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Abstract

Unlike the Telephone network or the Internet, many of the next gener-
ation networks are not engineered for the purpose of providing efficient
communication between various networked entities. Examples abound:
sensor networks, peer-to-peer networks, mobile networks of vehicles and
social networks. Indeed, these emerging networks do require algorithms
for communication, computation, or merely spreading information. For
example, estimation algorithms in sensor networks, broadcasting news
through a peer-to-peer network, or viral advertising in a social network.
These networks lack infrastructure; they exhibit unpredictable dynam-
ics and they face stringent resource constraints. Therefore, algorithms
operating within them need to be extremely simple, distributed, robust
against networks dynamics, and efficient in resource utilization.

Gossip algorithms, as the name suggests, are built upon a gossip
or rumor style unreliable, asynchronous information exchange proto-
col. Due to their immense simplicity and wide applicability, this class
of algorithms has emerged as a canonical architectural solution for
the next generation networks. This has led to exciting recent progress
to understand the applicability as well as limitations of the Gossip
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algorithms. In this review, we provide a systematic survey of many
of these recent results on Gossip network algorithms. The algorithmic
results described here utilize interdisciplinary tools from Markov chain
theory, Optimization, Percolation, Random graphs, Spectral graph
theory, and Coding.
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1

Introduction

The twentieth century has seen a revolution in terms of our ability
to communicate at very long distances at very high speeds. This has
fundamentally changed the way we live in the present world. The devel-
opment of reliable and high-performance massive communication net-
works has been at the heart of this revolution. The telephone networks
and the Internet are prime examples of such large networks. These net-
works were carefully engineered (and are still being engineered) for the
single purpose of providing efficient communication given the available
resources. In contrast to these networks, there has been a sudden emer-
gence of different types of large networks in the past few years where
the primary purpose is not that of providing communication. Examples
of such networks include sensor networks, peer-to-peer (P2P) networks,
mobile ad-hoc networks, and social networks.

A sensor network, made of a large number of unreliable cheap sen-
sors, is usually deployed for the purpose of ‘sensing’, ‘detecting’ or
‘monitoring’ certain events. For example, smoke sensors capable of wire-
less transmission deployed for smoke detection in a large building, or
a collection of interconnected camera sensors deployed for surveillance
in a secure facility. The ability to deploy such networks anywhere with

1
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2 Introduction

minimal cost of infrastucture has made them particularly attractive
for these applications. Clearly, the primary purpose of such networks
is to collect and process the sensed information by sensors rather than
provide efficient communication.

The peer-to-peer networks are formed by connecting various users
(e.g., computers or handheld devices) over an already existing network
such as the Internet. Usually such networks are formed with minimal
infrastructural support. The peers (or neighbors) are connected over
an existing network and hence the advantage of using such networks is
not in terms of efficiency of utilizing resources. However, a significant
benefit arises in terms of reduced infrastructural support in situations
like wide information dissemination. For example, in the absence of a
P2P network an Internet content provider (e.g., BBC) needs to main-
tain a high bandwidth ‘server farm’ that ‘streams’ a popular movie or a
TV show to a large number of users simultaneously. In contrast, in the
presence of a P2P network a user is likely to obtain the desired popu-
lar content from a ‘nearby’ peer and thus distributing a large cost of
‘streaming’ from the ‘server farm’ to many ‘peers’. Therefore, such an
architecture can reduce the cost of content dissemination for a content
provider drastically. Of course, it is likely to come at an increased cost
of the network utilization. Now, whether or not the benefits obtained
in terms of reduced infrastructure by utilizing P2P network for a con-
tent provider offset the increased network cost incurred by the network
provider is indeed intriguing both in an engineering and an economic
sense. While the recent trend suggests that it is indeed the case (e.g.,
advent of the BBCiPlayer [70] and adaptation of Korean ISPs [31]),
the equilibrium solution is yet to be reached.

The mobile ad-hoc network formed between vehicles arises in var-
ious scenarios, including future smart cars traveling on road, or fleets
of unmanned aerial vehicles deployed for surveillance. These networks,
by design, are formed for a purpose other than communication. They
need algorithms for the purpose of co-ordination, consensus or flocking
(e.g., see classical work by Tsitsiklis [69], more recently [6, 32, 63]).

Finally, we have noticed a very recent emergence of massive social
networks between individuals connected over a heterogenous collec-
tion of networks. Until recently, an individual’s social network usually
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1.1 NextGen Networks: Through an Algorithmic Lens 3

involved only a small number of other acquintances, relatives or
close friends. However, the arrival of ‘social network applications’
(e.g., Orkut, Facebook, etc.) has totally changed the structure of exist-
ing social networks. Specifically, the social network of an individual
now includes many more acquintances than before thanks to these
online applications. Furthermore, the use of handheld devices like smart
phones are likely to create new ways to ‘socialize’ through P2P networks
formed between them in the near future. Naturally, this ‘globalization’
and ‘ubiquitous presence’ of social networks bring many exciting oppor-
tunities along with extreme challenges. To realize these opportunities
and to deal with the challenges, we will need new algorithms with
efficient effective social communication under uncertain environmental
conditions.

