
Building Reliable Storage
Clouds: Models,

Fundamental Tradeoffs,
and Solutions

Ulaş C. Kozat
Huawei R&D

ulas.kozat@huawei.com

Guanfeng Liang
LinkedIn

gliang@linkedin.com

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1300000051

Foundations and Trends R© in Networking

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

U. C. Kozat and G. Liang. Building Reliable Storage Clouds: Models, Fundamental
Tradeoffs, and Solutions. Foundations and TrendsR© in Networking, vol. 9, no. 4,
pp. 219–315, 2014.

This Foundations and TrendsR© issue was typeset in LATEX using a class file designed
by Neal Parikh. Printed on acid-free paper.

ISBN: 978-1-68083-065-1
c© 2015 U. C. Kozat and G. Liang

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, mechanical, photocopying, recording
or otherwise, without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Cen-
ter, Inc., 222 Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for
internal or personal use, or the internal or personal use of specific clients, is granted by
now Publishers Inc for users registered with the Copyright Clearance Center (CCC). The
‘services’ for users can be found on the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system
of payment has been arranged. Authorization does not extend to other kinds of copy-
ing, such as that for general distribution, for advertising or promotional purposes, for
creating new collective works, or for resale. In the rest of the world: Permission to pho-
tocopy must be obtained from the copyright owner. Please apply to now Publishers Inc.,
PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 871 0245; www.nowpublishers.com;
sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission
to use this content must be obtained from the copyright license holder. Please apply to
now Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com;
e-mail: sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1300000051

Foundations and Trends R© in Networking
Volume 9, Issue 4, 2014

Editorial Board

Editor-in-Chief

Anthony Ephremides
University of Maryland
United States

Editors

François Baccelli
University of Texas, Austin
Victor Bahl
Microsoft Research
Helmut Bölcskei
ETH Zurich
J.J. Garcia-Luna Aceves
UC Santa Cruz
Andrea Goldsmith
Stanford University
Roch Guerin
Washington University in Saint Louis
Bruce Hajek
UIUC
Jean-Pierre Hubaux
EPFL
Frank Kelly
University of Cambridge
P.R. Kumar
Texas A&M University
Steven Low
Caltech
Eytan Modiano
MIT

Keith Ross
Polytechnic Institute of NYU
Henning Schulzrinne
Columbia University
Mani Srivastava
UCLA
Leandros Tassiulas
Yale University
Lang Tong
Cornell University
Ozan Tonguz
Carnegie Mellon University
Don Towsley
University of Massachusetts, Amherst
Nitin Vaidya
UIUC
Pravin Varaiya
UC Berkeley
Roy Yates
Rutgers University
Raymond Yeung
Chinese University of Hong Kong

Full text available at: http://dx.doi.org/10.1561/1300000051

Editorial Scope

Topics

Foundations and Trends R© in Networking publishes survey and tutorial
articles in the following topics:

• Modeling and analysis of:

– Ad hoc wireless networks
– Sensor networks
– Optical networks
– Local area networks
– Satellite and hybrid

networks
– Cellular networks
– Internet and web services

• Protocols and cross-layer
design

• Network coding

• Energy-efficiency
incentives/pricing/utility-
based

• Games (co-operative or not)

• Security

• Scalability

• Topology

• Control/Graph-theoretic
models

• Dynamics and asymptotic
behavior of networks

Information for Librarians

Foundations and Trends R© in Networking, 2014, Volume 9, 4 issues. ISSN
paper version 1554-057X. ISSN online version 1554-0588. Also available as a
combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1300000051

Foundations and TrendsR© in Networking
Vol. 9, No. 4 (2014) 219–315
c© 2015 U. C. Kozat and G. Liang
DOI: 10.1561/1300000051

Building Reliable Storage Clouds: Models,
Fundamental Tradeoffs, and Solutions

Ulaş C. Kozat
Huawei R&D

ulas.kozat@huawei.com

Guanfeng Liang
LinkedIn

gliang@linkedin.com

Full text available at: http://dx.doi.org/10.1561/1300000051

Contents

1 Introduction 2
1.1 Techniques to Improve the Performance of Distributed

Storage . 5
1.2 Distributed Storage Systems and Operational Characteristics 9
1.3 Book Organization . 15

2 Data Durability/Availability, Storage Efficiency, and Network
Capacity 16
2.1 MDS Codes . 18
2.2 Fountain/Rateless Codes 21
2.3 Regenerating/Repair Codes 24

3 Cloud Storage with high I/O Performance 46
3.1 Models . 51
3.2 Black Box Models and Performance Analysis 54
3.3 White Box Models and Performance Analysis 78
3.4 Summary . 88

4 Conclusion 89

References 92

ii

Full text available at: http://dx.doi.org/10.1561/1300000051

Abstract

Distributed storage has been an active research area for decades. With
the proliferation of cloud computing, there has been a rejuvenated in-
terest in two perspectives. The first perspective is seen through the
lenses of the cloud providers: how should we build global storage ser-
vices for cloud hosted services and applications at scale with high relia-
bility and availability guarantees, but also in a cost effective way? The
second perspective is seen through the lenses of the service providers
that utilize public clouds: how can we achieve high I/O performance
over cloud storage within a cost budget? In this manuscript, we first
present various kinds of distributed storage systems, their operational
characteristics and the key techniques to improve their performance.
We then focus on cloud storage, exclusively. Cloud storage has massive
scales with the promise to provide as much storage capacity as their
tenants demand. Cloud providers also promise very high durability,
availability, and I/O performance. In this context, we cover the fun-
damental tradeoffs between storage efficiency and network bandwidth
as well as I/O throughput and latency. Erasure codes play an essential
role in these tradeoffs and, thus, we also present their design and usage
in the context of cloud storage broadly. We pay particular attention on
various queuing models and the corresponding performance analysis
in the presence of coded storage. We provide exact and approximate
solutions under various settings and assumptions. We describe optimal
or near-optimal scheduling and coding strategies that are established
based on these analyses.

