Age of Information: A New Concept, Metric, and Tool
Other titles in Foundations and Trends® in Networking

Opportunistic Routing in Wireless Networks
Tara Javidi and Eric Van Buhler
ISBN: 978-1-68083-150-4

Modeling and Optimization of the Smart Grid Ecosystem
Iordanis Koutsopoulos, Thanasis G. Papaioannou, and Vasiliki Hatzi
ISBN: 978-1-68083-158-0

Millimeter Wave Vehicular Communications: A Survey

Building Reliable Storage Clouds: Models, Fundamental Tradeoffs, and Solutions
Ulas C. Kozat and Guanfeng Liang
ISBN: 978-1-68083-064-4

Wireless Network Optimization by Perron-Frobenius Theory
Chee Wei Tan
ISBN: 978-1-68083-050-7

A Clean Slate Approach to Secure Wireless Networking
Jonathan Ponniah, Yih-Chun Hu, P. R. Kumar
ISBN: 978-1-68083-048-4
Age of Information: A New Concept, Metric, and Tool

Antzela Kosta
Dept. of Science and Technology
Linköping University, Sweden
antzela.kosta@liu.se

Nikolaos Pappas
Dept. of Science and Technology
Linköping University, Sweden
nikolaos.pappas@liu.se

Vangelis Angelakis
Dept. of Science and Technology
Linköping University, Sweden
vangelis.angelakis@liu.se

Full text available at: http://dx.doi.org/10.1561/1300000060
Editorial Scope

Topics

Foundations and Trends® in Networking publishes survey and tutorial articles in the following topics:

- Modeling and Analysis of:
 - Ad Hoc Wireless Networks
 - Sensor Networks
 - Optical Networks
 - Local Area Networks
 - Satellite and Hybrid Networks
 - Cellular Networks
 - Internet and Web Services

- Protocols and Cross-Layer Design

- Network Coding

- Energy-Efficiency Incentives/Pricing/Utility-based

- Games (co-operative or not)

- Security

- Scalability

- Topology

- Control/Graph-theoretic models

- Dynamics and Asymptotic Behavior of Networks

Information for Librarians

Foundations and Trends® in Networking, 2017, Volume 12, 4 issues. ISSN paper version 1554-057X. ISSN online version 1554-0588. Also available as a combined paper and online subscription.
Contents

1 Introduction 2

2 The Introduction of the Concept 5
 2.1 Age of Information 5
 2.2 First Queue-theoretic System Abstractions 10
 2.3 Summary 15

3 The Early Works 16
 3.1 Sharing the System Among Multiple Traffic Streams 17
 3.2 Basic Scheduling Through Queues 21
 3.3 Peak Age of Information 27
 3.4 Availability of Resources 30
 3.5 Packet Management 40
 3.6 Summary 53

4 Subsequent Works and Extensions 55
 4.1 Rate Control Optimization 56
 4.2 Packet Deadlines 61
 4.3 Optimizing Age, Throughput, and Delay 66
 4.4 Summary 68
Age of Information: A New Concept, Metric, and Tool

Antzela Kosta¹, Nikolaos Pappas² and Vangelis Angelakis³

¹Dept. of Science and Technology, Linköping University, Sweden; antzela.kosta@liu.se
²Dept. of Science and Technology, Linköping University, Sweden; nikolaos.pappas@liu.se
³Dept. of Science and Technology, Linköping University, Sweden; vangelis.angelakis@liu.se

ABSTRACT

Age of information (AoI) was introduced in the early 2010s as a notion to characterize the freshness of the knowledge a system has about a process observed remotely. AoI was shown to be a fundamentally novel metric of timeliness, significantly different, to existing ones such as delay and latency. The importance of such a tool is paramount, especially in contexts other than transport of information, since communication takes place also to control, or to compute, or to infer, and not just to reproduce messages of a source. This volume comes to present and discuss the first body of works on AoI and discuss future directions that could yield more challenging and interesting research.

