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Abstract

A basic question in wireless networking is how to optimize the wireless
network resource allocation for utility maximization and interference
management. How can we overcome interference to efficiently optimize
fair wireless resource allocation, under various stochastic constraints on
quality of service demands? Network designs are traditionally divided
into layers. How does fairness permeate through layers? Can physi-
cal layer innovation be jointly optimized with network layer routing
control? How should large complex wireless networks be analyzed and
designed with clearly-defined fairness using beamforming?

This monograph provides a comprehensive survey of the models,
algorithms, analysis, and methodologies using a Perron-Frobenius the-
oretic framework to solve wireless utility maximization problems. This
approach overcomes the notorious non-convexity barriers in these prob-
lems, and the optimal value and solution of the optimization problems
can be analytically characterized by the spectral property of matrices
induced by nonlinear positive mappings. It also provides a systematic
way to derive distributed and fast-convergent algorithms and to eval-
uate the fairness of resource allocation. This approach can even solve
several previously open problems in the wireless networking literature.

More generally, this approach links fundamental results in nonnega-
tive matrix theory and (linear and nonlinear) Perron-Frobenius theory
with the solvability of non-convex problems. In particular, it can solve
a particular class of max-min problems optimally; for truly nonconvex
problems, e.g., the sum rate maximization problem, it can even be used
to identify polynomial-time solvable special cases or to enable convex
relaxation for global optimization. We highlight the key aspects of the
nonlinear Perron-Frobenius theoretic framework through several prac-
tical examples in MIMO wireless cellular, heterogeneous small-cell and
cognitive radio networks.

C. W. Tan. Wireless Network Optimization by Perron-Frobenius Theory.
Foundations and TrendsR© in Networking, vol. 9, no. 2-3, pp. 107–218, 2014.
DOI: 10.1561/1300000048.
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1
Wireless Network Optimization

1.1 Introduction

The demand for broadband mobile data services has grown significantly
and rapidly in wireless networks. As such, many new wireless devices
are increasingly operating in the wireless spectrum that are meant to be
shared among many different users. Yet, the sharing of the spectrum is
far from perfect. Due to the broadcast nature of the wireless medium,
interference has become a major source of performance impairment.
Current systems suffer from deteriorating quality due to a fixed resource
allocation that does not adequately take interference into account.

As wireless networks become more heterogeneous and ubiquitous in
our life, they also become more difficult to design and optimize. How
should these large complex wireless networks be analyzed and designed
with clearly-defined fairness and optimality in mind? In this regard,
wireless network optimization has become an important tool to design
resource allocation algorithms that can realize the untapped benefits
of co-sharing wireless resources and to manage interference in wireless
networks [56, 36, 69, 19, 23]. Without appropriate resource coordina-
tion, the wireless network may become unstable or may operate in a
highly inefficient and unfair manner.

2
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1.2. Related Work 3

In wireless network optimization, the performance objective of a
wireless transmission can be modeled by a nonlinear utility function
that takes into account important wireless link metrics. Examples of
these wireless metrics are the Signal-to-Interference-and-Noise Ratio
(SINR), the Mean Square Error (MSE) or the transmission outage
probability. The total utility function is then maximized over the joint
solution space of all possible operating points in the wireless network.
These operating points are realized in terms of the powers and inter-
ference at the physical link layer.

As such, wireless network optimization can be used to address en-
gineering issues such as how to design wireless network algorithms or
analyzing the tradeoffs between individual link performance and overall
system performance. It can even be useful for understanding cross-layer
optimization, for example, how these algorithms interact between dif-
ferent network layers, such as the physical and medium access control
layers, in order to achieve provable efficiency for the overall system. It
also sheds insights on how fairness permeates through the network lay-
ers when interference is dominant. This can open up new opportunities
to jointly optimize physical layer innovation and other networking con-
trol mechanism that lead to more robust and reliable wireless network
protocols.

