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Abstract

We consider geometric random graphs where n points are distributed

independently on the unit interval [0,1] according to some probability

distribution function F with density function f . Two nodes commu-

nicate with each other if their distance is less than some transmission

range. For this class of random graphs, we survey results concerning

the existence of zero-one laws for graph connectivity, the type of the

zero-one law obtained under specific assumptions on the density func-

tion f , the form of its critical scaling and its dependence on f , and the

width of the corresponding phase transitions. This is motivated by the

desire to understand how node distribution affects the critical trans-

mission range as specified by the disk model. Engineering implications

are discussed for power allocation.
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1

Introduction

1.1 Modeling Wireless Communication Constraints —
The Disk Model

By now the disk model has become a commonly used framework for

modeling communication constraints in wireless networks: The setting

is that of n users (interchangeably referred to as nodes) which are

distributed over some region Γ of the plane R2.1 The nodes, labelled

1,2, . . . ,n, are placed at the random locations X1, . . . ,Xn, respectively,

in Γ. This reflects a common situation where node locations are not

available, especially when mobility is involved. A simplified pathloss

model is assumed, and there is no user interference and no fading.

Users all transmit at the same power level P , and do not exercise power

control. For distinct users i and j located at Xi and Xj , their received

power Pi,j is given by

Pi,j := P · ‖Xi −Xj‖−ν

1The model can be defined more generally on Rd with d ≥ 1; see the monograph [48]. The

literature on wireless networking focuses on the case d = 2, but many results are proved
for arbitrary d ≥ 2.

1
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2 Introduction

for some pathloss exponent ν > 0.2 Under these assumptions, the disk

model posits that nodes i and j are able to communicate with each

other if Pi,j ≥ Γ for some threshold γ > 0 (whose selection is guided by

bit error rate considerations, among others). This condition is equiva-

lent to requiring

‖Xi −Xj‖ ≤ ρ with ρ :=

(
P

γ

)1/ν

, (1.1)

and points to the transmission range ρ as a convenient proxy for the

common transmit power P used by this homogeneous population of

users.

1.2 Critical Power Levels for Network Connectivity

Given a transmission range ρ > 0, we can view the relation (1.1) as

defining a notion of adjacency amongst nodes whereby an edge exists

between nodes i and j if (1.1) holds. Let G(n;ρ) denote the resulting

undirected geometric random graph on the set of nodes 1, . . . ,n.

In this model, the presence of an edge between two nodes captures

their ability to communicate directly and reliably with each other. How-

ever, viewed as systems, networks are “greater than the sum of their

parts,” and “network connectivity” emerges from one-hop connectiv-

ity as network resources collectively enable end-to-end data transfer

between all participating nodes. It is customary to identify this desired

network connectivity with the usual notion of graph connectivity in

G(n;ρ) according to which every pair of nodes is linked by at least one

path over the edges of the graph.

A natural question consists in determining the minimum power level

needed to ensure (network) connectivity amongst the nodes located

at X1, . . . ,Xn. This quantity is given by the critical power level Pn
defined by

Pn := min(P > 0 : G(n;ρ) is connected) (1.2)

2Here ‖x‖ denotes the Euclidean norm of the vector x in R2. Other choices for the norm
have been considered in problems of computational geometry and in the general context
of geometric random graphs; see, for example, the papers [2, 12], the monograph [48] and
references therein.
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1.3 The Case of Many, Many Users 3

with parameters P and ρ related as in the second half of (1.1).

Expressed in terms of the transmission range, this amounts to con-

sidering the critical transmission range Rn defined by

Rn := min(ρ > 0 : G(n;ρ) is connected) . (1.3)

This quantity is also known as the connectivity distance [2]. The crit-

ical power level Pn and the critical transmission range Rn are simply

related by

Pn = γRνn. (1.4)

Knowledge of Pn, or equivalently Rn, has obvious engineering implica-

tions since any information concerning them should be of help in dimen-

sioning systems resources which are often scarce. This was the very

issue considered by Gupta and Kumar in [23], a paper which revived

interest in the disk model as a framework for studying wireless ad-hoc

networks.

The quantity Rn being a function of the random locations

X1, . . . ,Xn, it is of limited operational use since node locations are

neither available, nor should their knowledge be expected, especially

in the presence of node mobility. Moreover, its probability distribution

function

P (n;ρ) = P [Rn ≤ ρ] , ρ ≥ 0

is usually not known in closed form. To the best of our knowledge,

the only possible exception is to be found in the one-dimensional case

under independent and identically distributed (i.i.d.) uniform node

placement; see the discussion in Section 3.1. Even there, the available

expression yields no insights on the distributional behavior of Rn.

