling through
selfish local optimization and characterizing the loss of social welfare
optimality.
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