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Abstract

This volume bears on wireless network modeling and performance anal-
ysis. The aim is to show how stochastic geometry can be used in a more
or less systematic way to analyze the phenomena that arise in this con-
text. It first focuses on medium access control mechanisms used in ad
hoc networks and in cellular networks. It then discusses the use of
stochastic geometry for the quantitative analysis of routing algorithms
in mobile ad hoc networks. The appendix also contains a concise sum-
mary of wireless communication principles and of the network archi-
tectures considered in the two volumes.
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Preface

A wireless communication network can be viewed as a collection of
nodes, located in some domain, which can in turn be transmitters or
receivers (depending on the network considered, nodes may be mobile
users, base stations in a cellular network, access points of a WiFi
mesh, etc.). At a given time, several nodes transmit simultaneously,
each toward its own receiver. Each transmitter–receiver pair requires
its own wireless link. The signal received from the link transmitter may
be jammed by the signals received from the other transmitters. Even
in the simplest model where the signal power radiated from a point
decays in an isotropic way with Euclidean distance, the geometry of
the locations of the nodes plays a key role since it determines the sig-
nal to interference and noise ratio (SINR) at each receiver and hence
the possibility of establishing simultaneously this collection of links at
a given bit rate. The interference seen by a receiver is the sum of the
signal powers received from all transmitters, except its own transmitter.

Stochastic geometry provides a natural way of defining and com-
puting macroscopic properties of such networks, by averaging over all
potential geometrical patterns for the nodes, in the same way as queu-
ing theory provides response times or congestion, averaged over all
potential arrival patterns within a given parametric class.

1
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2 Preface

Modeling wireless communication networks in terms of stochastic
geometry seems particularly relevant for large scale networks. In the
simplest case, it consists in treating such a network as a snapshot of
a stationary random model in the whole Euclidean plane or space and
analyzing it in a probabilistic way. In particular the locations of the
network elements are seen as the realizations of some point processes.
When the underlying random model is ergodic, the probabilistic anal-
ysis also provides a way of estimating spatial averages which often cap-
ture the key dependencies of the network performance characteristics
(connectivity, stability, capacity, etc.) as functions of a relatively small
number of parameters. Typically, these are the densities of the under-
lying point processes and the parameters of the protocols involved. By
spatial average, we mean an empirical average made over a large col-
lection of ‘locations’ in the domain considered; depending on the cases,
these locations will simply be certain points of the domain, or nodes
located in the domain, or even nodes on a certain route defined on this
domain. These various kinds of spatial averages are defined in precise
terms in the monograph. This is a very natural approach e.g., for ad
hoc networks, or more generally to describe user positions, when these
are best described by random processes. But it can also be applied to
represent both irregular and regular network architectures as observed
in cellular wireless networks. In all these cases, such a space average
is performed on a large collection of nodes of the network executing
some common protocol and considered at some common time when
one takes a snapshot of the network. Simple examples of such averages
are the fraction of nodes which transmit, the fraction of space which is
covered or connected, the fraction of nodes which transmit their packet
successfully, and the average geographic progress obtained by a node
forwarding a packet towards some destination. This is rather new to
classical performance evaluation, compared to time averages.

Stochastic geometry, which we use as a tool for the evaluation of
such spatial averages, is a rich branch of applied probability partic-
ularly adapted to the study of random phenomena on the plane or
in higher dimension. It is intrinsically related to the theory of point
processes. Initially its development was stimulated by applications to
biology, astronomy and material sciences. Nowadays, it is also used in
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Preface 3

image analysis and in the context of communication networks. In this
latter case, its role is similar to that played by the theory of point
processes on the real line in classical queuing theory.

The use of stochastic geometry for modeling communication net-
works is relatively new. The first papers appeared in the engineering
literature shortly before 2000. One can consider Gilbert’s paper of 1961
[34] both as the first paper on continuum and Boolean percolation and
as the first paper on the analysis of the connectivity of large wireless
networks by means of stochastic geometry. Similar observations can be
made on [35] concerning Poisson–Voronoi tessellations. The number of
papers using some form of stochastic geometry is increasing fast. One
of the most important observed trends is to take better account in these
models of specific mechanisms of wireless communications.