1.3 The Case of Many, Many Users

Fortunately a case can be made that efficient power allocation matters

only when dealing with a very large number of users. After all this

is a regime where the problem assumes added relevance (as well as

some urgency) since energy resources are always painfully finite. In that

asymptotic regime it is hoped that limiting results would be available,

Full text available at: http://dx.doi.org/10.1561/1300000029



4 Introduction

leading to a reasonably good approximation to Rn by a non-random

and easily computable quantity ρ?n, say

Rn ' ρ?n with very high probability. (1.5)

A possible formalization of this idea is provided by the convergence (in

probability)3

Rn
ρ?n

P→ n 1. (1.6)

Such a result immediately suggests a similar approximation to the

critical power level Pn by means of the non-random quantity π?n
given by

π?n = γ (ρ?n)ν .

Since the critical transmission range and the critical power level are

quantities recoverable from each other, from now on we shall focus

exclusively on the former.

As we shall see shortly, developments such as (1.5)–(1.6) are indeed

possible under appropriate assumptions. The relevant results have been

obtained from several complementary viewpoints which can be recon-

ciled upon noting that G(n;ρ) is connected if and only if Rn ≤ ρ, so

that

P [G(n;ρ) is connected] = P (n;ρ), ρ > 0. (1.7)

The validity of (1.5)–(1.6) is then seen to be equivalent4 to the zero-one

law

lim
n→∞

P (n;ρn) = 0 if ρn “(much) smaller than” ρ?n

and

lim
n→∞

P (n;ρn) = 1 if ρn “(much) larger than” ρ?n.

The approximation ρ?n to the critical transmission range Rn acts as a

boundary in the space of scalings, and is often referred to as a critical

scaling.

3See later in the chapter for the notation and conventions used.
4See Proposition 2.1.
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1.4 Zero-one Laws 5

1.4 Zero-one Laws

In the many node regime there are settings where good approximations

to Rn can indeed be derived in terms of a non-random quantity ρ?n
which is explicitly computable. For instance, consider the standard case

when the random locations X1, . . . ,Xn are mutually independent and

uniformly distributed over a closed bounded region Γ of the plane. This

is the setting most commonly used when discussing the disk model. If

the transmission range is scaled with the number of users according to

πρ2
n =

logn + αn
n

, n = 1,2, . . . (1.8)

for some sequence α : N0→ R, then the zero-one law

lim
n→∞

P (n;ρn) =

{
0 if limn→∞αn = −∞
1 if limn→∞αn =∞

(1.9)

is known to hold. This result was obtained independently by Gupta

and Kumar [23], and by Penrose [48] (and references therein).

When the scaling ρ : N0→ R+ is selected so that

πρ2
n ∼ c

logn

n
(1.10)

for some c > 0, the zero-one law (1.8)–(1.9) (applied with αn ∼ (c −
1) logn) readily implies

lim
n→∞

P (n;ρn) =

{
0 if 0 < c < 1

1 if 1 < c.
(1.11)

Both zero-one laws (1.8)–(1.9) and (1.10)–(1.11) suggest a central

role for the scaling ρ? : N0→ R+ determined by

πρ?2n =
logn

n
, n = 1,2, . . . (1.12)

This scaling is indeed the critical scaling in this case, and with this

choice, the zero-one law (1.10)–(1.11) is equivalent to (1.6).

1.5 Sensitivity to Statistical Assumptions

Given these results, a natural question arises as to their dependence

on, and therefore sensitivity to, the statistical assumptions enforced on

Full text available at: http://dx.doi.org/10.1561/1300000029



6 Introduction

the node locations. For instance, if one accepts that nodes are indeed

placed in an i.i.d. manner across Γ,5 there is however no good reason

to believe that they should be placed uniformly over this region. A

typical example where this assumption will be challenged occurs when

nodes are mobile, say according to the random waypoint mobility model

[17, 52, 53]. Under these circumstances, do zero-one laws still hold and

if so, in what form and under what assumptions?

In [47] Penrose partially addressed this issue; see also [46]: There

the locations X1, . . . ,Xn were assumed i.i.d. rvs distributed over the

domain Γ in R2 according to some probability distribution F with

density function f . Under mild assumptions of continuity on f and

smoothness on Γ, Penrose showed [47, Thm. 1.1, p. 247]6 that (1.11)

still holds if the scaling ρ : N0→ R+ satisfies

πρ2
n ∼ c

1

M(F )
· logn

n
(1.13)

for some c > 0, with the constant M(F ) determined by the minima of

f on Γ and on its boundary. The critical scaling ρ? : N0→ R+ is now

determined through

πρ?2n =
1

M(F )
· logn

n
, n = 1,2, . . . (1.14)

and provides a non-random approximation to the critical transmission

range.

