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Abstract

We consider dynamic trading of a portfolio of assets in discrete periods
over a finite time horizon, with arbitrary time-varying distribution of
asset returns. The goal is to maximize the total expected revenue from
the portfolio, while respecting constraints on the portfolio such as a
required terminal portfolio and leverage and risk limits. The revenue
takes into account the gross cash generated in trades, transaction costs,
and costs associated with the positions, such as fees for holding short
positions. Our model has the form of a stochastic control problem with
linear dynamics and convex cost function and constraints. While this
problem can be tractably solved in several special cases, such as when
all costs are convex quadratic, or when there are no transaction costs,
our focus is on the more general case, with nonquadratic cost terms
and transaction costs.

We show how to use linear matrix inequality techniques and
semidefinite programming to produce a quadratic bound on the value
function, which in turn gives a bound on the optimal performance.
This performance bound can be used to judge the performance ob-
tained by any suboptimal policy. As a by-product of the performance
bound computation, we obtain an approximate dynamic programming
policy that requires the solution of a convex optimization problem, of-
ten a quadratic program, to determine the trades to carry out in each
step. While we have no theoretical guarantee that the performance of
our suboptimal policy is always near the performance bound (which
would imply that it is nearly optimal) we observe that in numerical
examples the two values are typically close.

S. Boyd, M. Mueller, B. O’Donoghue, Y. Wang. Performance Bounds and

Suboptimal Policies for Multi-Period Investment. Foundations and Trends R© in
Optimization, vol. 1, no. 1, pp. 1–72, 2014.

DOI: 10.1561/2400000001.
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1

Introduction

1.1 Overview

In this paper we formulate the discrete-time finite horizon time-varying
multi-period investment problem as a stochastic control problem. By
using state variables that track the value of the assets, instead of more
traditional choices of states such as the number of shares or the fraction
of total value, the stochastic control problem has linear (but random)
dynamics. Assuming that the costs and constraints are convex, we ar-
rive at a linear convex stochastic control problem.

This problem can be effectively solved in two broad cases. When
there are no transaction costs, the multi-period investment problem
can be reduced to solving a set of standard single-period investment
problems; the optimal policy in this case is to simply rebalance the
portfolio to a pre-computed optimal portfolio in each step. Another
case in which the problem can be effectively solved is when the costs
are quadratic and the only constraints are linear equality constraints. In
this case standard dynamic programming (DP) techniques can be used
to compute the optimal trading policies, which are affine functions of
the current portfolio. We describe these special cases in more detail in
§3.3 and §3.2. The problem is also tractable when the number of assets

2
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1.1. Overview 3

is very small, say two or three, in which case brute force (numerical)
dynamic programming can be used to compute an optimal policy.

Most problems of interest, however, include significant transaction
costs, or include terms that are not well approximated by quadratic
functions. In these cases, the optimal investment policy cannot be
tractably computed. In such situations, several approaches can be used
to find suboptimal policies, including approximate dynamic program-
ming (ADP) and model predictive control (MPC). The performance of
any suboptimal policy can be evaluated using Monte Carlo analysis,
by simulation over many return trajectories. An obvious practical (and
theoretical) question is, how suboptimal is the policy? In this paper we
address this question.

Using linear matrix inequality (LMI) techniques widely used in con-
trol system analysis and design [18, 35, 80], we construct a (numerical)
bound on the best performance that can be attained, for a given prob-
lem. The method requires the construction and solution of a semidefi-
nite program (SDP), a convex optimization problem involving matrix
inequalities. We can compare the bound on performance with the per-
formance attained by any suboptimal policy; when they are close, we
conclude that the policy is approximately optimal (and that the per-
formance bound is nearly tight). Even when the performance bound
and suboptimal policy performance are not close, we at least have a
bound on how suboptimal our suboptimal policy can be.

The performance bound computation yields a quadratic approxima-
tion (in fact, underestimator) of the value functions for the stochastic
control problem. These quadratic value function approximations can be
used in an ADP policy, or as the terminal cost in an MPC policy. While
we have no a priori guarantee that the gap between the performance
bound and the performance of the ADP policy will always be small,
simulations show that the ADP and MPC policies achieve performance
that is often nearly optimal.

