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Abstract

A wide variety of resource management problems of recent inter-

est, including power/rate control, link scheduling, cross-layer control,

network utility maximization, beamformer design of multiple-input

multiple-output networks, and many others are directly or indirectly

reliant on the weighted sum-rate maximization (WSRMax) problem.

In general, this problem is very difficult to solve and is NP-hard. In

this review, we provide a cohesive discussion of the existing solution
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methods associated with the WSRMax problem, including global, fast

local, as well as decentralized methods. We also discuss in depth the

applications of general optimization techniques, such as branch and

bound methods, homotopy methods, complementary geometric pro-

gramming, primal decomposition methods, subgradient methods, and

sequential approximation strategies, in order to develop algorithms

for the WSRMax problem. We show, through a number of numerical

examples, the applicability of these algorithms in various application

domains.
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1

Introduction

Consider a general wireless network with L interfering links. The

achievable rate of each link is a scalar function and is denoted by rl.

Then the general weighted sum-rate maximization (WSRMax) problem

has the form:

maximize
∑L

l=1βlrl(y)

subject to y ∈ Y.
(1.1)

Here y = (y1, . . . ,yn) is the optimization variable of the problem, pos-

itive scalar βl is the weight associated with link l, and the (possibly

nonconvex) set Y is the feasible set of the problem. In general, rl is not

convex in y. Therefore, problem (1.1) is surprisingly difficult to solve,

though it appears to be very simple.

In this section, we first provide a discussion that emphasizes the

importance of WSRMax problem (1.1) in wireless networks. Next we

discuss the importance of global, fast local, as well as distributed solu-

tion methods for WSRMax problem. Finally, the existing key literature

that address the problem is presented. Applications of optimization

techniques for developing algorithms for the problem will be covered in

later sections, with more technical detail.

1
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2 Introduction

1.1 Motivation

Among various resource management policies, the WSRMax for

an arbitrary set of interfering links plays a central role in many

network control and optimization methods. For example, the prob-

lem is encountered in network utility maximization (NUM) [88], the

resource allocation (RA) subproblem in various cross-layer control poli-

cies [43, 81], MaxWeight link scheduling in multihop wireless net-

works [120], power/rate allocation in wireless networks, as well as in

wireline networks [115, 124], joint optimization of transmit beamform-

ing patterns, transmit powers, and link activations in multiple-input

multiple-output (MIMO) networks [34], and finding achievable rate

regions of singlecast/multicast wireless networks [87], among others.

1.1.1 Network Utility Maximization (NUM)

In the late nineties, Kelly et al. [59, 60] introduced the concept of NUM

for fairness control in wireline networks. It was shown therein that

maximizing the sum-rate under the fairness constraint is equivalent

to maximizing certain network utility functions and different network

utility functions can be mapped to different fairness criteria. For a

useful discussion of many aspects of the NUM concept in the case of

wireless network, see [88] and the references therein. In this context,

the WSRMax problem appears as a part of the Lagrange dual problem

of the overall NUM problem; see [89] and the references therein.

1.1.2 Cross-layer Control Policies for Wireless Networks

For useful discussions of cross-layer control policies, see [40, 43, 68, 71,

81, 90, 142] and the references therein. Many of these policies are essen-

tially identical. It has been shown that an optimal cross-layer control

policy, which achieves data rates arbitrarily close to the optimal oper-

ating point, can be decomposed into three subproblems that are nor-

mally associated with different network layers. Specifically, flow control

resides at the transport layer, routing and in-node scheduling1 resides

1 in-node scheduling refers to selecting the appropriate commodity and it is not to be con-

fused with the links scheduling mechanism which is handled by the resource allocation

subproblem [43].
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1.1 Motivation 3

at the network layer, and resource allocation (or RA) is usually associ-

ated with the medium access control and physical layers [43]. The first

two subproblems are convex optimization problems and can be solved

relatively easily. It turns out that under reasonably mild assumptions,

the RA subproblem can be cast as a general WSRMax problem over

the instantaneous achievable rate region [43]. The weights of the links

are given by the differential backlogs and the policy resembles the well-

known backpressure algorithm introduced by Tassiulas and Ephremides

in [120, 121] and further extended by Neely to dynamic networks with

power control; see [81] and the references therein.