There remains open the question as to what is the analog of the zero-

one law (1.8)–(1.9) under non-uniform node placement distributions,

or what happens when M(F ) = 0 (since (1.14) is now meaningless).

Interest in these questions stems from the fact that such zero-one laws

express (extreme) sensitivity to deviations from the critical scaling, and

suggest the presence of (sharp) phase transitions with potential implica-

tions for power allocation. Yet, to the best of our knowledge, no results

5The independence assumption between users fails to hold in a number of practical scenar-

ios, for example, in the presence of group mobility. Recently, La and Seo [39] have dispensed
with the i.i.d. assumption in simple one-dimensional situations with group mobility. For

these networks, a more intricate picture emerges and points to the subtle impact that cor-

relations between node locations can have on the nature of the results. The heterogeneous
case, still under the independence assumption, is considered by La in [38].

6Penrose already considered the d-dimensional case with d ≥ 2.
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1.6 Enter One-dimensional Networks 7

have been reported on analogs of (1.8)–(1.9) in the non-uniform set-

ting in dimension two and higher. If the analysis in [47] provides already

any indication, establishing such analogs will be technically involved,

possibly requiring additional assumptions on the density function f .7

Furthermore, the case M(F ) = 0 has not received any attention in the

higher-dimensional setting.

1.6 Enter One-dimensional Networks

In this volume we turn to the one-dimensional setting where n points

are distributed independently on the (generic) unit interval [0,1]

according to some probability distribution function F with probability

density function f . Thus, we are interested in understanding how the

underlying distribution F affects connectivity in the induced geometric

random graphs. In particular, under various assumptions on the den-

sity function f , we discuss (i) the existence of zero-one laws for graph

connectivity, (ii) the type of the zero-one law obtained under the spe-

cific assumptions made, and (iii) the form of the corresponding critical

scaling (when available). Ultimately, such results should help gener-

ate approximations to the critical transmission range by means of an

appropriate critical scaling.

A basic reason for considering one-dimensional networks lies in the

fact that geometry in one dimension is much simpler than in higher

dimensions, holding up the promise that many of the alluded technical

difficulties will not be present. One-dimensional models are arguably

the least geometric in nature. They indeed occupy a somewhat singu-

lar place in the literature on geometric random graphs [48, p. 283] as

reflected by the continuing attention given to one-dimensional random

graphs in several research communities with various (non-geometric)

perspectives.

Already in the uniform case, several complementary approaches are

available: The monograph by Godehardt [19] deals with applications

to cluster analysis, and the exhaustive study in [20] provides a direct

combinatorial analysis of many results of interest. Appel and Russo

7As discussed in Chapter 8, the appropriate version of (1.8)–(1.9) in one dimension does
require additional structural assumptions on the density function f .
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8 Introduction

[2, p. 352] leverage the connection with maximal spacings, Han and

Makowski [30] derive zero-one laws by applying the method of first and

second moments to the number of breakpoint users, while Muthukrish-

nan and Pandurangan [44] make use of bin-covering techniques.

As a result of these and related efforts, many questions concerning

graph connectivity have by now been given answers in various forms

of completeness, in both the uniform and non-uniform cases. Results

have sometimes been obtained independently by several authors, are

scattered in multiple literatures and are not always couched in graph-

theoretic terms. With this in mind we provide here a unified presenta-

tion of these results, both old and new, in their sharpest form known

to us. Before providing highlights of the discussion in Section 1.7, we

close with additional reasons for considering the one-dimensional case:

A complete set of results A fairly complete picture of zero-one

laws is now available in the one-dimensional setting, even under non-

uniform node placement. For the most part, this can be traced back to

the fact that connectivity in such random graphs can be expressed in

terms of the maximal spacings associated with the i.i.d. node locations.

Much is known about the asymptotic properties of these quantities,

eliminating many of the technical difficulties associated with higher-

dimensional geometry, see, for example, [46, 47, 48] vs. [26, 30, 31].

Transfer to higher dimensions Thus far, whenever a one-

dimensional result is known to have a higher-dimensional counterpart,

they are structurally similar, for example, (1.8)–(1.9) vs. Theorem 3.4,

or (1.13) vs. Theorem 7.2. We expect that this similarity will continue to

hold when a one-dimensional result has no known (as of yet) analog in

higher dimensions. For instance, consider the very strong zero-one law

of Theorem 8.1; hopefully this easier-to-prove one-dimensional result

might suggest the appropriate version in higher dimensions, possibly

by formal transfer.