Time averages have been classical objects of performance evaluation
since the work of Erlang (1917). Typical examples include the random
delay to transmit a packet from a given node, the number of time steps
required for a packet to be transported from source to destination on
some multihop route, the frequency with which a transmission is not
granted access due to some capacity limitations, etc. A classical ref-
erence on the matter is [58]. These time averages will be studied here
either on their own or in conjunction with space averages. The combi-
nation of the two types of averages unveils interesting new phenomena
and leads to challenging mathematical questions. As we shall see, the
order in which the time and the space averages are performed matters
and each order has a different physical meaning.

This monograph surveys recent results of this approach and is struc-
tured in two volumes.

Volume I focuses on the theory of spatial averages and contains
three parts. Part I in Volume I provides a compact survey on classi-
cal stochastic geometry models. Part II in Volume I focuses on SINR
stochastic geometry. Part III in Volume I is an appendix which contains
mathematical tools used throughout the monograph. Volume II bears
on more practical wireless network modeling and performance analy-
sis. It is in this volume that the interplay between wireless commu-
nications and stochastic geometry is deepest and that the time–space
framework alluded to above is the most important. The aim is to show
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4 Preface

how stochastic geometry can be used in a more or less systematic way
to analyze the phenomena that arise in this context. Part IV in Vol-
ume II is focused on medium access control (MAC). We study MAC
protocols used in ad hoc networks and in cellular networks. Part V in
Volume II discusses the use of stochastic geometry for the quantita-
tive analysis of routing algorithms in MANETs. Part VI in Volume II
gives a concise summary of wireless communication principles and of
the network architectures considered in the monograph. This part is
self-contained and readers not familiar with wireless networking might
either read it before reading the monograph itself, or refer to it when
needed.

Here are some comments on what the reader will obtain from study-
ing the material contained in this monograph and on possible ways of
reading it.

For readers with a background in applied probability, this mono-
graph provides direct access to an emerging and fast growing branch
of spatial stochastic modeling (see, e.g., the proceedings of conferences
such as IEEE Infocom, ACM Sigmetrics, ACM Mobicom, etc. or the
special issue [38]). By mastering the basic principles of wireless links
and of the organization of communications in a wireless network, as
summarized in Volume II and already alluded to in Volume I, these
readers will be granted access to a rich field of new questions with high
practical interest. SINR stochastic geometry opens new and interest-
ing mathematical questions. The two categories of objects studied in
Volume II, namely medium access and routing protocols, have a large
number of variants and of implications. Each of these could give birth
to a new stochastic model to be understood and analyzed. Even for
classical models of stochastic geometry, the new questions stemming
from wireless networking often provide an original viewpoint. A typical
example is that of route averages associated with a Poisson point pro-
cess as discussed in Part V in Volume II. Reader already knowledgeable
in basic stochastic geometry might skip Part I in Volume I and follow
the path:

Part II in Volume I ⇒ Part IV in Volume II ⇒ Part V in
Volume II,
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Preface 5

using Part VI in Volume II for understanding the physical meaning of
the examples pertaining to wireless networks.

For readers whose main interest in wireless network design, the
monograph aims to offer a new and comprehensive methodology for the
performance evaluation of large scale wireless networks. This methodol-
ogy consists in the computation of both time and space averages within
a unified setting. This inherently addresses the scalability issue in that
it poses the problems in an infinite domain/population case from the
very beginning. We show that this methodology has the potential to
provide both qualitative and quantitative results as below:

• Some of the most important qualitative results pertaining
to these infinite population models are in terms of phase
transitions. A typical example bears on the conditions under
which the network is spatially connected. Another type of
phase transition bears on the conditions under which the
network delivers packets in a finite mean time for a given
medium access and a given routing protocol. As we shall see,
these phase transitions allow one to understand how to tune
the protocol parameters to ensure that the network is in the
desirable “phase” (i.e. well connected and with small mean
delays). Other qualitative results are in terms of scaling laws:
for instance, how do the overhead or the end-to-end delay on
a route scale with the distance between the source and the
destination, or with the density of nodes?
• Quantitative results are often in terms of closed form expres-

sions for both time and space averages, and this for each
variant of the involved protocols. The reader will hence be
in a position to discuss and compare various protocols and
more generally various wireless network organizations. Here
are typical questions addressed and answered in Volume II:
is it better to improve on Aloha by using a collision avoid-
ance scheme of the CSMA type or by using a channel-aware
extension of Aloha? Is Rayleigh fading beneficial or detrimen-
tal when using a given MAC scheme? How does geographic
routing compare to shortest path routing in a mobile ad hoc
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6 Preface

network? Is it better to separate the medium access and the
routing decisions or to perform some cross layer joint opti-
mization?