1.1.3 MaxWeight Link Scheduling for Wireless Networks

Maximum weighted link scheduling for wireless networks [41, 68, 105,

120, 121, 138] is a place, in which the problem of WSRMax is directly

used. Note that, for networks with fixed link capacities, the maximum

weighted link scheduling problem reduces to the classical maximum

weighted matching problem and can be solved in polynomial time [68].

However, no solution is known for the general case when the link rates

depend on the power allocation of all other links.

1.1.4 Power/rate Control Policies

We see sometimes that the WSRMax problem is directly used as

the basis for the power/rate control policy in wireless, as well as in

wireline networks [115, 124]. For example, in DSL networks, there

is considerable research on resource management policies, which rely

directly on the WSRMax problem for multiuser spectrum balanc-

ing [3, 27, 28, 39, 74, 94, 97, 127, 128, 129, 139, 140]. Direct application

of WSRMax as an optimization criterion can also been seen exten-

sively in joint power control and subcarrier assignment algorithms for

OFDMA networks [7, 50, 54, 67, 104, 106, 145].

1.1.5 Resource Management in MIMO Networks

There are also a number of resource management algorithms in mul-

tiuser MIMO networks, which rely on the problem of WSRMax. For

example, the methods proposed in [34, 35, 111, 122] rely on WSRMax
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4 Introduction

for joint design of linear transmit and receive beamformers. In addition,

many references have applied WSRMax directly as an optimization cri-

terion for beamformer design in MIMO networks, e.g., [45, 151].

1.1.6 Finding Achievable Rate Regions in Wireless
Networks

In multiuser systems many users share the same network resources, for

example, time, frequency, codes, space, etc. Thus, there is naturally a

tradeoff between the achievable rates of the users. In other words, one

may require to reduce its rate if another user wants a higher rate. In

such multiuser systems, the achievable rate regions are important since

they characterize the tradeoff achievable by any resource management

policy [124]. By invoking a time sharing argument, one can always

assume that the rate region is convex [124]. Therefore, any boundary

point of the rate region can be obtained by using the solution of a

WSRMax problem for some weights.

Thus, WSRMax is a central component in many network design

problems as we discussed above. Unfortunately, the general WSRMax

problem is not yet amendable to a convex formulation [76]. In fact,

it is NP-hard [75]. Therefore, we must rely on global optimization

approaches [5, 52] for computing an exact solution of the WSRMax

problem. Such global solution methods are increasingly important

because they can be used to provide performance benchmarks by

back-substituting them into any network design method, which relies

on WSRMax. They are also very useful for evaluating the perfor-

mance loss encountered by any heuristic algorithm for the WSRMax

problem.

Although global methods find the solution of the WSRMax problem,

they are typically slow. Even small problems, with a few tens of

variables, can take a very long time to solve WSRMax. Therefore, it is

natural to seek suboptimal algorithms for WSRMax that are efficient

enough, and still close to optimal; the compromise is optimality [22].

Such algorithms are of central importance since they can be fast

and widely applicable in large-scale network control and optimization

methods.
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1.2 Global Methods for WSRMax in Wireless Networks 5

Due to the explosion of problem size and the signal overhead

required in centralized network control and optimization methods, it is

highly desirable to develop decentralized variants of those algorithms.

Therefore, finding distributed methods for the WSRMax problem is of

crucial importance from a theoretical, as well as from a practical per-

spective for decentralized implementation of many network control and

optimization methods, such as those investigated in [81, 120].

1.2 Global Methods for WSRMax in Wireless Networks

The general WSRMax problem is NP-hard [75]. It is therefore natural

to rely on global optimization approaches [5, 52] for computing an exact

solution. One straightforward approach is based on exhaustive search

in the variable space [28]. The main disadvantage of this approach

is the prohibitively expensive computational complexity, even in the

case of very small problems. A better approach is to apply branch

and bound techniques [52], which essentially implement the exhaustive

search in an intelligent manner; see [3, 39, 57, 97, 129, 135, 139]. Branch

and bound methods based on difference of convex functions (DC) pro-

gramming [52] have been proposed in [3, 39, 139] to solve (a subclass

of) WSRMax. Although DC programming is the core of their algo-

rithms, it also limits the generality of their method to the problems in

which the objective function cannot easily be expressed as a DC [52].