The concept of *Age of Information* (AoI) was introduced in 2011 in [31] to quantify the freshness of the knowledge we have about the status of a remote system. More specifically, AoI is the time elapsed since the generation of the last successfully received message containing update information about its source system. Utilizing a simple communication system model, in a series of papers ([32], [33], [30], and [58]), the first group of characterizations of the Age of Information metric had appeared by 2012. Since then, AoI has attracted a vivid interest, with over 50 publications, in the last six years \(^1\).

The attention AoI has been receiving is due to two factors. The first is the sheer novelty brought by AoI in characterizing the freshness of information versus for example that of the metrics of delay or latency. Second, the need and importance of characterizing the freshness of such information is paramount in a wide range of information, communication, and control systems. By now, age has been studied with considerable diversity of systems, being as a concept, a performance metric, and a tool.

\(^1\)In this volume we take into consideration works that have been published no later than June 2017.
The purpose of this volume is to present a critical summary of this first body of works performed on AoI and discuss future research directions. Already at this early point we need to put down our first disclaimer: we have chosen to treat the early works with significantly more detail, going deeper in the derivations and presenting more results and insights from them than we do with more recent works. The reason for this is to achieve a tutorial nature in the volume, which can provide a solid ground of the AoI as a concept. Moreover, the first works, which we chose to present in more detail than the rest, aim to provide fundamentally new knowledge in the premise of maintaining information fresh in a system. This basic goal opens up a wide range of communication contexts that span from estimation and prediction, to applications such as vehicular networks and information caching, to name a few.

With this in mind, we begin this volume presenting the AoI concept as it was originally introduced. For this, we discuss the original models of Kaul, Gruteser and Yates of [33], considering a system where a source is transmitting packets containing status updates to a destination. The analysis presented is based on a simple queueing model. Already in that work the minimization of AoI was shown to be non-trivial for the source sampling methods studied. However, it had already become clear that timely updating a destination about a remote system is neither the same as maximizing the utilization of the communication system, nor of ensuring that generated status updates are received with minimum delay. This is because utilization can be maximized by making the source send updates as fast as possible which would lead to the destination receiving delayed statuses because messages are backlogged in the communication system studied. In this case, delay suffered by the stream of status updates can be reduced by decreasing the rate of updates. Alternatively, decreasing the update rate can also lead to the destination having unnecessarily outdated status information because of lack of updates.

AoI has spawned relevant performance metrics that are more tractable such as the Peak Age of Information or the Cost of Update Delay, opening even more research opportunities. Under the timely update context, the relevant timeliness performance metrics should be kept at values
that ensure high freshness of information. Already the first AoI lower bound had appeared in [33] and we discuss it in Section 2. We then continue the discussion on the early works of AoI as a performance metric in Section 3, where we present the case of AoI for multiple sources, its use in scheduling, and demonstrate packet management techniques that have been employed. Section 4 treats AoI as a metric for rate control, addresses the case of packets with deadlines, and presents an optimal policy for optimizing age, throughput, and delay.

Keeping the AoI metrics low is of high interest when AoI is being treated as a tool to facilitate the timely update of information that will eventually improve performance metrics in different contexts. Consider for example remote estimation; if the process under observation consists of highly correlated data, then the frequency of generation and transmission of updates can be significantly reduced without affecting the timeliness of the information at a remote receiver. In Section 5, we discuss three domains in which AoI has been treated as a tool: Channel State Information (CSI) estimation, energy harvesting, and scheduling.

Recent works that have appeared in the time of writing of this volume have been categorized and treated in Section 6. Finally, in Section 7, we provide a brief discussion of indicative future topics on which the AoI can contribute. The topics we cover there are not a complete list, as there is an immense wealth of possible problems associated with the notion of timeliness as captured by age, in the form of either a tool, a performance metric, or even a concept.
References

References

References

References

