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Abstract

Wireless Underground Sensor Networks (WUSNs) are the networks

of wireless sensors that operate in the underground soil medium. In

this monograph, to realize reliable and efficient WUSNs, two enabling

techniques are developed to address the challenges brought by the

underground soil medium, including the EM wave-based WUSNs

and the MI-based WUSNs. For EM wave-based WUSNs, the het-

erogeneous network architecture and dynamic connectivity are inves-

tigated based on a comprehensive channel model in soil medium.

Then a spatio-temporal correlation-based data collection scheme is

developed to reduce the sensor density while keeping high monitor-

ing accuracy. For MI-based WUSNs, the MI channel is first analyt-

ically characterized. Then based on the MI channel model, the MI

waveguide technique is developed in order to enlarge the underground
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transmission range. After that, the optimal deployment algorithms for

MI waveguides in WUSNs are analyzed to construct the WUSNs with

high reliability and low costs. Finally, the mathematical models are

developed to evaluate the channel and network capacities of MI-based

WUSNs. This monograph provides principles and guidelines for WUSN

designs.
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1

Introduction

Wireless Underground Sensor Networks (WUSNs) [1] are the networks

of wireless sensor nodes operating below the ground surface. As a nat-

ural extension to the well-established wireless sensor networks (WSNs)

[2] paradigm, WUSNs are envisioned to provide real-time monitor-

ing capabilities in the underground soil environments. In WUSNs, the

networks of wireless nodes are buried underground and communicate

through soil. A wide variety of novel and important applications can be

enabled by WUSNs [1, 63, 64], such as intelligent agriculture, under-

ground pipeline monitoring, border patrol, mine disaster prevention

and rescue, among others. Compared with existing underground mon-

itoring strategies, WUSNs have the advantages in timeliness of data,

ease of deployment and data collection, concealment, reliability, and

coverage density [1].

1.1 Design Challenges

Despite the potential advantages of WUSNs, the underground soil

environment is a hostile place for wireless communications and

requires existing networking solutions and communication protocols for

terrestrial WSNs be reexamined. The objective of this monograph is to

1
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2 Introduction

analyze the unique characteristics of the WUSNs in the underground

soil environments and to find out the solutions to realize the reliable

and efficient communication in WUSNs. The key difference between

the WUSNs and the terrestrial WSNs is the communication medium.

To realize wireless communications in such medium, there are mainly

three possible signal propagation techniques [1]: (1) the electromagnetic

(EM) wave-based technique, (2) the magnetic induction (MI)-based

technique, and the (3) the seismic wave-based technique.

• Well established in the terrestrial WSNs, the EM wave-

based technique still works in underground soil medium.

However, since the propagation medium is no longer air but

soil, rock and water, the unique channel characteristics of

EM waves in soil environments needs to be modeled [3]. The

communication and networking solutions under the impacts

of the unique soil channel characteristics also need to be

investigated.
• Besides the EM waves, the MI-based technique can also

be used for wireless communications in soil medium since it

is not affected by the dense soil medium with high mate-

rial absorptions [59]. However, the signal strength of the MI-

based signal attenuate very fast as the transmission distance

increases. The effective solutions to enlarge the MI transmis-

sion range need to be developed. The corresponding higher

layers of the protocol stack also need to be designed.
• Although the seismic wave-based technique is identified as

an effective communication solution for blind subterranean

mammal [41], it is not suitable for the WUSNs due to two

reasons: (1) The operating frequency of the seismic wave-

based system is very low, which results in extremely narrow

bandwidth and low data rate. Such low data rate cannot

meet the requirement of most digital communication sys-

tems. For example, the system in [28] utilizes an 80 Hz

carrier, and has only 3–5 Hz of bandwidth. (2) The trans-

ducer requires a large amount of energy to generate the

seismic waves that can carry the digital signals [1]. Since it is
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1.2 EM Wave-based WUSNs vs Magnetic Induction-based WUSNs 3

almost impossible to change the batteries of the underground

sensor nodes after the deployment, the system lifetime of the

seismic wave-based system is unacceptable short in under-

ground soil environments.