U. C. Kozat and G. Liang. Building Reliable Storage Clouds: Models, Fundamental
Tradeoffs, and Solutions. Foundations and TrendsR© in Networking, vol. 9, no. 4,
pp. 219–315, 2014.
DOI: 10.1561/1300000051.

Full text available at: http://dx.doi.org/10.1561/1300000051

1
Introduction

Informally and in the broadest sense, distributed storage systems re-
fer to a system, where the resources of more than one physical storage
node are pooled together. The expectations from such systems are many
folds: (1) Provide a high aggregate storage capacity, which may not be
feasible or too expensive to provision with one node. (2) Avoid single
point of failure, e.g., if one storage node fails, the remaining "healthy"
nodes should continue to provide access to the information stored on
them. (3) Provide high throughput, e.g., utilize multiple pathways to
multiple storage nodes to multiplex input/output (I/O) speeds of in-
dividual storage nodes. (4) Provide low delay by avoiding/preventing
congested nodes.

The landscape of distributed storage ranges from storage arrays di-
rectly attached to a server to highly distributed peer to peer (P2P)
systems interconnected over the Internet. The major change we have
seen over the last decade is that massive data center operators built
computing, storage and networking platforms and started leasing them
to general public following a utility based pricing. Popular examples
include Amazon Web Services (AWS), Microsoft Azure, Google Cloud
Platform, etc. More and more services are running over public clouds

2

Full text available at: http://dx.doi.org/10.1561/1300000051

3

with a wide range of resource usage. In fact, even massive services
such as Netflix and DropBox are built over such cloud services. Large
data centers host tens of thousands of physical switches, hundreds of
thousands physical servers and virtual switches, and millions of CPU
cores. To cope with this scale, cloud technologies continuously evolve on
multiple fronts. High performance machine virtualization, data-center
centric low-delay high-bandwidth transport layer protocols, new net-
work architectures (e.g., software defined networks - SDN), new man-
agement and infrastructure optimization solutions, new inter-connect
technologies, and power efficiency are among the most important ar-
eas to boost up the performance, efficiency, and manageability of these
massive systems.

Cloud storage is offered at different pricing points depending on the
durability, availability, I/O throughput (e.g., number of reads/writes
per second), and latency. The most critical metric of offering cloud
storage service is the data durability and availability. Due to the scale
of operations, failures (both hardware and software) are not exceptions,
but rather a normal operational characteristics seen on a daily basis in
massive data centers. To cope with this challenge, data stored in the
cloud is replicated in different availability zones. Considering a large
fraction of data stored in the cloud are rarely accessed (e.g., once every
six months), the added cost of any operational inefficiency is substan-
tial. To reduce this cost burden, cloud operators such as AWS provide
different storage options that provide reduced durability (e.g., using
less replication) or availability (e.g., archiving large amounts of data
by compressing and storing in tape storage). Since performance (e.g.,
high throughput, low latency, low jitter) is of paramount importance
for some services, cloud operators also provide very fast storage medi-
ums (e.g., database stored in memory with high network capacity) at
premium pricing for storing and accessing data. Thus, users of cloud
storage can segment their data based on the access patterns and opti-
mize the average performance under their budget constraints by taking
advantage of multiple tiers of cloud storage.

In this book, we try to abstract away various technology specific
details and rather focus on few fundamental tradeoffs in cloud storage.

Full text available at: http://dx.doi.org/10.1561/1300000051

4 Introduction

The first tradeoff that we will investigate exists between storage effi-
ciency and network bandwidth required to maintain a target durability
or availability in cloud storage. Existing results in the literature states
that when we maximize the storage efficiency, the burden in terms of
network bandwidth is also maximized. To alleviate the burden on net-
work bandwidth (which is typically the most expensive resource), one
must give up on storage efficiency. We will cover this tradeoff in detail
first starting with the fundamental tradeoff from the point of informa-
tion theory and then relaying results established with more practical
considerations.

The second tradeoff that we will investigate exists between I/O
latency vs. I/O throughput. An analagous tradeoff exists in classical
communication theory between communication delay and communica-
tion capacity at a given loss rate. The main difference in the data center
set up is that the network is considered reliable as applications typically
run over reliable transport protocols. In cloud storage, the randomness
of latency per I/O operation rather than packet losses is of primary
concern. When data is replicated in more than one location, one can
use more network bandwidth to retrieve the same data from multi-
ple locations to reduce latency similar to the diversity techniques used
in wireless communications. When the network bandwidth is finite,
one has to tradeoff between I/O latency and I/O throughput, i.e., to
achieve lower delay, one must serve less I/O requests. Since optimal op-
erations require coded storage, new queue models that are not subject
of classical textbooks on queuing theory emerge. We will cover these
new types of queue models and provide various approximate as well as
exact results established in the literature. Optimal solutions that can
achieve the lowest latency at a targeted system throughput will also be
presented. Since these solutions not only improve the average latency
but also practically eliminate tail events. a much more predictable and
reliable performance can be attained over storage clouds.

Next, we overview widely used techniques to address availability,
throughput, and latency constraints.

