
Contagion Source Detection
in Epidemic and Infodemic

Outbreaks: Mathematical
Analysis and Network

Algorithms

Full text available at: http://dx.doi.org/10.1561/1300000068



Other titles in Foundations and Trends® in Networking

Distributed Coding in A Multiple Access Environment
Yanru Tang, Faeze Heydaryan and Jie Luo
ISBN: 978-1-68083-468-0

Age of Information: A New Concept, Metric, and Tool
Antzela Kosta, Nikolaos Pappas and Vangelis Angelakis
ISBN: 978-1-68083-360-7

Network and Protocol Architectures for Future Satellite Systems
Tomaso de Cola, Alberto Ginesi, Giovanni Giambene,
George C. Polyzos, Vasilios A. Siris, Nikos Fotiou and Yiannis Thomas
ISBN: 978-1-68083-334-8

Duality of the Max-Plus and Min-Plus Network Calculus
Jorg Liebeherr
ISBN: 978-1-68083-294-5

Full text available at: http://dx.doi.org/10.1561/1300000068



Contagion Source Detection in
Epidemic and Infodemic Outbreaks:
Mathematical Analysis and Network

Algorithms

Chee Wei Tan
Nanyang Technological University

cheewei.tan@ntu.edu.sg

Pei-Duo Yu
Chung Yuan Christian University

peiduoyu@cycu.edu.tw

Boston — Delft

Full text available at: http://dx.doi.org/10.1561/1300000068



Foundations and Trends® in Networking

Published, sold and distributed by:
now Publishers Inc.
PO Box 1024
Hanover, MA 02339
United States
Tel. +1-781-985-4510
www.nowpublishers.com
sales@nowpublishers.com

Outside North America:
now Publishers Inc.
PO Box 179
2600 AD Delft
The Netherlands
Tel. +31-6-51115274

The preferred citation for this publication is

C. W. Tan and P. D. Yu. Contagion Source Detection in Epidemic and Infodemic
Outbreaks: Mathematical Analysis and Network Algorithms. Foundations and Trends® 

in Networking, vol. 13, no. 2-3, pp. 106–251, 2023.

ISBN: 978-1-63828-251-8
© 2023 C. W. Tan and P. D. Yu

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, 
or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, 
without prior written permission of the publishers.

Photocopying. In the USA: This journal is registered at the Copyright Clearance Center, Inc., 222 
Rosewood Drive, Danvers, MA 01923. Authorization to photocopy items for internal or personal 
use, or the internal or personal use of specific clients, is granted by now Publishers Inc for users 
registered with the Copyright Clearance Center (CCC). The ‘services’ for users can be found on 
the internet at: www.copyright.com

For those organizations that have been granted a photocopy license, a separate system of payment 
has been arranged. Authorization does not extend to other kinds of copying, such as that for 
general distribution, for advertising or promotional purposes, for creating new collective works, or 
for resale. In the rest of the world: Permission to photocopy must be obtained from the copyright 
owner. Please apply to now Publishers Inc., PO Box 1024, Hanover, MA 02339, USA; Tel. +1 781 
871 0245; www.nowpublishers.com; sales@nowpublishers.com

now Publishers Inc. has an exclusive license to publish this material worldwide. Permission 
to use this content must be obtained from the copyright license holder. Please apply to now 
Publishers, PO Box 179, 2600 AD Delft, The Netherlands, www.nowpublishers.com; e-mail: 
sales@nowpublishers.com

Full text available at: http://dx.doi.org/10.1561/1300000068



Foundations and Trends® in Networking 
Volume 13, Issue 2-3, 2023

Editor-in-Chief
Sanjay Shakkottai

The University of Texas at Austin 
United States

Full text available at: http://dx.doi.org/10.1561/1300000068



Editorial Scope
Topics

Foundations and Trends® in Networking publishes survey and tutorial articles
in the following topics:

• Modeling and Analysis of:

– Ad Hoc Wireless
Networks

– Sensor Networks
– Optical Networks
– Local Area Networks
– Satellite and Hybrid

Networks
– Cellular Networks
– Internet and Web

Services

• Protocols and Cross-Layer
Design

• Network Coding

• Energy-Efficiency
Incentives/Pricing/Utility-
based

• Games (co-operative or not)

• Security

• Scalability

• Topology

• Control/Graph-theoretic
models

• Dynamics and Asymptotic
Behavior of Networks

Information for Librarians

Foundations and Trends® in Networking, 2023, Volume 13, 4 issues.
ISSN paper version 1554-057X. ISSN online version 1554-0588. Also
available as a combined paper and online subscription.