For example, in the case of multicast wireless networks, expressing the

objective function as a DC cannot be easily accomplished, even when

Shannon’s formula is used to express the achievable link rates. Another

branch and bound method has been used in [129] in the context of

DSL bit loading, where the search space is discretized in advance. As

a result of discretization, this method does not allow a complete con-

trol of the accuracy of the solution. An alternative optimal method

was proposed in [97], where the WSRMax problem is cast as a gener-

alized linear fractional program [96] and solved via a polyblock algo-

rithm [48]. The method works well for small scale problems, but as

pointed out in [5, chap. 2, pp. 40–41] and [96, sec. 6.3], it may show

much slower convergence than branch and bound methods as the prob-

lem size increases. A special form of the WSRMax problem is presented
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6 Introduction

in [23, p. 78] [128], where the problem data and the constraints must

obey certain properties and, consequently, the problem can be reduced

to a convex formulation. However, these required properties correspond

to very unlikely events in wireless/wireline networks, and therefore the

method has a very limited applicability.

1.3 Local Methods for WSRMax in Wireless Networks

The worst case computational complexity for solving the general WSR-

Max problem by applying global optimization approaches can increase

more than polynomially with the number of variables. As a result, these

methods are prohibitively expensive, even for off line optimization of

moderate size networks. Therefore, the problem of WSRMax deserves

efficient algorithms, which even though suboptimal, perform well in

practice.

Several approximations have been proposed for the case when all

links in the network operate in certain signal-to-interference-plus-noise

ratio (SINR) regions. For example, the assumption that the achievable

rate is a linear function of the SINR (i.e., low SINR region) is widely

used in the ultra-wide-band systems, e.g., [98]. Other references, which

provide solutions for the power and rate control in low SINR regions

include [37, 69, 99]. The high SINR region is treated in [29, 58, 86].

However, at the optimal operating point different links correspond

to different SINR regions, which is usually the case with multihop

networks. Therefore, all methods mentioned above that are based on

either the low or the high SINR assumptions can fail to solve the

general problem.

One promising method is to cast the WSRMax problem into

a signomial program (SP) formulation [20, sec. 9] or into a com-

plementary geometric program (CGP) [6, 30], where a suboptimal

solution can be obtained efficiently; we can readily convert an SP

to a CGP and vice versa [30, sec. 2.2.5]. Applications of SP and

CGP, or closely related solution methods, have been demonstrated

in various signal processing and digital communications problems,

e.g., [30, 31, 34, 35, 78, 94, 122, 127]. There are a number of other impor-

tant papers proposing suboptimal solution methods for the WSRMax
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1.3 Local Methods for WSRMax in Wireless Networks 7

problem, such as [2, 27, 33, 45, 68, 70, 74, 105, 111, 116, 131, 151],

among others.

Though the suboptimal methods mentioned above, including

SP/CGP based algorithms, can perform reasonably well in many cases,2

it is worth pointing out that not all of them can handle the general

WSRMax problem. The reason is the self-interference problem, which

arises when a node transmits and receives simultaneously in the same

frequency band. Since there is a huge imbalance between the trans-

mitted signal power and the received signal power of nodes, the trans-

mitted signal strength is typically few orders of magnitude larger than

the received signal strength. Thus, when a node transmits and receives

simultaneously in the same channel, the useful signal at the receiver of

the incoming link is overwhelmed by the transmitted signal of the node

itself. As a result, the SINR values at the incoming link of a node that

simultaneously transmits in the same channel is very small. Therefore,

the self-interference problem plays a central role in WSRMax in general

wireless networks [133].

Thus, in the case of general multihop wireless networks, the

WSRMax problem must also cope with the self-interference problem.

Under such circumstances SP/CGP cannot be directly applicable even

to obtain a better suboptimal solution, since initialization of the algo-

rithms is critical. One approach to dealing with self interference con-

sists of adding supplementary combinatorial constraints, which prevent

any node in the network from transmitting and receiving simultane-

ously [13, 14, 24, 38, 46, 61, 71, 138]. This is sometimes called the

node-exclusive interference model; only subsets of mutually exclusive

links can simultaneously be activated in order to avoid the large self

interference encountered if a node transmits and receives in the same

frequency band. Of course, such approaches induce a combinatorial

nature for the WSRMax problem in general. The combinatorial nature

is circumvented in [134], where homotopy methods (or continuation

methods) [4] together with complementary geometric programming [6]

are adopted to derive efficient algorithms for the general WSRMax

2 For example, when a node does not transmits and receives simultaneously in the same
frequency band.
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8 Introduction

problem. Here, the term “efficient” can mean faster convergence, or

convergence to a point with better objective value.