Our methods for computing the performance bound, as well as
implementing the ADP and MPC suboptimal policies, rely on (nu-
merically) solving convex optimization problems, for which there are
efficient and reliable algorithms available [20, 72, 77, 73, 102]. The per-

Full text available at: http://dx.doi.org/10.1561/2400000001



4 Introduction

formance bound computation requires solving SDPs [20, 95], which can
be done using modern interior-point cone solvers such as SeDuMi or
SDPT3 [88, 92, 94]. Parser-solvers such as CVX or YALMIP [40, 58]
allow the user to specify the SDPs in a natural high-level mathematical
description form, greatly reducing the time required to form and solve
the SDPs. The SDPs that we solve involve T matrices of size n × n,
where n is the number of assets, and T is the trading period hori-
zon. These SDPs can be challenging to solve (depending on n and T ,
of course), using generic methods; but this computation is done once,
off-line, before trading begins.

Evaluating the ADP suboptimal policy in each period (i.e., deter-
mining the trades to execute) requires solving a small and structured
convex optimization problem with (on the order of) n scalar variables.
Solving these problems using generic solvers might take seconds, or
even minutes, depending on the problem size and types of constraints
and objective terms. But recent advances have shown that if the solver
is customized for the particular problem family, orders of magnitude
speed up is possible [64, 65, 63, 62, 99]. This means that the ADP
trading policies we design can be executed at time scales measured in
milliseconds or microseconds for modest size problems (say, tens of as-
sets), even with complex constraints. In addition, the trading policies
we design can be tested and verified via Monte Carlo simulation very
efficiently. For example, the simulation of the numerical examples of the
ADP policies reported in this paper required the solution of around 50
million quadratic programs (QPs). These were solved in a few hours
on a desktop computer using custom solvers generated by CVXGEN,
a code generator for embedded convex optimization [64].

Evaluating the MPC policy also requires the solution of a structured
convex optimization problem, with (on the order of) nT variables. If
a custom solver is used, the computational effort required is approxi-
mately T times the effort required to evaluate the ADP policy. One ma-
jor advantage of MPC is that it does not require any pre-computation;
to implement the ADP policy, we must first solve a large SDP to find
the approximate value functions. MPC can thus directly incorporate
real-time signals such as changes in future return statistics.

Full text available at: http://dx.doi.org/10.1561/2400000001



1.2. Prior and related work 5

1.2 Prior and related work

Portfolio optimization has been studied and used for more than 60
years. In this section our goal is to give a brief overview of some of
the important research in this area, focussing on work related to our
approach. Readers interested in a broader overview of the applications
of stochastic control and optimization to economics and finance should
refer to, e.g., [1, 34, 45, 76, 90, 104].

Single-period portfolio optimization

Portfolio optimization was introduced by Markowitz in 1952 [61]. He
formulated a single period portfolio investment problem as a quadratic
optimization problem with an objective that trades off expected return
and variance. Since this first work, many papers have extended the sin-
gle period portfolio optimization framework. For example, Goldsmith
[38] is one of the first papers to include an analysis of the effect of
transaction costs on portfolio selection. Modern convex optimization
methods, such as second-order cone programming (SOCP), are applied
to portfolio problems with transaction costs in [57, 56]. Convex opti-
mization methods have also been used to handle more sophisticated
measures of risk, such as conditional value at risk (CVaR) [82, 50].

Dynamic multi-period portfolio optimization

Early attempts to extend the return-variance trade-off to multi-period
portfolio optimization include [91, 71]. One of the first works on multi-
period portfolio investment in a dynamic programming framework is
by Merton [68]. In this seminal paper, the author considers a problem
with one risky asset and one risk-free asset; at each continuous time in-
stant, the investor chooses what proportion of his wealth to invest and
what to consume, seeking to maximize the total utility of the wealth
consumed over a finite time horizon. When there are no constraints or
transaction costs, and under some additional assumptions on the in-
vestor utility function, Merton derived a simple closed-form expression
for the optimal policy. In a companion paper [84], Samuelson derived
the discrete-time analog of Merton’s approach.