Full text available at: http://dx.doi.org/10.1561/1300000068



Contents

1 Introduction 3
1.1 Epidemics and Rumors . . . . . . . . . . . . . . . . . . . 3
1.2 Propagated Epidemics and Contact Tracing . . . . . . . . 6
1.3 Disinformation and Rumor Source Detection . . . . . . . . 7
1.4 Overview of the Monograph . . . . . . . . . . . . . . . . . 9

2 Preliminaries and Network Centrality 12
2.1 Contagion Spreading Model . . . . . . . . . . . . . . . . . 12
2.2 Mathematical Preliminaries and Statistical Inference . . . . 14
2.3 Simple Line Network Illustration . . . . . . . . . . . . . . 18
2.4 Network Centrality . . . . . . . . . . . . . . . . . . . . . . 29

3 Contagion Source Problem and Degree-regular Tree Case 36
3.1 Maximum-likelihood Estimation Problem . . . . . . . . . . 36
3.2 Rumor Centrality . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Algorithms for Tree Networks . . . . . . . . . . . . . . . . 42
3.4 Conclusions and Remarks . . . . . . . . . . . . . . . . . . 46

4 Estimation and Detection in Graphs with Irregularities 47
4.1 Epidemic Centrality for Trees with a Single End Vertex . . 48
4.2 Epidemic Centrality for Trees with Multiple End Vertices . 64
4.3 Epidemic Centrality for Pseudo-Trees with a Cycle . . . . . 66
4.4 Conclusions and Remarks . . . . . . . . . . . . . . . . . . 74

Full text available at: http://dx.doi.org/10.1561/1300000068



5 Asymptotic Analysis and Pólya Urn Models 76
5.1 Asymptotic Analysis . . . . . . . . . . . . . . . . . . . . . 76
5.2 Contagion Source Detection via Pólya Urn Models . . . . . 83
5.3 Conclusions and Remarks . . . . . . . . . . . . . . . . . . 87

6 Applications to COVID-19 Pandemic and Infodemics 89
6.1 Epidemic Centrality for Digital Contact Tracing . . . . . . 89
6.2 Rumor Source Detection in Twitter and Infodemics . . . . 103
6.3 Conclusions and Remarks . . . . . . . . . . . . . . . . . . 106

7 Further Discussions and Open Issues 109
7.1 Related Research Topics and Open Issues . . . . . . . . . 109
7.2 Reverse and Forward Engineering . . . . . . . . . . . . . . 113
7.3 Machine Learning Approach . . . . . . . . . . . . . . . . . 123
7.4 Conclusions and Remarks . . . . . . . . . . . . . . . . . . 126

Acknowledgements 128

References 129

Full text available at: http://dx.doi.org/10.1561/1300000068



Contagion Source Detection in
Epidemic and Infodemic Outbreaks:
Mathematical Analysis and Network
Algorithms
Chee Wei Tan1 and Pei-Duo Yu2

1Nanyang Technological University, Singapore; cheewei.tan@ntu.edu.sg
2Chung Yuan Christian University, Taiwan; peiduoyu@cycu.edu.tw

ABSTRACT

The rapid spread of infectious diseases and online rumors
share similarities in terms of their speed, scale, and pat-
terns of contagion. Although these two phenomena have
historically been studied separately, the COVID-19 pan-
demic has highlighted the devastating consequences that
simultaneous crises of epidemics and misinformation can
have on the world. Soon after the outbreak of COVID-19,
the World Health Organization launched a campaign against
the COVID-19 Infodemic, which refers to the dissemination
of pandemic-related false information online that causes
widespread panic and hinders recovery efforts. Undoubtedly,
nothing spreads faster than fear.