One-dimensional modeling One-dimensional random networks

may be deemed less physically relevant than their two-dimensional

counterparts. However, they are of interest in their own right as simple

Full text available at: http://dx.doi.org/10.1561/1300000029



1.7 Lessons Learned from the Lonely Dimension 9

models of wireless ad-hoc networks constrained over “linear” highways.

They have been discussed in that context by a number of authors

mostly under uniform node placement, see, for example, [11, 16, 17,

18, 20, 22, 26, 28, 30, 43, 44, 52, 53, 54] (and references therein).

1.7 Lessons Learned from the Lonely Dimension

As we discuss graph connectivity in one-dimensional networks under

the i.i.d. node placement assumption, we will be putting the emphasis

on the non-uniform case. A single unifying framework is developed to

present available results, some classical and some recently obtained by

the authors. Two complementary viewpoints are used, each based on

a different characterization of graph connectivity: The first approach,

already mentioned earlier, relies on asymptotic properties of the maxi-

mal spacings induced by i.i.d. variates on the unit interval. This natu-

rally gives rise to the notions of weak, strong, and very strong zero-one

laws, and attending critical thresholds; this classification is at the heart

of some of our conclusions. The second approach, developed mostly in

the references [26, 30, 33], exploits the asymptotics for the counts of

breakpoint nodes in the graph. A large portion of this work was devel-

oped in Han’s Ph.D. thesis [25]. Many of the results by the authors were

reported in the conference papers [27, 28, 29], and in the journal papers

[30, 31, 33]. This monograph expands on the earlier survey paper [32].

The non-vanishing case As we shall see shortly, a key role is played

by the minimumm f? of f . In the non-vanishing case (that is, f? > 0),

a version of (1.11) is shown to hold with (1.13): The critical scaling

ρ?F : N0→ R+ depends on the inverse of f? through

ρ?F,n =
1

f?
· logn

n
, n = 1,2, . . . (1.15)

Note the similarity with (1.13). When nodes are uniformly placed on

the unit interval, then f? = 1 and the critical scaling ρ?U : N0→ R+

reduces to

ρ?U,n =
logn

n
, n = 1,2, . . . (1.16)

The appropriate version of (1.8)–(1.9) is given in Theorem 8.1.

Full text available at: http://dx.doi.org/10.1561/1300000029



10 Introduction

Estimating f? might be an issue The value of f? is typically not

known to the users (and to the network operator, if any present), and

there seems to be little operational reason for them to have this knowl-

edge (especially when nodes are mobile). Since f? is the minimum of a

density function, estimating it will be fraught with difficulties akin to

those encountered in the estimation of probabilities of rare events. This

is especially so when f? is very small. In particular, the unavailability

of data sets large enough could lead to poor estimates.

Only weak laws are operationally relevant In light of this dif-

ficulty, when f? > 0 it is therefore not practically feasible to rely on

strong/very strong critical scalings for determining effective power allo-

cations. From a practical viewpoint, we are left only with weak zero-one

laws as we note that the scaling ρ?U is a weak critical scaling, a robust,

albeit weak, conclusion which holds across all distributions F satisfying

(2.7). Ultimately this leads one to use power allocations that are far

more conservative as we take transmission range which are orders of

magnitude larger than logn
n .

This conservative approach is unavoidable when the density func-

tion f vanishes at isolated points (that is, f? = 0). As shown on an

example [29],8 a weak zero-one law is nevertheless available in a form

much weaker than either (1.8)–(1.9) or (1.11) with (1.13). In particular,

the appropriate notion of critical scaling does not have the functional

form Θ( logn
n ) any more. In sum, critical scalings are very sensitive to

whether f? > 0 or f? = 0, and only weak zero-one laws can be leveraged

in any practical sense.

Robustness and phase transitions Within the confines of the

one-dimensional disk model, critical scalings provide a baseline for

determining power allocations that support connectivity. In many situ-

ations when f? > 0, sharp phase transitions are shown to exist, and

this is certainly theoretically pleasing from a mathematical stand-

point. Unfortunately, sharp phase transitions express strong sensitivity

through very strong zero-one laws. As a result, small deviations from

8See Chapter 10.
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the critical scaling can easily lead to power allocations under which

the network fails to be connected a.s. in the many node limit. Such

deviations can be created unwittingly if the estimates used for the

parameters defining the critical scaling are poor, as is likely to be the

case in practice for reasons discussed earlier.