Full text available at: http://dx.doi.org/10.1561/1300000051

1.1. Techniques to Improve the Performance of Distributed Storage 5

1.1 Techniques to Improve the Performance of Distributed
Storage

1.1.1 Striping and Parallelization

Striping refers to dividing the block or object to be stored in mutu-
ally exclusive smaller slices and distributing them to multiple storage
nodes. When each storage node has its own local controller and can in-
dependently be accessed to retrieve its local slice, striping multiplexes
the I/O throughput of multiple storage nodes by accessing all stripes
of the block/object simultaneously in parallel. The stripe size must be
picked carefully. If it is set to a small value, then I/O overheads such as
actuating and rotating the magnetic discs, minimum round trip time
delays over the network, etc. would be dominant terms reducing the
throughput of individual nodes. If it is set to a large value, then the
I/O capacity of fewer storage nodes are multiplexed. Since a successful
I/O operation requires reading/writing all the stripes, the effective I/O
speed is dominated by the slowest storage node. Although using small
stripe size renders I/O speeds of individual stripes faster on average, it
also increases the chances of hitting a slow storage node.

1.1.2 Replication

Replication refers to the process of creating multiple copies of the same
block or object on distinct storage nodes. If striping is used, then each
stripe is also effectively copied onto distinct storage nodes. Replica-
tion is relied upon heavily by well-known nosql database and file stor-
age systems such as Hadoop File System (HDFS), Dynamo, Amazon
S3, Memcached/Membase, Couchbase, Cassandra, etc. Many of these
systems use default replication factor of 3, though many of these so-
lutions allow replication factor to be set on a per file basis by their
clients. Replication at the expense of using substantially more storage
(e.g., 3×) leads to high data availability and durability. It also enables
load balancing and load localization. One can define different availabil-
ity zones, where an availability zone can be a physical server, rack of
servers, different parts of a data center, different data centers, etc., to
ensure that each copy/replica is placed in different availability zones.

Full text available at: http://dx.doi.org/10.1561/1300000051

6 Introduction

1.1.3 Load Balancing

Load balancers try to distribute the load to individual servers (in our
case storage nodes) to utilize all the available resources and keep aver-
age access latency at the lowest level possible.

Load balancing can be built into the system to ensure more even
distribution of the incoming workload by randomization. A simple and
effective way of such built in load distribution can be achieved through
random hashing as follows. The first step is to map the object names
(i.e., keys) that can be arbitrary strings into a fixed number of bits (e.g.,
128-bit, 256-bit) using a well-known hash function. The hash value of
the object represents the position of the object on a logical ring, where
two hash values obtained by adding and subtracting 1 to and from this
value correspond to the clockwise and counter clockwise neighboring
points on the same logical ring. The next step is to partition the key
space across the storage nodes. Each storage node i can be assigned
ti random hash values (called tokens) on the same logical ring. To
identify the node that stores the object with a particular key is found
by walking the logical ring starting from the target key in clockwise (or
counter clockwise) direction until the first token is encountered. The
node that owns this token stores the object. When number of tokens
are sufficiently large and the value of ti’s are set proportional to the
resources of each node i, we can have even distribution of load without
incurring large load deviations. When object j is replicated Ni times,
instead of the first token encountered, first Ni tokens on the logical
ring that owned by distinct storage nodes can be set as the replication
locations. If it is desired to have multiple availability regions, each
region can be organized as a separate logical ring. This type of logical
ring organization goes back to early peer to peer (P2P) systems such
as Chord [54] and is applied in modern systems such as Cassandra [34]
and Dynamo [12].

Load balancers can also be built as programmable appliances, where
candidate locations are assigned weights and a weighted round robin
scheduling is performed by the load balancers. The weights are dy-
namically adjusted based on the load reports or latency measurements
obtained from each node. As load balancers must monitor the per-

Full text available at: http://dx.doi.org/10.1561/1300000051

1.1. Techniques to Improve the Performance of Distributed Storage 7

!
"#

!
$#

!
%#

!"#$%&'()"*&$+"

!,"-('.&/0123"
!

"#
!

$#
!

%# !
"#

!
$#

!
%#

"# $# %# &# '# (#)# *# +#

,
"#

,
$#

,
%#

!"#$%&'()"*&$+"

456!7"8%0)9%(":2;("
,
&#

,
'#

,
(# ,

)#
,
*#

,
+#

"# $# %# &# '# (#)# *# +#

Figure 1.1: Data Replication vs. Coding.

formance of storage nodes and all requests are channeled through
them, they have the potential to become bottlenecks. Therefore, as
a lighter weight solution, load balancers often are designed for indi-
recting/routing requests to the relevant storage nodes, which in return
directly communicates with the client application.

1.1.4 Coded Storage

Error correction codes have been used in individual memory hardware
to detect and correct errors due to noise as well as the interference from
the neighboring memory units for decades. In distributed storage sys-
tems, as described earlier, replication has been widely used to increase
availability and data durability against losses of entire storage nodes.
It is relatively recent that erasure coding is being utilized in large scale
distributed storage systems (e.g., Microsoft Azure [23]). Coded storage
is superior in terms of data reliability against simple replication when
both techniques use the same amount of memory. In many situations
it is also better in terms of I/O speeds as it allows maximum degree of
freedom in accessing the data. Figure 1.1 illustrates this point in a toy
example, where there are nine storage nodes storing a single file parti-
tioned into three stripesm1,m2, andm3. Via 3× replication, each stripe
is copied over three distinct nodes. In contrast, coded system generates
nine encoded blocks x1 through x9 from original stripes m1 through
m3, then distribute them over the nine nodes. In the replication based
system, storage client can use 33 = 27 different subsets of nodes to
retrieve the file, whereas in the coded system the number of choices

Full text available at: http://dx.doi.org/10.1561/1300000051

8 Introduction

increases to
(9
3
)

= 84 as any three nodes can be used to reconstruct the
original file. For instance, a load balancer could pick the least loaded or
closest three nodes to fetch the file without facing the constraints repli-
cation based system endures. The downside is that encoding/decoding
overheads are introduced into the system as well as a more complicated
repair procedure when failures occur almost inevitably. Coded storage
is the main subject of our book and will be covered in details in the
next two chapters.