Networks serve as a crucial platform for viral spreading, as
the actions of highly influential users can quickly render
others susceptible to the same. The potential for contagion
in epidemics and rumors hinges on the initial source, un-
derscoring the need for rapid and efficient digital contact

Chee Wei Tan and Pei-Duo Yu (2023), “Contagion Source Detection in Epidemic and
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tracing algorithms to identify superspreaders or Patient
Zero. Similarly, detecting and removing rumor mongers is
essential for preventing the proliferation of harmful infor-
mation in online social networks. Identifying the source of
large-scale contagions requires solving complex optimization
problems on expansive graphs. Accurate source identification
and understanding the dynamic spreading process requires
a comprehensive understanding of surveillance in massive
networks, including topological structures and spreading
veracity. Ultimately, the efficacy of algorithms for digital
contact tracing and rumor source detection relies on this
understanding.

This monograph provides an overview of the mathematical
theories and computational algorithm design for contagion
source detection in large networks. By leveraging network
centrality as a tool for statistical inference, we can accurately
identify the source of contagions, trace their spread, and pre-
dict future trajectories. This approach provides fundamental
insights into surveillance capability and asymptotic behavior
of contagion spreading in networks. Mathematical theory
and computational algorithms are vital to understanding
contagion dynamics, improving surveillance capabilities, and
developing effective strategies to prevent the spread of in-
fectious diseases and misinformation.
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1
Introduction

1.1 Epidemics and Rumors

The spreading of epidemics and rumors on networks share many impor-
tant features [28], [29], [36], [58]. The underlying network interaction
cannot be directly observed and often has to be implicitly inferred
from macroscopic phenomenons. Driven by the same human collective
crowd behavior, these network dynamics can lead to common network
effects like the small-world phenomenon and percolation thresholds.
The study of epidemics and rumor spreading is thus an important part
of applied probability theory and graph theory related to the analysis
of the evolution of large systems arising in networks. Even though the
process of spreading information in online social networks differs from
that of disease epidemics, the proliferation of fake news and recent dis-
information campaigns in online social networks has emerged in recent
years as a formidable cybersecurity threat that can have catastrophic
real-world consequences like a pandemic [45], [92], [135], [149].

Though epidemics and rumor spreading have been separately studied
in the past with a longer history for the stochastic theory of epidemic
spreading, the COVID-19 pandemic has been the first of simultaneous
global crises in which both the epidemic and overabundance of mis-

3
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4 Introduction

information devastatingly wreak havoc on the world. The COVID-19
pandemic is the first pandemic in history in which humans rely heavily
on the Internet and online social networks to stay connected amidst
the prolonged lockdown and social distancing measures in place. It has
also spawned an epidemic of online misinformation, undermining the
efficacy of online social networks that humans crucially rely on and
disrupting public health risk communications. Shortly after the COVID-
19 pandemic started, the World Health Organization (WHO) declared
war against the COVID-19 Infodemic, which is the viral spreading of
pandemic-related misinformation or disinformation in social media [54].

Spreading processes are dynamic cascading phenomena where the
action of some users increases the susceptibility of other users to the
same; this results in the successive spread of a disease virus or rumor
from an initial few users to a much larger set of users [28], [29], [36],
[58]. When a new infectious virus spreads, public healthcare authorities
want to identify persons who may have come into contact with an
infected person and to trace close social contacts in order to stop
ongoing transmission or reduce the spread of infection. When rumors
like false treatment for the COVID-19 disease spread in online social
networks, this can prevent humans from adopting the right behaviors
to reduce the COVID-19 pandemic risk. Once misinformation morphed
into disinformation attacks, it can be disruptive and deadly. These
simultaneous crises require both public healthcare and cyber security
experts to work together to fight infodemics by identifying sources of
misinformation.

An objective of interests is to unravel the dynamical spreading
process to root out the malicious source quickly, accurately, and reliably
with only limited observation data of infected nodes in the network.
Just like epidemic countermeasures like digital contact tracing and
policies to identify Patient Zero in an outbreak,1 building resilience to
catastrophic viral misinformation is of huge importance to a safe and
functioning cyberspace because of the highly-connected online social
networks.