The reader with a wireless communication background could either
read the monograph from beginning to end, or start with Volume II
i.e. follow the path

Part IV in Volume II ⇒ Part V in Volume II ⇒ Part II in Volume I

and use Volume I when needed to find the mathematical results which
are needed to progress through Volume II.

We conclude with some comments on what the reader will not find
in this monograph:

• We do not discuss statistical questions and give no measure-
ment based validation of certain stochastic assumptions used
in the monograph: e.g., when are Poisson-based models justi-
fied? When should one rather use point processes with some
repulsion or attraction? When is the stationarity/ergodicity
assumption valid? Our only aim is to show what can be done
with stochastic geometry when assumptions of this kind can
be made.
• We will not go beyond SINR models either. It is well known

that considering interference as noise is not the only possible
option in a wireless network. Other options (collaborative
schemes, successive cancellation techniques) can offer better
rates, though at the expense of more algorithmic overhead
and the exchange of more information between nodes. We
believe that the methodology discussed in this monograph
has the potential of analyzing such techniques but we decided
not to do this here.

Here are some final technical remarks. Some sections, marked with
a * sign, can be skipped at the first reading as their results are not
used in what follows; the index, which is common to the two volumes,
is designed to be the main tool to navigate within and between the two
volumes.
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Preface to Volume II

The two first parts of volume II (Part IV and Part V) are structured
in terms of the key ingredients of wireless communications, namely
medium access and routing. The general aim of this volume is to show
how stochastic geometry can be used in a more or less systematic way
to analyze the key phenomena that arise in this context. We limit
ourselves to simple (yet not simplistic) models and basic protocols.
This volume is nevertheless expected to convince the reader that
much more can be done for improving the realism of the models, for
continuing the analysis and for extending the scope of the methodology.

Part IV is focused on medium access control (MAC). We study MAC
protocols used both in mobile ad hoc networks (MANETs) and in cel-
lular networks. We analyze spatial Aloha schemes in terms of Poisson
shot-noise processes in Chapters 16 and 17 and carrier sense multiple
access (CSMA) schemes in terms of Matérn point processes in Chap-
ter 18. The analytical results are then used to perform various optimiza-
tions on these schemes. For instance, we determine the tuning of the
protocol parameters which maximizes the number of successful trans-
missions or the throughput per unit of space. We also determine the

9
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10 Preface to Volume II

protocol parameters for which end-to-end delays have a finite mean, etc.
Chapter 19 is focused on the Code Division Multiple Access (CDMA)
schemes with power control which are used in cellular networks. The
terminal nodes associated with a given concentration node (base sta-
tion, access point) are those located in its Voronoi cell w.r.t. the point
process of concentration nodes. For analyzing these systems, we use
both shot noise processes and tessellations. When the terminal nodes
require a fixed bit rate, and power is controlled so as to maximize the
number of terminal nodes that can be served by such a cellular net-
work, powers become functionals of the underlying point processes. We
study admission control and capacity within this context.

Part V discusses the use of stochastic geometry for the qualitative
and quantitative analysis of routing algorithms in a MANET where
the nodes are some realization of a Poisson point process (p.p.) of
the plane. In the point-to-point routing case, the main object of inter-
est is the path from some source to some destination node. In the
point-to-multipoint case, this is the tree rooted in the source node and
spanning a set of destination nodes. The motivations are multihop diffu-
sion in MANETs. We also analyze the multipoint-to-point case, which
is used for instance for concentration in wireless sensor communica-
tion networks where information has to be gathered at some central
node. These random geometric objects are made of a set of wireless
links, which have to be either simultaneously of successively feasible.
Chapter 20 is focused on optimal routing, like, e.g., shortest path and
minimal weight routing. The main tool is subadditive ergodic theory. In
Chapter 21, we analyze various types of suboptimal (greedy) geographic
routing schemes. We show how to use stochastic geometry to analyze
local functionals of the random paths/tree such as the distribution of
the length of its edges or the mean degree of its nodes. Chapter 22
bears on time–space routing. This class of routing algorithms leverages
the interaction between MAC and routing and belongs to the so called
cross-layer framework. More precisely, these algorithms take advantage
of the time and space diversity of fading variables and MAC decisions
to route packets from source to destination. Typical qualitative results
bear on the ‘convergence’ of these routing algorithms or on the fact
that the velocity of a packet on a route is positive or zero. Typical
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quantitative results are in terms of the comparison of the mean time it
takes to transport a packet from some source node to some destination
node.