1.4 Distributed WSRMax in Wireless Networks

The emergence of large scale communication networks, as well as

accompanying network control and optimization methods with huge

signalling overheads triggered a considerable body of recent research

on developing distributed algorithms for resource management, see [21,

79, 141] and the references therein. Such distributed algorithms rely

only on local observations and are carried out with limited access to

global information. These algorithms essentially involve coordinating

many local subproblems to find a solution to a large global problem. It

is worth emphasizing that the convexity of the problems is crucial in

determining the behavior of the distributed algorithms [21, chap. 9]. For

example, in the case of nonconvex problems such algorithms need not

converge, and if they do converge, they need not converge to an opti-

mal point, which is the case with the WSRMax problem. Nevertheless,

finding even a suboptimal yet distributed method is crucial for deploy-

ing distributively many network control and optimization methods,

e.g., [41, 68, 81, 83, 84, 105, 118, 120, 138], which rely on WSRMax.

Distributed implementation of the WSRMax problem has been

investigated in [27, 93, 94, 127, 144] in the context of digital sub-

scriber loops (DSL) networks. Those systems are inherently consisting

of single-input and single-output (SISO) links. Related algorithms for

SISO wireless ad hoc networks and SISO orthogonal frequency divi-

sion multiple access cellular systems are found in [53, 117, 147, 146].

However, in the case of multi antenna cellular systems, the decision

variables space is, of course, larger, for example, joint optimization

of transmit beamforming patterns, transmit powers, and link activa-

tions is required. Therefore, designing efficient distributed methods for

WSRMax is a more challenging task due to the extensive amount of

message passing required to resolve the coupling between variables. In

the sequel, we limit ourselves to basic, but still very important, results

that develop distributed coordinated algorithms for resource manage-

ment in networks with multiple antennas.

Full text available at: http://dx.doi.org/10.1561/1300000036



1.4 Distributed WSRMax in Wireless Networks 9

Several distributed methods for WSRMax in multiple-input and

single-output (MISO) cellular networks have been proposed in [10, 11,

72, 95, 130, 132, 136]. Specifically, in [95] a two-user MISO interference

channel (IC)3 is considered and a distributed algorithm is derived by

using the commonly used high SINR approximation [29]. Moreover,

another approximation, which relies on zero forcing (ZF) beamforming

is introduced in [95] to address the problem in the case of multiuser

MISO IC.

The methods proposed in [10, 11, 130] derived the necessary (but

not sufficient) optimality conditions for the WSRMax problem and used

it as the basis for their distributed solution. However, many parame-

ters must be selected heuristically to construct a potential distributed

solution and there is, in general no systematic method for finding those

parameters. In particular, the algorithms in [10, 11] are designed for

systems with very limited backhaul signaling resources and do not

consider any iterative base station (BS) coordination mechanism to

resolve the out-of-cell interference coupling. Even though the method

proposed in [130] relies on stringent requirements on the message pass-

ing between BSs during each iteration of the algorithm, their results

show that BS coordination can provide considerable gains compared

to uncoordinated methods. An inexact cooperate descent algorithm for

the case where each BS is serving only one cell edge user has been

proposed in [72]. The method proposed in [66] is designed for sum-rate

maximization and uses high SINR approximation. A cooperative beam-

forming algorithm is proposed in [152] for MISO IC, where each BS can

transmit only to a single user. Their proposed method employs an iter-

ative BS coordination mechanism to resolve the out-of-cell interference

coupling. However, the convexity properties exploited for distribution

of the problem are destroyed when more than one user is served by

any BS. Thus, their proposed method is not directly applicable to the

WSRMax problem. Recently, an interesting distributed algorithm for

WSRMax is proposed by Shi et al. [110], which exploits a nontrivial

equivalence between the WSRMax problem and a weighted sum mean

3K-user MISO IC means that there areK transmitter–receiver pairs, where the transmitters
have multiple antennas and the receivers have single antennas.
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10 Introduction

squared error minimization problem. This algorithm relies on user ter-

minal assistance, such as signal covariance estimations, computation

and feedback of certain parameters form user terminals to BSs over

the air interface. In practice, performing perfect covariance estimation

and perfect feedback during each iteration can be very challenging. In

the presence of user terminal imperfections, such as estimation and

feedback errors, the algorithms performance can degrade and its con-

vergence can be less predictable.