1.2 EM Wave-based WUSNs vs Magnetic
Induction-based WUSNs

According to the above discussion, both the EM wave-based technique

and MI-based technique have the potential to realize the wireless com-

munications in underground soil medium. Therefore, based on these

two signal propagation techniques, we develop two enabling techniques

to overcome the unique challenges brought by the soil transmission

medium, including the EM wave-based WUSNs and the MI-based

WUSNs.

The two types of WUSNs have unique advantages in different under-

ground applications: if the underground sensor nodes are buried in a

shallow depth (such as border patrol), the EM solution can be used

since the underground-to-aboveground channels that have large com-

munication range can be utilized. If the underground sensor nodes are

deployed in deep underground environments (such as pipeline moni-

toring) or no aboveground devices are allowed, the MI solution has

advantages in the pure underground-to-underground channel.

1.2.1 EM Wave-based WUSNs

In soil medium, the well established wireless communication techniques

using EM waves do not work well [3]. First, EM waves experience

high levels of attenuation due to the absorption by soil, rock, and

water in the soil medium. Since the underground sensor devices have

limited radio power due to the energy constraint, the transmission

range between two sensor nodes is extremely small (no more than

4 m). Second, the path loss of the EM waves in soil medium is highly

dependent on numerous soil properties such as water content, soil

makeup (sand, silt, or clay), and density. Those soil properties can

change dramatically with time (e.g., soil water content increases after

a rainfall) and location (e.g., soil properties change dramatically over
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4 Introduction

short distances). Consequently, the transmission range of the under-

ground sensors also varies dramatically in different times and positions.

Besides the communication channel between underground sensors,

the channels between underground (UG) sensor nodes and above-

ground (AG) data sinks also needs to be analyzed. Hence, three types

of channels exist in WUSNs in soil medium, including: underground-

to-underground (UG–UG) channel, underground-to-aboveground

(UG–AG) channel, and aboveground-to-underground (AG–UG) chan-

nel. For the UG–AG channel, the transmission range is much longer

than the UG–UG channel [9, 49, 50, 68]. This is because a large portion

of the radiation energy can penetrate the air–ground interface from the

soil to the air, and the path loss in the air is much smaller than that

in the soil. For the AG–UG channel, the transmission range is much

smaller than the UG–AG channel since most of the radiation energy is

reflected back when penetrating the air–ground interface from the air

to the soil. Similar to the UG–UG channel, the transmission ranges of

the UG–AG and AG–UG channels are also dramatically influenced by

many environmental conditions and system configurations, including

soil water content, soil composition, UG sensor burial depth, AG sink

antenna height, and signal operating frequency [1, 3, 35, 49, 50].

The complex characteristics of the UG–UG, UG–AG, and AG–UG

channels create unique challenges in the design of WUSNs in soil

medium. First, in the envisioned applications of WUSNs in soil medium,

the underground sensor nodes are expected to transmit sensing data to

one or multiple aboveground data sinks via single or multi-hop paths.

Hence, the connectivity in WUSNs is essential for the system function-

alities. Because of the complex channel characteristics, the connectivity

analysis in the WUSNs is much more complicated than in the terrestrial

wireless sensor networks and ad hoc networks. Moreover, the number

of underground sensors is expected to be as small as possible due to

the high deployment/maintenance cost. However, an extremely high

density of underground sensors is required to maintain the full connec-

tivity of WUSNs due to the harsh underground channel conditions. This

conflict constitutes one of the greatest challenges to deploy the WUSNs.