Part VI is an appendix which contains a concise summary of wireless
communication principles and of the network architectures considered
in the monograph. Chapter 23 is focused on propagation issues and on
statistical channel models for fading such as Rayleigh or Rician fading.
Chapter 24 bears on detection with a special focus on the fundamental
limitations of wireless channels. As for architecture, we describe both
MANETs and cellular networks in Chapter 25. MANETs are “flat”
networks, with a single type of nodes which are at the same time trans-
mitters, receivers and relays. Examples of MAC protocols used within
this framework are described as well as multihop routing principles.
Cellular networks have two types of network elements: base stations
and users. Within this context, we discuss power control and its fea-
sibility as well as admission control. We also consider other classes of
heterogeneous networks like WiFi mesh networks, sensor networks or
combinations of WiFi and cellular networks.

Let us conclude with a few general comments on the wireless
channels and the networks to be considered throughout the volume.1

Two basic communication models are considered:

• A digital communication model, where the throughput on
a link (measured in bits per seconds) is determined by the
SINR at the receiver through a Shannon-like formula.
• A packet model, where the SINR at the receiver determines

the probability of reception (also called probability of cap-
ture) of the packet and where the throughput on a link is
measured in packets per time slot.

In most models, time is slotted and the time slot is assumed to be such
that fading is constant over a time slot (see Chapter 23 for more on the

1 For those not familiar with wireless networks, a full understanding of these comments
might require a preliminary study of Part VI
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12 Preface to Volume II

physical meaning of this assumption). There are hence at least three
time scales:

• The time scale of symbol transmissions. In this volume, this
time scale is considered small compared to the time slot, so
that many symbols are sent during one slot. At this time
scale, the additive noise is typically assumed to be a Gaus-
sian white noise and spreading techniques can be invoked to
justify the representation of the interference on each chan-
nel as a Gaussian additive white noise (see Section 24.3.3).
Shannon’s formula can then in turn be invoked to determine
the bit-rate of each channel over a given time slot in terms of
the ratio of the mean signal power to the mean interference-
and-noise power seen on the channel; the latter mean is the
sum of the variance of noise and of the variance of the Gaus-
sian representation of interference; the bit rate is an ergodic
average over the many symbols sent in one slot.
• The time scale of slots. At this time scale, only the mean

interference and noise powers for each channel and each time
slot are retained from the symbol transmission time scale.
These quantities change from a time slot to the next due
to the fact that MAC decisions and fading may change. For
example, with Aloha, the MAC decisions are resampled at
each time slot; as for fading, we consider a fast fading sce-
nario,2 where the fading between a transmitter and a receiver
changes (e.g., is resampled) from a time slot to the next (for
instance do the motion of reflectors – see Chapter 23) and a
slow fading scenario, where it remains unchanged over time
slots. At this time scale, the interference powers are hence
again random processes, fully determined by the fading sce-
nario and the MAC. As we shall see, their laws (which are not
Gaussian anymore) can be determined using the Shot-Noise
theory of Section 2 in Volume I.

2 Notice that this definition of fast fading differs from the definition used in many papers of

literature, where fast fading often means that the channel conditions fluctuate much over
a given time slot.

Full text available at: http://dx.doi.org/10.1561/1300000026



Preface to Volume II 13

• The time scale of mobility. In this monograph, this time
scale is considered large compared to time slots. In particu-
lar in the part on routing, we primarily focus on scenarios
where all nodes are static and where routes are established
on this static network. The rationale is that the time scale of
packet transmission on a route is smaller than that of node
mobility. Stated differently, we do not consider here the class
of delay tolerant networks which leverage node mobility for
the transport of packets.
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