1Contact tracing apps based on the Bluetooth wireless radio standard are arguably
one of the defining technologies for surveillance during the COVID-19 pandemic [65],
[91].
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1.1. Epidemics and Rumors 5

To accurately detect or predict the causation of contagion in large
networks, it is crucial to identify the superspreaders and the origin of
disease viruses. Similarly, it is essential to determine who is spreading
rumors and disinformation to cause division and influence decisions
among users. This raises questions about the provenance of such in-
formation [92], [100], [150]. Additionally, the implications of network
surveillance and the response to contain a contagion must be considered.
With the emergence of new communication platforms, new avenues
for spreading misinformation and disinformation arise. Identifying the
source of contagion can have far-reaching consequences, such as timely
responses to the next pandemic or promoting a safe cyberspace.

Numerous fundamental questions remain unanswered in the statisti-
cal inference of infection sources in networks. The theory of stochastic
processes over large networks is still evolving, and the computational
aspects of estimation and detection in networks have not yet been
systematically examined, with source identification understood only in
the simplest graph topology cases. It is remarkable that even though
human social interaction or online social networks are not designed with
the intention of spreading a payload (such as an infectious disease virus
or rumor) as rapidly as possible, the process of viral spreading over
large networks is not fully comprehended [92], [100], [150]. Are there
specific network structures, quantifiable measures of user influence that
promote viral spreading? If so, what particular features could aid in the
development of better digital contact tracing strategies or interventions
to counter the spread of malicious rumors?

As we strive to comprehend the spread of contagions across large
networks, it is crucial to recognize the potential for cross-pollination of
ideas between different types of networks, each with distinct interaction
graph structures, initial nodes, and nature of user interactions [28],
[29], [36], [58]. For instance, in [6], researchers proposed intervention
strategies based on a generative model of viral misinformation spread
using infectious disease spreading dynamics. Moreover, when network
topology abstraction is sufficiently random, it may provide insights into
network phenomena based on percolation theory, as noted in [38].

Full text available at: http://dx.doi.org/10.1561/1300000068



6 Introduction

1.2 Propagated Epidemics and Contact Tracing

Tracing the origins of propagated epidemics can be traced back to the
investigation of the 1854 London cholera epidemics by John Snow (1813–
1858), who is widely recognized as a pioneer of modern epidemiology
[5], [49], [50]. His work in tracking the source of the cholera outbreak
was a significant breakthrough in epidemiological research. By creating
detailed dot distribution maps of household deaths due to cholera,
Snow was able to identify the source of the epidemic - a water pump
located in Broad Street, Golden Square. Snow’s methodical tracing
effort was one of the earliest applications of inferential statistics to the
study of epidemics [5], [49], [50]. Additionally, his heroic intervention in
persuading the parish’s vestrymen to remove the water pump symbolizes
one of the earliest examples of public health action. It is important to
note that Snow’s contribution to epidemiology was not only a significant
scientific achievement but also a landmark event in the history of public
health. The removal of the water pump resulted in the rapid cessation
of the cholera epidemic, saving countless lives and laying the foundation
for modern epidemiological research.

Nowadays, epidemiologists agree that it is necessary to employ con-
tact tracing to stop an infectious disease from spreading: Once a person
has been diagnosed as infected, public health authorities fan out to
trace the recent contacts of this person for the purpose of monitoring or
quarantine. This process repeats if one of those contacts exhibits symp-
toms until all the contacts who have been exposed are out of circulation.
Contact tracing can be effective in the early stage of an epidemic. How-
ever, the COVID-19 pandemic had revealed severe deficiencies in public
health protection due to asymptomatic infections. Prior study [22] shows
that asymptomatic infections need to be considered in analyzing the
spread of the disease. The COVID-19 disease is highly contagious, wide-
ranging with long incubation periods and transmissible within 6 feet.
Its speed and scale of infection had overwhelmed most contact tracing
capabilities which are labor-intensive, cost-inefficient and very slow [45],
[86]. A new public health innovation, digital contact tracing, then came
to the scene. Digital contact tracing leverages a plethora of mobile apps
to contact trace people and to provide exposure notifications [8], [17],
[46], [65], [82], [91], [94], [95].

Full text available at: http://dx.doi.org/10.1561/1300000068



1.3. Disinformation and Rumor Source Detection 7

Current contact tracing practices focus primarily on finding recent
contacts of index cases, while overlooking the source of origin. In fact,
source inference is an important factor that explains the initial success of
backward contact tracing adopted by countries like Japan and Australia
in the early days of the COVID-19 pandemic [12], [17], [86], showing
that, whenever there is a sudden outbreak, tracing transmission events
rather than infectious individuals can efficiently and effectively prevent
infection waves.