1.1.5 Consistency Model

Distributed systems are designed with a consistency model in mind,
which itself impacts the I/O performance. Data consistency becomes
an issue when there are concurrent reads and writes for the same ob-
ject. When there are N coded/uncoded copies of an object, a read or
write request can be committed after R or W nodes (1 ≤ R,W ≤ N)
that have a copy respond first, respectively. Picking parameters R,W
such that (R+W) > N ensures that the system is strongly consistent.
In other words, any client is ensured that every read returns the latest
version committed by the system. Under strong consistency constraint,
setting R small increasesW and vice versa. Thus, for read-heavy work-
loads it is desirable to set R to a low value, if possible to one. For write-
heavy workloads, the reverse configuration becomes the optimal. For
mixed workloads, one can optimize for the average or other moments of
the overall delay distribution. Depending on how copies are located in
terms of their topological or geographical distances, consistency model
can even be used as a side information to perform better load balancing
[32].

If the updates are strictly ordered among N nodes and clients at-
tempt to read the copies following the same order, then again strong
consistency can be ensured although (R+W) ≤ N . The caveat is that
we cannot balance the load across N copies and the system is designed
mainly for data reliability.

Setting (R + W) ≤ N leads to eventual consistency when a client
can be requesting the copy from any of the N nodes, i.e., the client
will get the latest version of the object "eventually" for sure after all

Full text available at: http://dx.doi.org/10.1561/1300000051

1.2. Distributed Storage Systems and Operational Characteristics 9

the copies are updated. As a result, one can set R = W = 1 in this
consistency model, increasing the I/O performance substantially for all
workloads.

1.2 Distributed Storage Systems and Operational Character-
istics

Distributed storage systems span a wide range of technologies and op-
erational characteristics. From the bare-bone features such as how the
storage nodes are topologically laid out and physically inter-connected
(optical, coaxial, copper) to higher level features such as physical prox-
imity of these nodes, their logical organization (e.g., centralized or de-
centralized), and the stack of communication protocols are being used
(e.g., proprietary, Ethernet, TCP/IP, etc.) between the nodes can be
quite different. The goal of this section is to highlight operational char-
acteristics and techniques being employed to increase the performance,
rather than presenting a detailed technology survey of past and existing
distributed storage systems.

1.2.1 Disk Arrays

Magnetic disks have been the most cost effective way of storing large
amounts of data. Rather than using one very expensive, high capacity
and reliable disk, building disk arrays from much cheaper disks pro-
vides a solid alternative at a reduced cost with higher energy efficiency,
throughput, and reliability when properly designed [43]. Redundant Ar-
rays of Inexpensive/Independent Disks (RAID) systems become avail-
able in 1980s and by late 1990s they become the most common form
of bulk storage in enterprise servers. Different RAID levels are defined
as standard forms and they encompass various combinations of strip-
ing, replication, and coding. RAID 0 systems use striping for increased
throughput, but does not provide protection against individual disk
failures. RAID 1 uses replication (also called mirroring) without strip-
ing and coding. RAID 2, RAID 3, and RAID 4 provide bit, byte, and
block level striping with a dedicated parity disk. RAID 5 and RAID
6 use single and double parity erasure codes without dedicated parity

Full text available at: http://dx.doi.org/10.1561/1300000051

10 Introduction

disks, respectively. Nested RAID systems can also be built with dif-
ferent levels supporting different combinations of striping, replication,
and coding.

Disk arrays are typically local (i.e., directly attached) to one phys-
ical server and their scale is relatively much smaller than the other
distributed storage systems which can be collection of tens to millions
of servers. The main bottleneck in magnetic discs is due to the involve-
ment of mechanical components (e.g., to rotate the disk to access the
right sector). They enjoy dedicated high bandwidth bus interfaces to
directly connect to the host controller serving the host system. Coding
is used mainly for higher degree of protection against failures rather
than speeding up the I/O performance. On the contrary, when parity
symbols must be written/read, the I/O throughput reduces.

1.2.2 Network Attached Storage (NAS) & Storage Area Network
(SAN)

Both NAS and SAN systems provide access to a shared pool of disks
that are not directly attached to the host computers, where applica-
tions are running. The main difference for the host servers is in the
abstraction: NAS exposes itself as a file server hiding the details of
the block storage underneath whereas SAN exposes itself as a block
storage device that can be mounted as a disk volume and client must
use volume management and formatting tools supported by its local
operating system.

NAS systems can consist of one storage server with multiple disks on
it or a cluster of such storage servers. In its cluster form, a distributed
file system must be installed over the storage servers. Data can then
be striped, replicated, and coded to be stored over multiple servers as
in the RAID systems. The communication between the host computers
and NAS servers occur over the local area network (LAN), which can be
dedicated to the storage tier or shared with all the hosts in the network.

SAN systems typically use dedicated hardware and network for high
performance. Fiber Channel, Ethernet, even IP networks can be used
to connect the storage servers to the host computers. The interfaces to
access block storage devices such as ATA and SCSI are communicated

Full text available at: http://dx.doi.org/10.1561/1300000051

1.2. Distributed Storage Systems and Operational Characteristics 11

over these networks or point-to-point channels with corresponding pro-
tocols such as FCP, AoE, FCoE, iFCP, iSCSI, etc.

Unlike directly attached disk arrays, NAS and SAN systems provide
a shared and unified storage tier. The typical usage mode is limited
to the enterprise boundaries and applications. Once deployed, these
systems are relatively hard to expand by the services using them as
new hardware must be installed requiring manual labor beyond simple
configuration changes.