Full text available at: http://dx.doi.org/10.1561/2400000001



6 Introduction

Constantinides [26] extended Samuelson’s discrete-time formulation
to problems with proportional transaction costs. In his paper, Constan-
tinides demonstrated the presence of a convex ‘no-trade cone’. When
the portfolio is within the cone the optimal policy is not to trade; out-
side the cone, the optimal policy is to trade to the boundary of the
cone. (We will see that the policies we derive in this paper have sim-
ilar properties.) Davis and Norman [29] and Dumas and Lucian [33]
derived similar results for the continuous-time formulation. In [28], the
authors consider a specific multi-period portfolio problem in continu-
ous time, where they derive a formula for the minimum wealth needed
to hedge an arbitrary contingent claim with proportional transaction
costs. More recent work includes [93, 23, 24]; in these the authors de-
velop affine recourse policies for discrete time portfolio optimization.

Log-optimal investment

A different formulation for the multi-period problem was developed by
Kelly [49], where it was shown that a log-optimal investment strategy
maximizes the long-term growth rate of cumulative wealth in horse-
race markets. This was extended in [21] to general asset returns and
further extended to include all frictionless stationary ergodic markets
in [3] and [27]. More recently, Iyengar [44] extended these problems to
include proportional transaction costs.

Linear-quadratic multi-period portfolio optimization

Optimal policies for unconstrained linear-quadratic portfolio problems
have been derived for continuous-time formulations by Zhou and Li
[103], where the authors solve a continuous-time Riccati equation to
compute the value function. In [53] this was extended to include a long-
only constraint. Skaf and Boyd [87], and Gârleanu and Pederson [37],
point out that the multi-period portfolio optimization problem with
linear dynamics and convex quadratic objective can be solved exactly.
For problems with more complex objective terms, such as proportional
transaction costs, Skaf and Boyd use the value functions for an associ-
ated quadratic problem as the approximate value functions in an ADP

Full text available at: http://dx.doi.org/10.1561/2400000001
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policy. In [43] the authors formulate a multi-period portfolio problem
as a linear stochastic control problem, and propose an MPC policy.

Optimal execution

An important special case of the multi-period problem is the optimal
execution problem, where we seek to execute a large block of trades
while incurring as small a cost as possible. Bertsimas and Lo [16] model
price impact, in which trading affects the asset prices, and derive an
optimal trading policy using dynamic programming methods. Almgren
and Chriss [4] address the optimal execution problem, including volatil-
ity of revenue. They show that the optimal policy can be obtained with
additional restrictions on the price dynamics.

Performance bounds

In problems for which an optimal policy can be found, the optimal per-
formance serves as a (tight) bound on performance. The present paper
focuses on developing a numerical bound on the optimal performance
for problems for which the optimal policy cannot be found.

Brown and Smith [22] compute a bound on optimal performance
and derive a heuristic policy that achieves performance close to the
bound. Their bound is given by the performance of an investor with
perfect information about future returns, plus a clairvoyance penalty.

In [41], the authors construct an upper bound on a continuous time
portfolio utility maximization problem with position limits. They do
this by solving an unconstrained ‘fictitious problem’ which provides an
upper bound on the value function of the original problem.

In [70], the authors describe a class of linear rebalancing policies for
the discrete-time portfolio optimization problem. They develop several
bounds, including a bound based on a clairvoyant investor and a bound
obtained by solving an unconstrained quadratic problem.

Desai et al. [32] develop a bound for an optimal stopping problem,
which is useful in a financial context for the pricing of American or
Bermudan derivatives amongst other applications. The bound is de-
rived from a dual characterization of optimal stopping problems as
optimization problems over the space of martingales.

Full text available at: http://dx.doi.org/10.1561/2400000001



8 Introduction

1.3 Outline

We structure our paper as follows. In chapter 2 we formulate a general
multi-period investment problem as a linear convex stochastic control
problem, using somewhat nontraditional state variables, and give exam-
ples of (convex) stage cost terms and portfolio constraints that arise in
practical investment problems, as well as mentioning some nonconvex
terms and constraints that do not fit our model. In chapter 3 we review
the dynamic programming solution of the stochastic control problem,
including the special case when the stage costs are convex quadratic.
In chapter 4 we give our method for finding a performance bound in
outline form; the full derivations are pushed to appendices A–C. We
describe MPC in chapter 6. In chapter 7 we report numerical results
for several examples, using both ADP and MPC trading policies.
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