1.2 Related Work

Due to the need to share limited wireless resources, fairness is an im-
portant consideration in wireless networks. Fairness is affected by the
choice of the nonlinear utility functions of the wireless link metrics
[56, 19, 21, 12]. In addition, fairness experienced by each user in the
wireless networks is also affected by the channel conditions, multiuser
interference, and other factors such as the wireless quality-of-service
requirements. An example of such a requirement is the interference
temperature constraints in cognitive radio networks that are essen-
tially constraints imposed on the received interference for some users
[40, 96, 70]. Another example is outage probability specification con-
straints in heterogeneous networks [45, 52]. As such, fairness can be
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4 Wireless Network Optimization

provisioned by choosing an optimal operating point that is fair in some
sense to all the users by an appropriate formulation of a wireless util-
ity maximization. The main challenges in solving these wireless utility
maximization problems come from the nonlinear and coupling depen-
dency of link metrics on channel conditions and powers, as well as the
interference among the users. In addition, these are nonconvex prob-
lems that are notoriously difficult to solve optimally. Moreover, design-
ing scalable and distributed algorithms with low-complexity to solve
these nonconvex problems is even harder.

In fact, there are several important considerations to algorithm de-
sign in wireless networks. First, algorithms have to adapt the wire-
less resources such as the transmit power and to overcome interference
based on locally available information. This means that the algorithms
have to be as distributed as possible. Second, the algorithms are prac-
tical to deploy in a decentralized manner, i.e., the algorithms have
minimal or, preferably, no parameter tuning by a controller. Third,
the algorithms have good convergence performance. This is especially
important since wireless users can arrive and depart in a dynamic set-
ting. Henceforth, wireless resources need to be adapted fast enough
to converge to a new optimal operating point whenever the network
conditions change. This can be particularly challenging for some kinds
of wireless networks such as wireless cognitive radio networks due to
the tight coupling in the transmit powers and the interference temper-
ature constraints between the primary users and the secondary users
[40, 96, 70]. Whatever the algorithms may be, the algorithm design
methodology is intrinsically driven by the theoretical approach used in
analyzing the optimization problems. Finding an appropriate theoreti-
cal approach to study wireless network optimization is thus important.

There are several work in the literature on tackling the nonconvexity
hurdles in wireless network optimization. The authors in [20, 19, 23, 45]
applied geometric programming to solve a certain class of noncon-
vex wireless utility maximization problems that can be transformed
into convex ones. The authors in [12] studied the use of Gibbs sam-
pling techniques to solve nonconvex utility maximization problems, but
the optimality of the solutions cannot be guaranteed. The authors in
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1.3. Why is the Perron-Frobenius Theory useful? 5

[21, 39, 54] tackled deterministic wireless utility maximization problems
that involved rates and powers, but the proposed techniques could not
handle stochastic constraints. In [77, 76, 72, 74, 16, 18, 97, 100, 99],
the authors studied the max-min utility fairness problem in wireless
networks using a particular form of nonlinear Perron-Frobenius theory
[50], [55]. These works demonstrated that the optimal solution to vari-
ous widely-studied max-min optimization problems, e.g., the max-min
SINR and max-min rate problems, can be characterized analytically
and, more importantly, can be efficiently computed by iterative algo-
rithms that can be made distributed. We introduce and present some
of these work using the nonlinear Perron-Frobenius theory approach in
this monograph.

1.3 Why is the Perron-Frobenius Theory useful?

The Perron-Frobenius theory introduced in this monograph is a new
theoretical framework for analyzing a class of nonconvex optimization
problems for resource allocation in wireless networks. Essentially, this
framework provides a convenient suite of theories and algorithms to
solve a broad class of wireless network optimization problems opti-
mally by leveraging on the recent developments of the nonlinear Perron-
Frobenius theory in mathematics. When combined with optimization-
theoretic approaches such as convex reformulation and convex relax-
ation, this nonlinear Perron-Frobenius theory framework enables the
design of efficient algorithms with low complexity that are applicable
to a wide range of wireless network applications. Let us first discuss a
special case of this nonlinear Perron-Frobenius theory in the following.

In nonnegative matrix theory, the classical linear Perron-Frobenius
theorem is an important result that concerns the eigenvalue prob-
lem of nonnegative matrices, and has many engineering applications
[63, 35, 68, 64, 30]. Notably, the linear Perron-Frobenius Theorem has
consistently proven to be a useful tool in wireless network resource al-
location problems. Its application to power control in wireless networks
has been widely recognized (see, e.g., [67, 80, 22]), and can be traced
back to earlier work in [1, 60] on balancing the signal to interference
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6 Wireless Network Optimization

ratio in satellite communication that was later adopted for wireless cel-
lular networks in [2, 94, 31, 87, 92, 83, 66, 90, 10, 11] and wireless ad
hoc networks [28]. In particular, it has been used in a total power min-
imization problem studied in [31, 92, 83, 66, 28], in which the Perron-
Frobenius Theorem is used to ascertain the problem feasibility and the
stability of power control algorithms proposed in [31, 83, 66, 28].