1.1 NextGen Networks: Through an Algorithmic Lens

Algorithms are key building blocks of any network architecture. For
example, the Internet provides efficient communication between users
through a collection of algorithms operating at the end-users and inside
the network. Popular instances of such algorithms are the Transmission
Control Protocol (TCP) for congestion control or Border Gateway Pro-
tocol (BGP) for routing. The above discussed emerging or next gen-
eration networks are not designed to provide efficient communication
between the entities or the users networked by them. But, they do
require algorithms to enable their primary applications. For example, a
sensor network may require an estimation algorithm for event detection
given the sensor observations; a P2P network may require a dissemi-
nation algorithm using peer information; a network of aerial vehicles
may need an algorithm to reach consensus to co-ordinate their surveil-
lance efforts, and an advertiser may need a social network algorithm
for efficient ‘viral’ advertisement.

In most of these next generation networks, algorithms usually need
to operate under an ‘adverse’ environment. First of all, since these
networks are not built for providing communication, there is usually
a lack of a reliable network infrastructure. Second, these networks are
highly dynamic in the sense that nodes may join the network, leave the
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4 Introduction

network, or even become intermittently unavailable in an unpredictable
manner. Third, the network is usually highly resource constrained in
terms of communication, computation and sometimes energy resources.

The highly constrained environment in which algorithms are oper-
ating suggest that the algorithm must posses certain properties so as
to be implementable in such networks. Specifically, an algorithm oper-
ating at a node of the network should utilize information ‘local’ to the
node and should not expect any static infrastructure. It should attempt
to achieve its task iteratively and by means of asynchronous message
exchanges. The algorithm should be robust against the network dynam-
ics and should not prescribe to any ‘hard-wired’ implementation. And
finally, the algorithm should utilize minimal computational and com-
munication resources by performing few logical operations per iteration
as well as require light-weight data structures. These constraints natu-
rally lead to ‘Gossip’ algorithms, formally described next, as a canonical
algorithmic architectural solution for these next generation networks.

1.2 The Formal Agenda

We shall formally describe the quest for algorithm design for the next
generation networks in this section. This will give rise to the formal
definition of ‘Gossip’ algorithms, which will serve as the canonical
algorithmic solution.

To this end, let us consider a network of n nodes denoted by
V = {1, . . . ,n}. Let E ⊂ V × V denote the set of (bidirectional) links
along which node pairs can communicate. That is, (i, j) ∈ E if and
only if nodes i, j ∈ V can communicate with each other. Let this net-
work graph be denoted by G = (V,E). This network graph G should be
thought of as changing over time in terms of V and E. As the reader
will notice, the algorithms considered here will not utilize any static
property of G and hence will be applicable in the presence of explicit
network dynamics. For simplicity of the exposition, we shall not model
the network dynamics explicitly. Let di denote the degree of node i in
G, i.e., di = |{j ∈ V : (i, j) ∈ E}|. We will assume that the network G is
connected without loss of generality; or else we can focus on different
connected components separately.
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1.2 The Formal Agenda 5

We consider a class of algorithms, called ‘Gossip’ algorithms, that
are operating at each of the n nodes of the network. Now, we present
the formal definition of these algorithms.

Definition 1.1(Gossip algorithms). Under a Gossip algorithm, the
operation at any node i ∈ V , must satisfy the following properties:

(1) The algorithm should only utilize information obtained from

its neighbors N (i)
4
= {j ∈ V : (i, j) ∈ E}.

(2) The algorithm performs at most O(di logn) amount of com-
putation per unit time.

(3) Let |Fi| be the amount of storage required at node i to gener-
ate its output. Then the algorithm maintainsO(poly(logn) +
|Fi|) amount of storage at node i during its running.

(4) The algorithm does not require synchronization between
node i and its neighbors, N (i).

(5) The eventual outcome of the algorithm is not affected by
‘reasonable’1 changes in N (i) during the course of running
of the algorithm.

We wish to design Gossip algorithms for computing a generic net-
work function. Specifically, let each node have some information, and
let xi denote the information of node i ∈ V . The node i ∈ V wishes
to compute a function fi(x1, . . . ,xn) using a Gossip algorithm. Also, it
would like to obtain a good estimate of fi(x1, . . . ,xn) as quickly as pos-
sible. The question that is central to this survey is that of identifying
the dependence of the computation time of the Gossip algorithm over
the graph structure G and the functions of interest f1, . . . ,fn.