1.2.3 Peer to Peer (P2P) Storage

P2P systems have been quite popular since the late 1990s. P2P sys-
tems pool the computers of end users to build a service infrastructure
by very small capital expenditure by the service providers. Peers are
both the servers and consumers of the data stored in the P2P sys-
tem. Such systems were experimentally as well as commercially built
for non real-time file sharing services as well as real-time services such
as voice over IP (VoIP), TV and video streaming. P2P systems pose
the ultimate challenge for building a global-scale service infrastructure.
As they are built over end user computers, which leave and join the
network arbitrarily at will, they must be very resilient against frequent
topology changes and node churn. Furthermore, end computers might
have quite heterogeneous storage capacity and access bandwidth com-
mitted to the system. By their very virtue, P2P systems are built to
operate over Internet. Therefore, the best effort traffic between peer
nodes would see contention from the rest of the Internet.

P2P storage or file sharing systems have quite significant variations.
In terms of content search, P2P systems typically utilized one of these
approaches. (i) Centralized server/tracker : Peers publish their content
and send their queries to this central server. (ii) Super nodes: Peers
publish their content and send their queries to a super node. Queries
are flooded among super nodes. A peer can be promoted to super node
status depending on their lifetime in the system and available resources.
(iii) Query routing: Peer queries are propagated via neighboring peers.
In query routing, flooding, random walk, bloom filters, distributed hash
tables (DHT) are among the techniques being heavily used.

Full text available at: http://dx.doi.org/10.1561/1300000051

12 Introduction

Although search has been a very critical component, how to fetch
the data at scale and reliably have been the main emphasis in prac-
tical systems. BitTorrent [44] is widely popular due to its success in
delivering high performance in file download. It divides larger files into
chunks of fixed size (e.g., 256KByte). A downloading peer requests
missing chunks of a file from all the peers it is connected to (e.g., 20
peers) in the same torrent. Thus, different chunks are fetched from dif-
ferent peers in parallel. BitTorrent employs a rate control policy such
that an uploader limits the number of its concurrent downloaders to
a fixed numbed. Each uploader chokes its worst downloader (i.e., the
one with the least upload rate) and serves (referred to as unchoking)
another interested peer for the next period.

Erasure coding is also utilized in the context of P2P networks to
prevent stalls due to rare pieces and facilitate reduced file download
times. Particularly random network coding is proposed and evaluated in
Avalanche system [19], where peers encode all incoming chunks/packets
using linear codes before forwarding to the next peer. Even in topolo-
gies where network coding has no advantage, it simplifies the resource
optimization problems to the extent where intractable problems with
simple routing (e.g., NP-hard tree packing problems) can be trans-
formed into tractable problems [9].

1.2.4 Cloud Storage

Cloud storage has many different flavors including distributed file sys-
tems supporting massive data storage and analytics (e.g., Hadoop Dis-
tributed File System (HDFS)), non-relational (i.e., NoSQL) databases
(e.g., Amazon Dynamo DB, Microsoft Azure Redis Cache and Docu-
mentDB, Google Cloud Datastore, Cassandra, MangoDB, Couchbased,
etc.) supporting relatively small data, relational (i.e., SQL) databases,
key-value stores for relatively large files (e.g., Amazon S3, Microsoft
Azure Blob Storage, Google Cloud Storage, etc.), and block storage
(e.g., Amazon EBS).

The main premise of the cloud storage is utility-based computing,
storage, and networking. As demand increases or reduces on any re-
source tier, service provider can scale up or down that tier and pay

Full text available at: http://dx.doi.org/10.1561/1300000051

1.2. Distributed Storage Systems and Operational Characteristics 13

proportionately more or less. In the case of storage, pricing covers many
things including actual storage space occupied (e.g., monthly average
usage in the granularity of gigabytes), the number of reads and writes
(e.g., every cent provides 10,000 reads or 1,000 writes, etc.), the amount
of bytes transferred into and out of the cloud (e.g., free for transfer ins
and per gigabyte charging for transfer outs), throughput guarantees
(e.g., number of I/O operations per second), etc. Service level agree-
ments can be different depending on the storage type. For database
systems, delay and throughput guarantees are critical. Thus, through-
put limits can be explicitly defined and charged for. For bulk storage,
data persistency guarantees are more critical. Therefore, they can be
explicitly defined and charged for. An example would be reduced data
durability services in Amazon S3 and Azure Blob Storage that still pro-
vides significantly high durability guarantees (e.g., 10−9) at a fraction
of the cost of standard service (e.g., 10−11). Next we provide few cloud
services and their underlying storage paradigms.

Hadoop [53] and its various flavors have become one of the most
important data analytics infrastructure that enable massive parallel
computing. Hadoop is the open source version of Google’s MapReduce
[11] and it runs over Hadoop Distributed File System (HDFS). HDFS
separates the cluster nodes into NameNodes and DataNodes. NameN-
odes store metadata of the files that includes information about blocks
of the file and where each block is replicated. DataNodes are the servers
that actually use their local disks to store file blocks. Files are divided
into large blocks (e.g., of size 128 Mbyte) and each block is replicated
on multiple DataNodes. Different blocks of the same files can be repli-
cated to distinct servers. By default, each block is replicated to three
DataNodes. When an HDFS client wants to write a new block of a
file, it contacts its NameNode and asks for the DataNodes. Then, the
client prepares a pipeline for replication and writes the block to the
first DataNode in the pipeline. Each DataNode sends the replica block
to the next DataNode on the pipeline. When an HDFS client wants to
read a file, it contacts the NameNode to learn which blocks of the file
is stored in which DataNodes. The client then directly contacts one of
the NameNodes for each block (e.g., typically the closest NameNode

Full text available at: http://dx.doi.org/10.1561/1300000051

14 Introduction

to the client). Hadoop distributes the MapReduce tasks to the ma-
chines closest to the data blocks they process. When blocks are placed
on distinct servers, it enables parallel processing. Due to the replica-
tion, when many MapReduce jobs coexist, scheduler have more options
to distribute the load evenly avoiding congestion on a DataNode that
might have blocks that are concurrently processed by different tasks.