In the seminal work in [1] that first formulated and analyzed the sig-
nal to interference ratio balancing problem, the linear Perron-Frobenius
theorem was used to derive the optimal solution analytically for this
nonconvex problem. Subsequently, the same problem formulation was
adopted in [60, 2, 94, 87] for designing power control algorithms for both
satellite and wireless cellular communication networks that converge to
the solution established in [1]. That the Perron-Frobenius theorem is
fundamental is due to two facts. First, the problem parameters and
optimization variables in wireless network optimization problems are
mostly nonnegative. Second, it captures succinctly the unique feature
of competition for limited resources among users, namely, increasing the
share of one decreases the shares of others as well as who is competing
with whom.

Another popular approach to tackle the nonconvexity hurdles in
these wireless network optimization problems has been the use of
geometric programming (see [27, 15, 20, 14] for an introduction)
and its successive convex approximation as used by the authors in
[45, 19, 23, 20]. The idea of the geometric programming approach
is to reformulate the nonconvex problems as suitable classes of con-
vex optimization problems (geometric programs) through a logarith-
mic change-of-variable trick. This leverages the inherent nonnegativity
property. The geometric programs are then typically solved numerically
by the interior-point method in a centralized fashion. In fact, geometric
programming is closely related to the Perron-Frobenius theorem. For
example, it can be used to establish the log-convexity property of the
Perron-Frobenius eigenvalue [46, 61] (also see [15]).

The use of the linear Perron-Frobenius theorem in earlier work how-
ever has several limitations. They cannot address the general case (such
as when we consider the thermal noise or general power constraints). In
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1.3. Why is the Perron-Frobenius Theory useful? 7

addition, the Perron-Frobenius theorem has not been used to system-
atically solve other broader nonconvex wireless network optimization
problems beyond the power control optimization problems studied in
[1, 60, 2, 94, 87, 31, 92, 83, 66, 28]. In fact, to overcome the specific chal-
lenges due to nonconvexity, it is imperative to consider more general
(i.e., nonlinear) version of the Perron-Frobenius theory that can spawn
new approaches to characterize optimality and analyze the equilibrium
as well as designing distributed algorithms for wireless networks.

There are various mathematical advances in extending the linear
Perron-Frobenius theorem to nonlinear ones. These include works that
extend the Perron-Frobenius theorem for positive matrices to nons-
mooth and nonlinear functions in the 1960s (e.g., see Chapter 16 in
[5], [55]) for studying the dynamics of cone-preserving operators. The
nonlinear Perron-Frobenius theory is now emerging as a rigorous and
practically useful mathematical tool to solve a wide range of impor-
tant engineering problems and applications [49, 50, 9, 3, 55]. In this
monograph, we will introduce and illustrate how the nonlinear Perron-
Frobenius theory can tackle several key challenging wireless network
optimization problems following the work in [76, 79, 78, 72, 77, 16,
18, 17, 43, 97, 100, 99, 98, 53, 42, 73, 74]. Whenever applicable, we
also highlight the connection to previous works that rely on the linear
Perron-Frobenius theorem as special cases.

The following notation is used in this monograph. Boldface upper-
case letters denote matrices, boldface lowercase letters denote column
vectors, and u ≥ v denotes componentwise inequality between vectors
u and v. We also let (By)l denote the lth element of By. Let x◦y denote
the Schur product of the vectors x and y, i.e., x◦y = [x1y1, . . . , xLyL]> .
Let ‖w‖x∞ be the weighted maximum norm of the vector w with respect
to the weight x, i.e., ‖w‖x∞ = maxl wl/xl, x > 0. We write B ≥ F if
Bij ≥ Fij for all i, j. The Perron-Frobenius eigenvalue of a nonnegative
matrix F is denoted as ρ(F), and the Perron right and left eigenvector
of F associated with ρ(F) are denoted by x(F) ≥ 0 and y(F) ≥ 0 (or
simply x and y when the context is clear), respectively. The super-
script (·)> denotes transpose. We denote el as the lth unit coordinate
vector and I as the identity matrix.