There are several challenging unsolved problems in digital contact
tracing [17], [81], [91], [139]. First, what is the fundamental relationship
between infectiousness and the agility of contact tracing? Can contact
tracing be faster than the spreading of an infectious disease? Second,
how to quadruple the speed of contact tracing? Can backward contact
tracing complement forward contact tracing to find Patient Zero or the
superspreaders accurately? Third, can we design disease surveillance
networks so as to provide timely prediction and early warning capability
to automate digital contact tracing upon the arrival of future epidemics?

1.3 Disinformation and Rumor Source Detection

Online social networks like Twitter, Facebook, and YouTube are critical
online platforms for spreading news and the diffusion of all kinds of
information. They can however cause misinformation and disinformation
to spread faster and more rampantly than the traditional “word-of-
mouth” mechanism [3], [15], [52], [62], [92], [96], [98], [110], [135], [149],
[159]. In fact, false news spreads faster than the truth in a Twitter
network [150]. Misinformation is inaccurate or unreliable information
that is spread regardless of an intent to mislead. On the other hand,
disinformation is intentionally-fabricated misinformation (e.g., hoax
news) that is spread with the intent to influence people to make certain
decisions or to further an agenda. A malicious rumor monger can now
“infect” people across geographical regions on a massive scale faster
than ever before. Online rumors, misinformation, and disinformation
can thus disrupt livelihood and have serious real-world repercussions.

Recent examples are political mobilization messages spreading in
social media that sparked off waves of demonstrations and protests in

Full text available at: http://dx.doi.org/10.1561/1300000068



8 Introduction

the Middle East (dubbed the “Arab Spring” or the Twitter revolution)
in 2010-2012. In 2013, a bogus Tweet that the White House was attacked
went viral after it was sent out by the Associated Press Twitter account
that was hacked [11]. This incident momentarily crashed the stock
market, demonstrating how online disinformation can cause flash crash
and allowing computer hackers to profiteer in the process. A similarly
severe incident happened in 2020 when computer hackers seized control
of dozens of Twitter accounts belonging to high-profile users like Barack
Obama and Elon Musk to tweet out a “double your bitcoin” scam, which
went viral quickly. Eventually, this cryptocurrency scam led to a theft
of bitcoins worth more than US $110,000 before all the scam messages
were removed. Such Internet frauds and cybersecurity threats will be
more widespread, especially when bots are recruited to sow discord to
amplify the spread of disinformation.

Nations worldwide now recognize that the spread of misinformation
and disinformation is an imminent cybersecurity threat that should be
seriously addressed by law enforcement agencies [130]. However, the
distinction between harmless misinformation and disinformation is often
blurred. Moreover, rapid advances in deepfake technologies can make
hoax news look legitimate and further exacerbate the situation. Rooting
out rumor mongers and dispelling disinformation of increased scale and
impact will be part of a timely and practical defense strategy that can
offer intellectually deep insight to the science of networks.

What can cause the viral spreading of rumors or disinformation?
One factor is semantics [52], [101]. For example, hoaxes and prank
threats such as bomb threats are considered more serious but are likely
short-lived as they can be quickly debunked. On the other hand, some
rumors might swirl longer in social media (e.g., workplace rumors like
layoffs or the inefficacy of certain pandemic measures) [52], [101], [126],
[147]. Another factor is the principle of homophily in which humans
have a tendency to associate with similar others, leading to cognitive
bias typically known as the “echo chamber” effect [56], [62], [159]. The
element of surprise can also affect rumor viscosity as people will tend
to spread the information.

Full text available at: http://dx.doi.org/10.1561/1300000068
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1.4 Overview of the Monograph

This monograph provides an overview of the surveillance of contagion
sources in networks that find applications in digital contact tracing
and rumor source detection to combat epidemics and infodemics, re-
spectively. Given data that embeds both network topological structure
(e.g., knowing who is connected to whom) and relational patterns on
how a disease virus or rumor propagates, the objective is to answer the
fundamental question: how to unravel stochastic spreading processes in
the network to find the initial outbreak source quickly, accurately and
reliably with high confidence by exploiting the topological and statistical
properties of networks.