Before we embark on the description and organization of this sur-
vey, some remarks are in order. First, property (3) rules out ‘triv-
ial’ algorithms like first collect values x1, . . . ,xn at each node and

1 By a reasonable change, here we mean dynamics that allow for a possibility of eventual
computation of the desired function in a distributed manner. For example, if a node i

becomes disconnected from the rest of the graph forever, then it will consist of unreasonable
change as per our terminology.
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6 Introduction

then compute fi(x1, . . . ,xn) locally for functions like summation, i.e.,
fi(x1, . . . ,xn) =

∑n
k=1xk. This is because for such a function the length

of the output is O(1) (we treat storage of each distinct number by
unit space) and hence collection of all n items at node i would require
storage Ω(n) which is a violation of property (3). Second, the compu-
tation of complex function (e.g., requiring beyond poly(logn) space)
are beyond this class of algorithms. This is to reflect that the interest
here is in functions that are easily computable, which is usually the
case in the context of network applications. Third, the definition of a
Gossip algorithm here should be interpreted as a rough guideline on the
class of simple algorithms that are revelant rather than a very precise
definition.

1.3 Organization

In the remainder of this survey, we provide a systematic description
of the class of network functions that can be computed by means of
a Gossip algorithm. A salient feature of the analysis of the algorithms
described in this survey is the ability to describe the precise dependance
of computation time on the network graph structure G and the function
of interest. These dependancies are described in terms of ‘spectral-like’
graph properties. Therefore, we start with Preliminaries on graph prop-
erties and some known results that will be useful in the algorithm design
and analysis. These are explained through examples of a collection of
graph models throughout the survey.

The network functions for which we describe Gossip algorithms in
this survey are naturally designed in a ‘layered’ fashion. At the bot-
tom of the layer lies the design of a robust information layer using a
Gossip algorithm. This is described in detail in Information dissemi-
nation. Here we will describe information dissemination Gossip algo-
rithm for both unicast and multicast types of traffic scenarios. We will
describe a natural relation between Percolation on graphs, information
dissemination and certain spectral-like graph properties.

The simplest class of iterative algorithms, built upon an unreliable
information layer, are based on linear dynamics. These algorithms have
been used for solving consensus or multi-agent co-ordination problems
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1.3 Organization 7

classically. We provide a detailed account on the optimal design and
analysis of such algorithms in Linear computation. Here, we shall
describe the interplay between Markov chain theory, mixing times and
Gossip algorithms. We also report some advances in the context of
Markov chain theory due to considerations from the viewpoint of Gossip
algorithms.

Linear function computation is an instance of, and essentially equiv-
alent to, separable function computation. The quest for designing the
fastest possible Gossip algorithm, in terms of its dependence on the
graph structure, for separable function computation, which will be
left partly unresolved by the linear dynamics based algorithms, will
be brought to a conclusion in Separable function computation. Here,
we shall describe an algorithm based on an ‘extremal’ property of
the Exponential distribution. This algorithm will utilize the unreliable
information layer designed in Information dissemination for the pur-
pose of information exchange. The appropriately quantized version of
this algorithm as well as information theoretic arguments suggesting
its fundamental optimality will be discussed (see ‘Summary’) as well.

Next, we consider Gossip algorithm design for the task of scheduling
in constrained queueing networks. This is a key operational question for
networks such as those operating over a common wireless medium. For
such a network a scheduling algorithm is required for the media access
control (MAC). We describe Gossip scheduling algorithm in Network
scheduling. This algorithm builds upon the separable function compu-
tation algorithm using clever randomization.

Network resource allocation is another fundamental problem that
is faced while operating a communication network. Under flow-level
modeling of a network, this involves solving certain network-wide or
global constrained convex optimization problems. Therefore, we con-
sider the question of designing a Gossip algorithm for a class of convex
optimization problems in Network convex optimization. This algorithm,
like network scheduling, builds upon the separable function computa-
tion algorithm. Specifically, it utilizes the separable function computa-
tion algorithm to design a ‘distributed computation’ layer.

In summary, the algorithms presented in this survey provide ‘layers’
of computation in a network. The key reason for the existence of such
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8 Introduction

a ‘layered’ algorithmic architecture lies in the ability to ‘function-
ally decompose’ many interesting problems with separable function
computation central to the decomposition. For this reason, Gossip
algorithm for separable function computation becomes a key ‘sub-
routine’ in designing Gossip algorithms for many seemingly complex
network computation problems. For these reasons, in addition to appli-
cations described in this survey, the separable function computation
algorithm can be used to design Gossip algorithms for other impor-
tant applications including spectral decomposition (using the algorithm
of Kempe and McSherry [38] and the separable function computation
algorithm) and Kalman filtering.
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