Full text available at: http://dx.doi.org/10.1561/1300000048



8 Wireless Network Optimization

1.4 System Model

In this section, we introduce the system models for the wireless network
utility maximization problems considered in the monograph. There are
primarily two different kinds of system models - one that considers a
static transmission channel (i.e., frequency-flat fading) and one that
considers stochastic channel fading. Whenever applicable, we will em-
phasize the system model to avoid confusion.

Let us first introduce the static transmission channel for modeling
a wireless network by the Gaussian interference channel [24]. There are
altogether L links or users (equivalently, transceiver pairs) that want
to communicate with its desired receiver. Due to mutual interfering
channels, each user treats the multiuser interference as noise, i.e., no
interference cancellation. This is a commonly used model (in, e.g., [19,
23, 22]) to model many wireless networks such as the radio cellular
networks and ad-hoc networks. Let us denote the transmit power for
the lth user as pl for all l. Assuming that a linear single-user receiver
(e.g., a matched-filter) is used, the Signal-to-Interference-and-Noise-
Ratio (SINR) for the lth user can be given by

SINRl(p) = Gllpl∑
j 6=l

Gljpj + nl
, (1.1)

where Glj are the channel gains from the transmitter j to the receiver
l and nl is the additive white Gaussian noise (AWGN) power for the
lth receiver. For brevity, we collect the channel gains in the channel
gain matrix G, and the channel gains take into account propagation
loss, spreading loss and other transmission modulation factors. Notice
that the SINR is a function in terms of the transmit powers and, fur-
thermore, it is always nonnegative since all the quantities involved in
(1.1) are nonnegative. There are many other important wireless perfor-
mance metrics that are also directly dependent on the achieved SINR.
For example, assuming a fixed bit error rate at the receiver, the Shan-
non capacity formula can be used to deduce the achievable data rate
of the lth link as [24]:

log (1 + SINRl(p)) nats/symbol. (1.2)
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1.4. System Model 9

Let us define a nonnegative square matrix F with the entries given
by:

Flj =
{

0, if l = j
Glj
Gll
, if l 6= j

(1.3)

and a vector

v =
(
n1
G11

,
n2
G22

, . . . ,
nL
GLL

)>
. (1.4)

Observe that F and v capture the normalized values of the cross-
channel gain parameters and the background noise power respectively.
They are regarded as given constant problem parameters and are useful
for notations represented in a compact manner in this monograph.

Let us next introduce the system model with stochastic channel
fading that builds on top of the static transmission channel model by
taking into account more realistic wireless transmission features. One
important feature is the stochastic channel fading that is typically mod-
eled by a Rayleigh, a Ricean or a Nakagami distribution depending on
the wireless environment [80, 47]. For example, Rayleigh fading is rel-
evant to in-building coverage model and urban environments (where
small cells are mostly deployed in a heterogeneous network).

Under stochastic channel fading, the power received from the jth
transmitter at lth receiver is given by GljRljpj where Glj models a
constant nonnegative path gain and Rlj is a random variable to model
the stochastic channel fading between the jth transmitter and the lth
receiver. In particular, we assume that Rlj is independently distributed
with unit mean. For example, under Rayleigh fading, the distribution
of the received power from the jth transmitter at the lth receiver is
exponential with a mean value E[GljRljpj ] = Gljpj .

When there is stochastic channel fading, the Signal-to-Interference-
Noise Ratio (SINR) at the lth receiver can be expressed as the following
by using the above notations [45, 22]:

SINRl(p) = Rllpl∑
j 6=l

FljRljpj + vl
. (1.5)

Notice that (1.5) is a random variable that depends on the stochas-
tic channel fading realization. In particular, this random variable in
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10 Wireless Network Optimization

(1.5) is also a function of the transmit powers (and should not be con-
fused with (1.1) which has no direct physical meaning in the context
of stochastic channel fading).