Algorithms based on game theory are found in [49, 55, 65, 107,

108, 109]. Their proposed methods are restricted to interference chan-

nels, for example, MISO IC, MIMO IC. The methods often require the

coordination between receiver nodes and the transmitter nodes during

algorithm’s iterations.

Many optimization criteria other than the weighted sum-rate have

been considered in references [12, 113, 123, 143, 148, 149, 150] to dis-

tributively optimize the system resources (e.g., beamforming patterns,

transmit powers, etc.) in multi antenna cellular networks. In particu-

lar, the references [12, 148, 149, 150] used the characterization of the

Pareto boundary of the MISO interference channel [56] as the basis

for their distributed methods. Their proposed methods do not employ

any BS coordination mechanism to resolve the out-of-cell interference

coupling. In [113, 123, 143] distributed algorithms have been derived

to minimize a total (weighted) transmitted power or the maximum per

antenna power across the BSs subject to SINR constraints at the user

terminals.

1.5 Outline of the Volume

Section 2 presents a solution method, based on the branch and

bound technique, which solves globally the nonconvex WSRMax

problem with an optimality certificate. Efficient analytic bounding

techniques are introduced and their impact on convergence is numer-

ically evaluated. The considered link-interference model is general

enough to model a wide range of network topologies with various

node capabilities, for example, single- or multipacket transmission
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(or reception), simultaneous transmission and reception. Diverse appli-

cation domains of WSRMax are considered in the numerical results,

including cross-layer network utility maximization and maximum

weighted link scheduling for multihop wireless networks, as well as find-

ing achievable rate regions for singlecast/multicast wireless networks.

Section 3 presents fast suboptimal algorithms for the WSRMax

problem in multicommodity, multichannel wireless networks. First, the

case where all receivers perform singleuser detection4 is considered and

algorithms are derived by applying complementary geometric program-

ming and homotopy methods. Here we apply the algorithms within a

general cross-layer utility maximization framework to examine quan-

titative impact of gains that can be achieved at the network layer in

terms of end-to-end rates and network congestion. In addition, we show,

through examples, that the algorithms are well suited for evaluating the

gains achievable at the network layer when the network nodes employ

self interference cancelation techniques with different degrees of accu-

racy. Finally, a case where all receivers perform multiuser detection

is considered and solutions are presented by imposing additional con-

straints, such as that only one node can transmit to others at a time

or that only one node can receive from others at a time.

Section 4 presents an easy to implement distributed method for the

WSRMax problem in a multicell multiple antenna downlink system.

The algorithm is based on primal decomposition and subgradient

methods, where the original nonconvex problem is split into a mas-

ter problem and a number of subproblems (one for each base station).

A sequential convex approximation strategy is used to address the

nonconvex master problem. Unlike the recently proposed minimum

weighted mean-squared error based algorithms, the method presented

here does not rely on any user terminal assistance. Only base station

to base station synchronized signalling via backhaul links. All the nec-

essary computation is performed at the BSs. Numerical experiments

4 That is, a receiver decodes each of its intended signals by treating all other interfering

signals as noise.
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are provided to examine the behavior of the algorithm under different

degrees of BS coordination.

Finally, in Section 5, we present our conclusions. The detailed work

presented in this volume is based on the research performed by the

authors that led to several recent journal and conference publications.
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mensarbete utfört i Kommunikationssystem vid Tekniska högskolan i
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[122] A. Tölli, M. Codreanu, and M. Juntti, “Cooperative MIMO-OFDM cellular
system with soft handover between distributed base station antennas,” IEEE
Transactions on Wireless Communications, vol. 7, no. 4, pp. 1428–1440, April
2008.

Full text available at: http://dx.doi.org/10.1561/1300000036



160 References
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