Large scale wireless ad-hoc networks are expected to be deployed

under very diverse environmental conditions, resulting in large varia-

tions in critical system parameters. Sound engineering practice requires

that performance should not heavily depend on parameters which are

either unrealistic to estimate or hard to obtain. In all cases consid-

ered here, either with f? > 0 or f? = 0, the mandate for connectivity

leads to overprovisioning by orders of magnitude above the (minimal)

power allocations in the range Θ( logn
n ). These issues hold irrespectively

of the dimension of the disk model being used. The one-dimensional

model, through the present survey, helps make the case. The higher-

dimensional case is technically more involved and is not completely

understood as of this writing. We hope that the discussion given here

will stimulate work along these lines. The journey goes on!

1.8 A Roadmap

To help the reader navigate this monograph, we provide a roadmap to

its various chapters. Usually, proofs of results are relegated at the end

of the chapter where they appear; sometimes they have been collected

in separate chapters. These technical arguments can be omitted in a

first reading.

Chapter 2: We introduce the one-dimensional model together with

various assumptions on the underlying node location distribution F

through its probability density function f . Connectivity is related to

the maximal spacings associated with i.i.d. variates on the unit interval.

The notions of weak and strong zero-one laws (for connectivity) are pre-

sented, and given simple characterizations in terms of the asymptotics

of these maximal spacings.

Chapter 3: When F is the uniform distribution on [0,1], the key

results are derived from classical results for maximal spacings due

to Lévy [40]. The notion of a very strong zero-one law emerges as a
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by-product of a double-exponential result similar to the one available

for Erdős–Renyi graphs. This leads very naturally to an estimate for

the width of the associated phase transition.

Chapter 4: We revisit the results of Chapter 3 by relating graph

connectivity to the number of breakpoint nodes in the graph. The very

strong zero-one law is derived this time by making use of the method

of first and second moments applied to this count. We also recover

the double-exponential result mentioned earlier by showing a Poisson

convergence result for the number of breakpoints under an appropriate

scaling. This turns out to be an easy application of the Stein-Chen

method for constructing Poisson approximations [5].

Chapter 5: Most proofs of the results discussed in Chapter 4 are

given here.

Chapter 6: We summarize the key ideas which underly many of

the results presented here under non-uniform node placement. In par-

ticular, we show that the maximal spacings under a non-uniform prob-

ability distribution F can be expressed in terms of the order statistics

for independent and uniformly distributed variates.

Chapter 7: Using the ideas discussed in Chapter 6 we establish a

strong zero-one law when f? > 0. This is the one-dimensional analog

of (1.11) with (1.13). To do this, we rely on the characterizations of

graph connectivity from Chapter 2 in terms of maximal spacings. This

leads to generalizing a standard result of Lévy [40] to a broad class of

non-uniform distributions [31].

Chapter 8: The results concerning very strong zero-one laws are

discussed when f? > 0. We give conditions on f to ensure the validity

of the one-dimensional analog of (1.10)–(1.11), and the original proof

is outlined in Chapter 9. We also provide a second, and much shorter,

proof using a result of Barbe [3] concerning the asymptotics of maximal

spacings under a non-uniform probability distribution F . This stronger

result also leads to an estimate of the width of the phase transition.

Chapter 9: We outline a proof of the very strong zero-one laws

when f? > 0 along the lines originally given in [33]. The approach is

based on counting breakpoint nodes as was done in Chapter 4 for the

uniform case. This is accomplished by developing a more involved vari-

ant of the method of first and second moments.
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Chapter 10: We discuss an instance when the probability density

function f vanishes at an isolated point on the interval [0,1]. Only a

weak zero-one law is shown to exist, and its critical scaling is identified.

1.9 Notation and Conventions

Throughout, R and R+ will stand for the set of real numbers, and for

the set of non-negative numbers, respectively. We use N to denote the

set of non-negative integers {0,1,2, . . .} and the symbol N0 is reserved

for the set of positive integers {1,2, . . .}.
All statements involving limits, including asymptotic equivalences,

are always understood with n going to infinity.

Almost everywhere is abbreviated as a.e., and all such statements

are made with respect to Lebesgue measure λ on the unit interval [0,1].

The random variables (rvs) under consideration are all defined on

the same probability triple (Ω,F ,P). All probabilistic statements are

made with respect to this probability measure P, and we denote the cor-

responding expectation operator by E. Thus, almost sure(ly) (under P)

is abbreviated as a.s.. The notation
P→ n (resp. =⇒n) is used to signify

convergence in probability (resp. convergence in distribution) with n

going to infinity. Also, we use the notation =st to indicate distribu-

tional equality.

The indicator function of an event E is simply denoted by 1 [E],

and we let |S| denote the cardinality of any discrete set S.
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