Dynamo DB is a public non-relational database offering by Amazon
that can be used to store a structured table with items of small size
(1 byte to 400 Kbyte). It combines the features from original Dynamo
system [12] and SimpleDB offering again by Amazon. It stores the
data in solid state disks (SSDs) and replicates each table onto three
different availability zones that share no critical systems together (e.g.,
power supply, cooling, etc.). Within the same availability zone, one can
read/write data items in the order of milliseconds. When clients use
Simple Hash Key, a zero-hop distributed hast table (DHT) approach
is used to partition the table items (see Section 1.1.5). When clients
use Composite Hash Key with Range Key, composite hash attribute
uniquely maps to the item location, while range attribute is used to
retrieve all records within the range. In this case, all the items matching
to the same composite hash key can be accessed from the same server.

Simple Storage Service (S3) is yet another Amazon service that
can store data up to 5 Terabytes. It is an unstructured storage service,
where unique keys (e.g., file names) are used to access each object. From
S3 point of view, an object is simply a byte string of a predetermined
length and it is the responsibility of the developer to organize/partition
its data set to store on S3. S3 is quite flexible and one can design
disk back up services, cloud based file services (e.g., DropBox), media
delivery services (e.g., Netflix), or even overlay database services. S3
replicates the data to 3 different availability zones by default every time
a new object is added. Since dense storage media (e.g., magnetic disks
or even tapes for archival data) are utilized, the performance can be
in the order of 10s of milliseconds even for small objects (e.g., 1Kbyte)
within the same availability zone.

Full text available at: http://dx.doi.org/10.1561/1300000051

1.3. Book Organization 15

1.3 Book Organization

As visible from various different cloud offerings, the technologies and
application domains have a lot of variety. In the following chapters,
we will narrow our attention to the applications of erasure codes in
the context of cloud based storage. Erasure coding is a critical piece
of technology that plays a substantial role in the evolution of next
generation cloud storage systems. Specifically, erasure codes have been
proposed, prototyped and in some cases commercialized (e.g., HDFS-
RAID originally developed by Facebook, Xorbas Hadoop [48], Amazon
S3 [35]) as an enabling technology in cloud-based storage for increased
efficiency or latency performance. Erasure codes on one hand can facil-
itate great reductions in storage costs and on the other hand can also
bring about a more predictable, superior read/write (simply referred to
as I/O) performance in the face of instantaneous, random performance
degradation in parts of these massive systems.

We organized the remaining part of the book in two main chapters
such that each chapter is self-contained and can be read independently
covering key concepts in recent yet vast literature on how to design
and use erasure codes in storage clouds. In Chapter 2, we cover erasure
codes from the storage efficiency and network bandwidth points of view
for a targeted protection against node failures. More specifically, we
overview maximum distance separable codes (MDS), rateless codes,
and repair/regenerative codes. The design of erasure codes with desired
storage and bandwidth efficiency is the main topic of interest in this
first main chapter. In Chapter 3, we turn our attention to the utilization
of erasure codes as a tool to speed up the access latency for data stored
in the cloud. Rather than focusing on the design of a code, we will
assume a generic MDS code and look into the queueing dynamics, trade
offs for accessing erasure coded data. Results derived both for purely
mathematical models such as exponential service times and for more
practical models derived from actual measurements on storage clouds
are presented in this chapter.

Full text available at: http://dx.doi.org/10.1561/1300000051

References

[1] Rudolf Ahlswede, Ning Cai, Shuo-Yen R. Li, and Raymond W. Yeung
Network information flow. IEEE Transactions on Information Theory,
46(4):1204–1216, Jul 2000.

[2] Paul J. Burke. The output of a queuing system. Operations Research,
4(6):699–704, 1956.

[3] John W. Byers, Gu-In Kwon, Michael Luby, Michael Mitzenmacher A
digital fountain approach to asynchronous reliable multicast. IEEE Jour-
nal on Selected Areas in Communications, 20(8):1528–1540, Oct 2002.

[4] Viveck R Cadambe, Syed Ali Jafar, Hamed Maleki, Kannan Ramchan-
dran, and Changho Suh. Asymptotic interference alignment for optimal
repair of mds codes in distributed storage. IEEE Transactions on Infor-
mation Theory, 59(5):2974–2987, 2013.

[5] Chris X. Cai, Guanfeng Liang, and Ulas C Kozat. Load balancing and
dynamic scaling of cache storage against zipfian workloads. In IEEE
International Conference on Communications (ICC), pages 1–7. IEEE,
2014.

[6] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E
Gruber. Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4, 2008.

[7] Peter M Chen, Edward K Lee, Garth A Gibson, Randy H Katz, and
David A Patterson. Raid: High-performance, reliable secondary storage.
ACM Computing Surveys (CSUR), 26(2):145–185, 1994.

92

Full text available at: http://dx.doi.org/10.1561/1300000051

References 93

[8] Shengbo Chen, Yin Sun, Ulas C. Kozat, Longbo Huang, P. Sinha, Guan-
feng Liang, Xin Liu, and Ness B. Shroff. When queueing meets coding:
Optimal-latency data retrieving scheme in storage clouds. In Proceedings
of INFOCOM 2014, pages 1042–1050, Apr 2014.

[9] Dah Ming Chiu, Raymond W. Yeung, Jiaqing Huang, and Bin Fan. Can
network coding help in p2p networks? In 4th International Symposium
on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks,
pages 1–5, Apr 2006.