The contagion source detection problem was first studied in the
seminal work [131]–[133]. Mathematically, the problem is: Given a
snapshot observation of the contagion graph (showing how “infected”
users are connected), who is the contagion source of the spreading? This
problem is formulated as a maximum likelihood estimation problem
over graphs and then solved exactly for special cases of degree-regular
trees with infinite underlying graphs using a new form of network
centrality called rumor centrality. Since then, it has spawned a huge
literature on contagion source detection with various extensions such
as random trees in [37], [53], to multiple sources in [69], [70], [105],
[106], [108], [109], [112], [144], [167], to probabilistic sampling in [77],
[120] and detection with multiple observations in [35], [153], belief
propagation [40], general graphs with irregularity [154], [155], [165] and
the implication of probabilistic spreading models and different graph
topological features on solving the contagion source detection problem
[4], [40], [84], [103], [114], [127], [137], [155], [168].

Different types of network centrality defined on vertices can resolve
different types of network problems. Rumor centrality [132] is designed
to solve the contagion source detection problem on infinite-size regular
tree networks optimally (cf. Section 3.2). The vertex with the maximum
rumor centrality is called the rumor center of a tree graph, and the rumor
center was proved to be the same as the distance center [131], and the
graph centroid of the tree [142], [163], [164]. Furthermore, it was shown
in [72], [73], [85] that the graph centroid is almost surely central in the
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limit of the random growth process of infection on an underlying infinite
regular graph. Aside from the distance centrality, another distance-based
centrality, the Jordan center, was proposed to solve the contagion source
detection in different scenarios [111], [112]. Dynamic influence due to
stochastic spreading and opinion dynamics in online social networks
can be characterized by the harmonic influence centrality in [1], [148]
and the Shapley centrality in [21]. The protection centrality in [2] and
relative centrality in [18] measure how important a set of vertices in a
network is with respect to other vertices at the gatekeeper level and
community level respectively. Querying this contagion source in a large
graph with cost constraints and query complexity has been analyzed in
[25], [93], [127]. Centrality measures related to the eigenvectors of the
network topology are also important in the study of stochastic processes
over large graphs [31], [57], [76], [124].

The bibliography included in this monograph seeks to encompass as
many contributions as possible, aiming to provide a balanced overview
of the key results and methodologies. Although the monograph may
not be a perfect summary of the state-of-the-art (see related surveys in
[71], [160] before 2018), it aims to serve as an imperfect yet informative
summary, providing a rough illustration of the existing literature in
the last 15 years and with relevance to the COVID-19 pandemic and
infodemic. We survey the various work in this field with a particular
focus on the intricate interplay between contagion source detection and
mathematical tools like graph theory, probability theory, combinatorics,
and algorithm design for statistical inference in the context of large
networks.

This monograph provides a comprehensive overview of contagion
source detection problem along with a problem-solving approach called
“network centrality as statistical inference” that expounds a systematic
approach to analyze inferential statistical problems in networks with
applications to digital contact tracing and rumor source detection. The
framework presented in this work establishes a connection between
network centrality and the solution of challenging optimization prob-
lems that involve complex combinatorial constraints arising from the
interaction of a stochastic process with the underlying network. By lever-
aging an appropriate network centrality, which induces a metric on each
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graph node, it is possible to obtain compact measures that quantify the
importance of nodes and accurately capture the optimality of stochas-
tic optimization. This framework also enables the utilization of graph
algorithm techniques to address these problems effectively [59], [145].

We will discuss how the “network centrality as statistical inference”
approach can be useful to the graph algorithm design that comes with
performance guarantees, computational complexity, detection accuracy,
and to address the “big data” regime in which the contagion graph
can be very large (as is the case in the COVID-19 pandemic and
infodemic). Designing scalable algorithms that uncover the contagion
source accurately by leveraging network science and mathematical
tools will be important to prevent future pandemics (e.g., ‘Disease X’
pandemic and infodemic) given the enhanced human connectivity on a
global scale. We will conclude with open issues and several promising
research directions to address the challenges of surveillance of spreading
in networks.
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