Now, the transmission from the lth transmitter to its receiver is
successful if SINRl(p) ≥ βl (no outage), where βl is a given threshold for
reliable communication. An outage occurs at the lth receiver whenever
SINRl(p) < βl. We express this outage probability of the lth user by

P (SINRl(p) < βl). (1.6)

Notice that the transmit powers are typically coupled together
through the various wireless performance metric functions for any par-
ticular user. For example, the transmit powers of different users are
coupled in (1.1) and (1.6) when the channel has frequency-flat fad-
ing and stochastic fading respectively. Adapting the transmit powers
directly influences the wireless performance metrics. As such, in the
wireless network optimization problems studied in this monograph, the
transmit power vector (p1, . . . , pL)> is the main optimization variable
of interest.

In addition, the transmit powers in wireless networks are typically
constrained. This is modeled by a power constraint set P that can be
due to resource budget consideration [80]. For example, in a cellular
uplink system, we often have individual power constraints, i.e.,

P = {p | p ≥ 0, pl ≤ p̄ ∀ l}. (1.7)

Power constraints can also be used for interference management.
Let us give an example of interference management in wireless hetero-
geneous networks. Say, in a wireless heterogeneous network, there are
two different user type - the small cell users and the macrocell users. A
basic premise imposed on small cells in wireless heterogeneous networks
is that the following two conditions are satisfied [52]:

1. A small cell user receives adequate levels of transmission quality
within the small cell.

2. The small cell users do not cause unacceptable levels of interfer-
ence to the macrocell users.
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1.4. System Model 11

To satisfy the second condition above, a possibility is to explicitly
impose power constraints on the small cell users. Let us illustrate using
an example of a single macrocell user and multiple small cells in [52].
Assume that there is no fading between this single macrocell receiver
and all the small cell users. This assumption holds only in this para-
graph for illustration purpose. Let us denote this macrocell user by the
index 0 and the small cell users by indices 1, . . . , L. The macrocell user
transmits with a fixed power P0, where P0 ≥ γ0v0, i.e., the macrocell
user can satisfy the SINR threshold γ0 even when there is no interfer-
ence from the small cells. In the presence of small cells’ interference, the
SINR of this macrocell user has to satisfy P0∑L

j=1 F0jpj+v0
≥ γ0, which

can be rewritten as a single power constraint to yield

P =

p | p ≥ 0,
L∑
j=1

F0jpj ≤ (P0/γ0 − v0)

 (1.8)

that must be satisfied by the transmit powers of all the small cell users.
Note that (1.8) is feasible when P0 ≥ γ0v0. In general, a feasible power
constraint of the form a>p ≤ 1 for some positive constant vector a
can be used to model interference management requirements. Notice
that this example of an interference management constraint is also
applicable to other wireless applications such as the cognitive radio
networks with the primary user and secondary user types [40, 96, 70].

Now, there are many different possible ways to satisfy the first con-
dition above on the adequate levels of transmission quality. In this
monograph, we examine some of these different ways that in fact also
relate to how this monograph is organized in the following.

We first begin with the mathematical preliminaries on the Perron-
Frobenius theorem and the nonlinear Perron-Frobenius theory in Chap-
ter 2, and then introduce how these theories are used to solve various
optimization problems in subsequent chapters. In the first part of Chap-
ter 3, we study the optimization of the max-min weighted SINR using
(1.1) for a static channel model. In the second part of Chapter 3, we
study the optimization of the worst-case outage probability using (1.6),
i.e., minimizing the maximum outage probability when there is stochas-
tic channel fading, to provision a minimum adequate level of fairness for

Full text available at: http://dx.doi.org/10.1561/1300000048



12 Wireless Network Optimization

all the users. These two problems only involve simple power constraints
such as that given in (1.8). In Chapter 4, we study more general utility
functions to capture the satisfaction level of transmission quality in dif-
ferent kinds of wireless networks, and also to consider a broader class
of nontrivial power constraint sets to model resource constraints and
interference management requirements. The Perron-Frobenius theory
suggests that the unique equilibrium that results from the competition
for resources in the optimization problems in Chapters 3 and 4 is a
meaningful one. In Chapter 5, we study more general nonconvex opti-
mization problems involving the achievable data rate using (1.2) and
show how the Perron-Frobenius theory can be a useful mathematical
tool to tackle nonconvexity. We also highlight the open issues in these
various wireless network optimization problems and finally conclude
the monograph in Chapter 6.
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