[10] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silber-
stein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver,
and Ramana Yerneni. Pnuts: Yahoo!’s hosted data serving platform.
Proceedings of the VLDB Endowment, 1(2):1277–1288, 2008.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. Communications of the ACM, 51(1):107–113,
Jan 2008.

[12] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly
available key-value store. In ACM SIGOPS Operating Systems Review,
volume 41, pages 205–220. ACM, 2007.

[13] Alexandros G. Dimakis, P. Brighten Godfrey, Yunnan Wu, Martin J.
Wainwright, and Kannan Ramchandran. Network coding for distributed
storage systems. IEEE Transactions on Information Theory, 56(9):4539–
4551, Sept 2010.

[14] Alexandros G. Dimakis, Kannan Ramchandran, Yunnan Wu, and
Changho Suh. A survey on network codes for distributed storage.
Proceedings of the IEEE, 99(3):476–489, 2011.

[15] Alessandro Duminuco and Ernst W Biersack. Hierarchical codes: A flex-
ible trade-off for erasure codes in peer-to-peer storage systems. Peer-to-
peer networking and applications, 3(1):52–66, 2010.

[16] Toni Ernvall. Exact-regenerating codes between MBR and MSR points.
CoRR, abs/1304.5357, 2013.

[17] Ulric J. Ferner, Tong Wang, and Muriel Medard. Network coded storage
with multi-resolution codes. In Signals, Systems and Computers, 2013
Asilomar Conference on, pages 652–656, Nov 2013.

[18] Simson L. Garfinkel. An Evaluation of Amazon’s Grid Computing Ser-
vices: EC2, S3 and SQS. Technical report, Harvard University, 2007.

Full text available at: http://dx.doi.org/10.1561/1300000051

94 References

[19] Christos Gkantsidis and Pablo Rodriguez Rodriguez. Network coding
for large scale content distribution. In INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, volume 4, pages 2235–2245. IEEE, 2005.

[20] Sreechakra Goparaju, Salim El Rouayheb, and A. Robert Calderbank.
New codes and inner bounds for exact repair in distributed storage sys-
tems. CoRR, abs/1402.2343, 2014.

[21] Kevin M. Greenan , Xiaozhou Li , and Jay J. Wylie. Flat xor-based
erasure codes in storage systems: Constructions, efficient recovery, and
tradeoffs. In IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST), pages 1–14, May 2010.

[22] Tracey Ho, Muriel Médard, Ralf Koetter, David R Karger, Michelle Ef-
fros, Jun Shi, and Ben Leong. A random linear network coding approach
to multicast. IEEE Transactions on Information Theory, 52(10):4413–
4430, 2006.

[23] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder,
Parikshit Gopalan, Jin Li, Sergey Yekhanin, et al. Erasure coding in
windows azure storage. In USENIX ATC, volume 12, 2012.

[24] Longbo Huang, Sameer Pawar, Hao Zhang, and Kannan Ramchandran.
Codes can reduce queueing delay in data centers. In IEEE International
Symposium on Information Theory Proceedings (ISIT), pages 2766–2770.
IEEE, 2012.

[25] Sidharth Jaggi, Peter Sanders, Philip A. Chou, Michelle Effros, Sebastian
Egner, Kamal Jain, and Ludo M. G. M. Tolhuizen. Polynomial time
algorithms for multicast network code construction. IEEE Transactions
on Information Theory, 51(6):1973–1982, June 2005.

[26] Gauri Joshi, Yanpei Liu, and Emina Soljanin. Coding for Fast Con-
tent Download. In 50th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), pages 326–333. IEEE, 2012.

[27] Gauri Joshi, Yanpei Liu, and Emina Soljanin. On the delay-storage trade-
off in content download from coded distributed storage systems. arXiv
preprint arXiv:1305.3945, 2013.

[28] Gauri Joshi, Yanpei Liu, and Emina Soljanin. On the Delay-Storage
Trade-Off in Content Download from Coded Distributed Storage Sys-
tems. IEEE Journal on Selected Areas in Communications, 32(5):989–
997, 2014.

Full text available at: http://dx.doi.org/10.1561/1300000051

References 95

[29] Osama Khan, Randal Burns, James Plank, William Pierce, and Cheng
Huang. Rethinking erasure codes for cloud file systems: Minimizing i/o
for recovery and degraded reads. In USENIX FAST, 2012.

[30] Cheeha Kim and Ashok K. Agrawala. Analysis of the fork-join queue.
IEEE Transactions on Computers, 38(2):250–255, Feb 1989.

[31] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and
Edmund Wong. Zyzzyva: Speculative Byzantine fault tolerance. ACM
Transactions on Computer Systems, 27:7:1–7:39, 2010.

[32] Hiroyuki Kubo and Ulas C Kozat. On improving latency of geograph-
ically distributed key-value stores via load balancing with side infor-
mation. In IEEE International Conference on Communications (ICC),
pages 3710–3715. IEEE, 2013.

[33] Jerome Lacan and Jerome Fimes. Systematic mds erasure codes based
on vandermonde matrices. IEEE Communications Letters, 8(9):570–572,
Sept 2004.

[34] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Systems Review,
44(2):35–40, 2010.

[35] Guanfeng Liang and U.C. Kozat. TOFEC: Achieving optimal
throughput-delay trade-off of cloud storage using erasure codes. In Pro-
ceedings IEEE INFOCOM 2014, pages 826–834, Apr 2014.

[36] Guanfeng Liang and Ulas C Kozat. Use of erasure code for low latency
cloud storage. In 52nd Annual Allerton Conference on Communication,
Control, and Computing, 2014, Oct 2014.