In this research, we first quantitatively model the channel charac-

teristics of the three types of channels of WUSNs in soil medium. Based
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1.2 EM Wave-based WUSNs vs Magnetic Induction-based WUSNs 5

on the channel model, we propose a heterogeneous network architecture

and analyze the dynamic connectivity of such network that captures the

influence of multiple system and environmental parameters. Moreover,

we introduce aboveground mobile sinks to WUSNs and developed a

spatio-temporal correlation-based data collection scheme, which signif-

icantly reduces the sensor density while keeping high monitoring accu-

racy. Finally, we propose a theoretical method to determine the optimal

sensor density under the proposed scheme, which provides principles

and guidelines for the design and deployment of WUSNs.

1.2.2 MI-based WUSNs

As discussed previously, the EM wave-based techniques encounter

two major problems in soil medium: the high path loss and the

dynamic channel condition. If the sensors of WUSNs are buried in

the shallow depth, sensor can communicate with the aboveground data

sinks directly using EM waves since the UG–AG channel has relatively

large communication range. However, many WUSN applications, such

as underground structure monitoring, require the sensors buried deep

underground, where only UG–UG channel is available.

MI is a promising alternative physical layer technique for WUSNs

in deep burial depth. Since the magnetic permeabilities of the under-

ground medium such as soil and water are similar to that of the air,

the attenuation rate of magnetic fields in underground soil medium is

very close to the rate in terrestrial environments [1]. This fact guaran-

tees that the MI channel conditions remain constant for a certain path

in different times. However, MI is generally unfavorable for terrestrial

wireless communication, since the magnetic field strength falls off much

faster than the EM waves in terrestrial environments. In soil medium,

although it is known that the soil absorption causes high signal atten-

uation in the EM waves systems but does not affect the MI systems, it

needs to be analyzed whether the total path loss of the MI system is

lower than that of the EM waves system or not.

In this research, we conduct detailed analysis on the path loss and

the bandwidth of the MI system in underground soil medium. Based on

the channel analysis, we develop the MI waveguide technique in order

Full text available at: http://dx.doi.org/10.1561/1300000034



6 Introduction

to reduce the high path loss of the traditional EM wave system and the

ordinary MI system. By utilizing the passive relay coils, the MI waveg-

uide system dramatically increases the transmission range of under-

ground sensors in soil medium. Moreover, we analyze the deployment

strategies of MI waveguides in WUSNs. We develop optimal deploy-

ment algorithms to use the MI relay coils to connect the underground

sensors. The proposed algorithm provides strategies to deploy MI-based

WUSNs with high reliability and low costs. Finally, we theoretically

investigated the channel capacity, network capacity, and the reliability

of the new developed MI-based networks. Compared to the traditional

wireless networks, both the channel and network capacities of MI-based

WUSNs have significant different characteristics due to the completely

different signal propagation techniques and network geometric struc-

ture. Moreover, the usage of multiple resonant MI relay coils in MI-

based WUSNs brings more reliability concerns. The analysis results

provide principles and guidelines for the MI-based WUSN design.

1.3 Organization

This monograph is organized as follows. In Section 2, an overview of

potential applications for WUSNs is provided. In Section 3, the EM

wave-based WUSNs are developed. In particular, the models of the

three types of channels, i.e., UG–UG channel, UG–AG channel, and

AG–UG channel, are first developed. Then based on the channel model,

the network architecture and the dynamic connectivity in EM wave-

based WUSNs in soil are investigated. At the end of this section, a

spatio-temporal correlation-based data collection scheme is developed

for WUSNs in soil medium. In Section 4, the MI-based WUSNs in soil

medium are introduced. Specifically, the MI channel model for WUSNs

in soil medium is first provided. Then, the MI waveguides are developed

to significantly enlarge the UG–UG communication range. After that,

the optimal deployment algorithms for MI waveguide are presented.

At the end of this section, mathematical models are developed to eval-

uate the channel capacity, network capacity, and the reliability of MI-

based WUSNs. Finally, Section 5 summarizes the research contributions

and identifies several future research directions.
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