[37] Guanfeng Liang and Ulas C Kozat. FAST CLOUD: Pushing the
Envelope on Delay Performance of Cloud Storage with Coding.
IEEE/ACM Transactions on Networking, preprint, 13 Nov. 2013. doi:
10.1109/TNET.2013.2289382.

[38] Guanfeng Liang and Ulas C. Kozat. On throughput-delay optimal access
to storage clouds via load adaptive coding and chunking. arXiv preprint
arXiv:1403.5007, 2014.

[39] Zimu Liu, Chuan Wu, Baochun Li, and Shuqiao Zhao. Uusee: large-
scale operational on-demand streaming with random network coding. In
Proceedings IEEE INFOCOM 2010, pages 1–9. IEEE, 2010.

[40] Michael Luby. LT codes. In 43rd Annual IEEE Symposium on Founda-
tions of Computer Science, pages 271–280, 2002.

Full text available at: http://dx.doi.org/10.1561/1300000051

96 References

[41] Michael Luby, Tiago Gasiba, Thomas Stockhammer, and Mark Watson.
Reliable multimedia download delivery in cellular broadcast networks.
IEEE Transactions on Broadcasting, 53(1):235–246, Mar 2007.

[42] Dimitris S Papailiopoulos, Jianqiang Luo, Alexandros G Dimakis, Cheng
Huang, and Jin Li. Simple regenerating codes: Network coding for cloud
storage. In Proceedings IEEE INFOCOM 2012, pages 2801–2805. IEEE,
2012.

[43] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redun-
dant arrays of inexpensive disks (raid). SIGMOD Record, 17(3):109–116,
Jun 1988.

[44] Dongyu Qiu and R. Srikant. Modeling and performance analysis of
bittorrent-like peer-to-peer networks. In Proceedings of the 2004 Con-
ference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, SIGCOMM 2004, pages 367–378, New York,
NY, USA, ACM, 2004.

[45] K. Vinayak Rashmi, Nihar B. Shah, and P. Vijay Kumar. Optimal exact-
regenerating codes for distributed storage at the MSR and MBR points
via a product-matrix construction. CoRR, abs/1005.4178, 2010.

[46] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In Mid-
dleware 2001, pages 329–350. Springer, 2001.

[47] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopou-
los, Alexandros G. Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba
Borthakur. Xoring elephants: novel erasure codes for big data. In Pro-
ceedings of the 39th international conference on Very Large Data Bases,
PVLDB 2013, pages 325–336. VLDB Endowment, 2013.

[48] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris S. Papail-
iopoulos, Alexandros G. Dimakis, Ramkumar Vadali, Scott Chen, and
Dhruba Borthakur. Xoring elephants: Novel erasure codes for big data.
CoRR, abs/1301.3791, 2013.

[49] Nihar B. Shah, K. Vinayak Rashmi, P. Vijay Kumar and Kannan Ram-
chandran. Explicit codes minimizing repair bandwidth for distributed
storage. In IEEE Information Theory Workshop (ITW), pages 1–5, Jan
2010.

[50] Nihar B. Shah, K. Vinayak Rashmi, P. Vijay Kumar and Kannan
Ramchandran. Distributed storage codes with repair-by-transfer and
nonachievability of interior points on the storage-bandwidth tradeoff.
IEEE Transactions on Information Theory, 58(3):1837–1852, Mar 2012.

Full text available at: http://dx.doi.org/10.1561/1300000051

References 97

[51] Nihar B. Shah, Kangwook Lee, and Kannan Ramchandran. The MDS
queue: Analysing the latency performance of erasure codes. arXiv
preprint arXiv:1211.5405, 2013.

[52] Amin Shokrollahi. Raptor codes. IEEE Transactions on Information
Theory, 52(6):2551–2567, 2006.

[53] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST), pages 1–10.
IEEE, 2010.

[54] Ion Stoica, Robert Morris, David Liben-Nowell, David R Karger, M Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: A scalable peer-
to-peer lookup protocol for internet applications. IEEE/ACM Transac-
tions on Networking, 11(1):17–32, 2003.

[55] Changho Suh and Kannan Ramchandran. Exact regeneration codes
for distributed storage repair using interference alignment. CoRR,
abs/1001.0107, 2010.

[56] Chao Tian, Birenjith Sasidharan, Vaneet Aggarwal, Vinay A. Vaisham-
payan, and P. Vijay Kumar. Layered, exact-repair regenerating codes
via embedded error correction and block designs. CoRR, abs/1408.0377,
2014.

[57] Yunnan Wu, Alexandros Ros Dimakis, and Kannan Ramchandran.
Deterministic regenerating codes for distributed storage. In Allerton
Conference on Communication, Control, and Computing, 2007.

[58] Yu Xiang, Tian Lan, Vaneet Aggarwal, and Yih-Farn Robin Chen. Joint
latency and cost optimization for erasure-coded data center storage.
arXiv preprint arXiv:1404.4975, 2014.

[59] Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno Thereska, and
Dushyanth Narayanan. Does erasure coding have a role to play in my
data center. Microsoft Research MSR-TR-2010, 52, 2010.

[60] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry:
A fault-tolerant wide-area application infrastructure. SIGCOMM Com-
puter Communations Review, 32(1):81–81, Jan 2002.

Full text available at: http://dx.doi.org/10.1561/1300000051

	Introduction
	Techniques to Improve the Performance of Distributed Storage
	Distributed Storage Systems and Operational Characteristics
	Book Organization

	Data Durability/Availability, Storage Efficiency, and Network Capacity
	MDS Codes
	Fountain/Rateless Codes
	Regenerating/Repair Codes

	Cloud Storage with high I/O Performance
	Models
	Black Box Models and Performance Analysis
	White Box Models and Performance Analysis
	Summary

	Conclusion
	References

